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Abstract

Unpaired image-to-image translation aims to translate an input image to another
domain such that the output image looks like an image from another domain while
important semantic information are preserved. Inferring the optimal mapping with
unpaired data is impossible without making any assumptions. In this paper, we
make a density changing assumption where image patches of high probability
density should be mapped to patches of high probability density in another domain.
Then we propose an efficient way to enforce this assumption: we train the flows
as density estimators and penalize the variance of density changes. Despite its
simplicity, our method achieves the best performance on benchmark datasets and
needs only 56− 86% of training time of the existing state-of-the-art method. The
training and evaluation code are avaliable at https://github.com/Mid-Push/
Decent.

1 Introduction

Unpaired image-to-image translation aims to translate an input image to another domain such that the
output image looks like an image from another domain while important semantic information are
preserved. For example, in the task selfie→anime, we need to translate the selfie photo into anime
style while the identity of input human is still preserved. In addition, many research problems can be
reformulated as image translation tasks, such as domain adaptation [18, 34], medical image analysis
[2] and image super-resolution [50].

In unpaired image translation setting, we are given two collections of samples without pairing
information and we need to learn a proper mapping from one domain to another. Unfortunately,
given two marginal distributions, there can be infinite number of joint distributions that can derive
the same marginals [30]. Therefore, assumptions are needed to address this ill-posed problems. One
popular assumption is the cycle consistency [55, 26, 48], which assumes that the proper mapping is
one-to-one. Cycle consistency has been shown to achieve impressive visual performance in many
tasks [55, 25]. But sometimes the one-to-one assumption can be over restrictive, especially for some
tasks that one domain has more information than another one [39]. As an alternative, contrastive
learning based image translation is gaining wide attention [39]. CUT [39] employs infoNCE loss
[43] to maximize the mutual information between two corresponding patches in the input and output
images. Recent image translation methods are mostly trying to improve CUT, such as negative sample
mining [44, 24], informative sample mining [20, 51] and dual embedding learning [16].

In this paper, we propose a different way to find the optimal mapping by looking at the neighboring
information. DistanceGAN [5] proposes to maintain the pairwise distance between images after the
mapping. But the pairwise distance is usually computed within mini-batches and the neighboring
information can be inaccurate, which may leads to unsatisfactory performance as reported in [39]. We
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Figure 1: Illustration of our constraint. The plotted densities are synthesized for illustration. On the
top row, we show the patch density distribution of domain X and Y . We assume that the patches of
high density should still be mapped to patches with high density in another domain.For example,
patches of building (blue box) in the input image are of higher density than patches of trees (orange
box) in domain X . Then we assume that the corresponding patch should also have higher density.
If label flipping happens, buildings (high density) are mapped to trees (low density) and trees (low
density) are mapped to buildings (high density), the variance of density changes can be very large.
So we penalize the variance of density changes to find the optimal mapping. The ground truth photo
is in line with our assumption.

propose to consider the neighboring information from the density perspective: the probability density
of an image or patch (a smaller piece of the image) is a good representation of its neighborhood. If
the probability density of an image is high, it means that many samples are likely to be drawn from
its neighborhood. In light of this analysis, we propose our density changing regularization: patches
with high (low) density should be mapped to patches with high (low) density in another domain. As
illustrated in Figure 1, the gray area in input image (blue box) is of higher density than the green
area (orange box), then our regularization encourages that the gray area is mapped to area with high
density in another domain. In this example, the patch of building is of higher density than the patch
of trees. Therefore, our regularization encourages the gray area to be mapped to the building and the
green area to be mapped to the trees. As we can observe from the ground truth, it is exactly what
the ground truth photo does. The regularization is implemented in a very simple way: we just train
two density estimators and penalize the variance of the density changes of patches. We apply our
method to different image translation tasks and the superior performance across tasks demonstrate
the effectiveness of our method. In addition, our method needs only around 56-86% training time
of state-of-the-art (SOTA) methods. From the successful experimental results, we suggest that our
method can be safely applied when preserving the neighboring information is needed, e.g., label→city
task. However, the method may be less effective when preserving the neighboring information is not
necessary. For example, for the horse→zebra task, the densities of horse patches are lower than the
densities of zebra patches. So enforcing the regularization may be over strong on this specific task. In
the future, we may consider applying attention on important patches only to address this issue.

2 Related Work

Image Translation For unpaired image-to-image translation, we are given only two collections of
images and we need to learn a proper mapping from one domain to another. However, the number of
possible mappings can be infinite and we need to introcue additional assumptions to reduce it. Cycle
consistency [55, 48, 26] is one of the most popular assumptions. It enforces the mapping function
to be one-to-one and has shown success in many tasks [25, 1, 8, 7, 3, 41, 46]. However, it may be
restrictive when the optimal mapping is not one-to-one, e.g., segmentation map to a real photo. To
address this issue, CUT [39] proposes a contrastive learning based method. It maximizes the mutual
information between two corresponding patches in the input and output image with the infoNCE

2



Figure 2: Patch Density Changing Regularization for unpaired image translation. G is the generator,
anl and bnl denotes the patch representation extracted by the l-th layer of G of the input image x and
generated image G(x), respectively. f l

X and f l
Y are log-density estimators for patch representations

at l-th layer in domain X and Y , respectively. We penalize the variance of log-density changes such
that patches with high (low) density are mapped to patches with high (low) density in another domain.

loss [37]. Unlike CycleGAN [55], CUT doesn’t need two mapping function and allows one-sided
training. However, as many recent method revealed, the effectiveness of the method can be hampered
by the negative samples used. Randomly selected negative samples might not be useful. Therefore,
recent methods are mostly focusing on mining more meaningful negative samples or positive samples
for better results [24, 44, 51, 20]. Unlike the mutual information based methods, our method focus
on the neighboring information of patches and no negative sample are needed. There are also some
methods arguably based on the neighborhood information. DistanceGAN [5] proposes to maintain the
pairwise distance between images in the source domain and the translated domain. HarmonicGAN
[52] proposes a smoothed distance objective inspired by [56]. F-LSeSIM [54] proposes to encourage
the pairwise distance matrix of input and translated patch representations to be consistent. However,
the pairwise distance loss may be inaccurate due to the insufficient sample and the training objective
may also be dominated by the very distant pairs. In contrast, our method utilizes the probability
density, which represents the neighborhood information of the whole dataset and we also avoid the
possibly bad influence by the very distant pairs. There are also some powerful alternatives, such as
the spatial transformation consistency [12, 47] and shared latent space assumption [30, 22, 29].

Flow+GAN FLOW-GAN [15] uses the normalizing flow as the generator. Then the generator can
be trained by maximum likelihood and adversarial objectives hybridly. Based on FLOW-GAN,
Alignflow[14] first translates the source image into a latent variable with flow and generate its
corresponding image in the target domain by feeding the latent variable into another flow. Since flows
are designed to be invertible, the mapping function is exactly invertible while CycleGAN [55] only
enforces that property approximately. iFlowGAN [9] proposes to regularize the lipschitz norm of
each layer and thus the mapping function is invertible and the inverse can be obtained by fixed-point
theorem. Unfortunately, the flow model can take very long time to train and has inferior performance
compared to GAN model in high-resolution image modeling. [32, 4, 27]. Our model doesn’t need to
train the flow as image modeling but we utilize its strong density estimation ability to regularize the
GAN training.

Density Estimation Estimating the density P (x) from a set of samples {xi} is an important problem
in machine learning and computer vision. There have been many successful works that estimate the
density with neural networks [38, 42, 28, 11, 21, 23, 31, 13, 45, 36, 19]. In this paper, we consider
the autoregressive normalizing flow as our density estimator. The flow model f maps the data into
Gaussian noise and the density of data x can be computed as p(x) = p(z)|detJf(x)|, where z = f(x),
p(z) is the normal distribution density and |detJf(x)| is the absolute value of determinant of the
Jacobian matrix. With careful design of the architecture of the function f , the determinant can also
be computed efficiently.
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3 Proposed Method

Given images {xi} ∈ X and images {yj} ∈ Y , our goal is learn a mapping G : X → Y such
that G(x) looks like images in the domain Y while preserving necessary semantic information. For
example, in translating a segmentation map to real-world photo, we need to ensure that generated
photo looks realistic while the contents (e.g., building, trees, roads) in the generated photo follow the
segmentation map.

3.1 Baseline GAN model

To achieve the first goal that G(x) looks like an image in another domain Y , we employ an adversarial
loss with the domain discriminator D to match the distribution between PG(X ) and PY ,

Lgan = Ex∼X [log(1−D(G(x)))] + Ey∼Y [log(D(y))]. (1)

We also additionally introduce an identity mapping loss to regularize the mapping function G, which
is widely adopted in existing image translation methods [55, 39].

Lidentity = Ey∼Y∥G(y)− y∥. (2)

By combing these two losses, we obtain an baseline GAN model for image translation. Unfortunately,
there can still be infinite number of mappings that satisfy these objectives and we need further
constraints to reduce the number of possible mappings in the space [55].

3.2 Proposed Density Constraint

In this paper, we consider the neighboring information from the probability density perspective. We
first revisit the definition of density function: Let X be a continuous real-valued random variable. A
density function for X is a real-valued function f which satisfies

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx, (3)

for all a, b ∈ R.

Given a value x of X , we have P (x− δ ≤ X ≤ x+ δ) =
∫ x+δ

x−δ
f(x)dx ≈ 2δf(x). For a predefined

δ, if the density of x is high, then P (x − δ ≤ X ≤ x + δ) is high. It means that there are will be
many samples that fall within the range [x− δ, x+ δ]. Therefore, there will be many neighbors of
x in the sample space. It follows that the density f(x) can be viewed as a measure of how many
neighbors (within δ distance) x will have.

In light of this observation, we propose our density changing constraint for unpaired image-to-image
translation: if the density f(x) of a image x is high in the domain X , then the translation G(x) should
also have high density P (G(x)) in domain Y . The density function provides us an elegant way to
utilize the neighboring information without computing the time-consuming and possibly inaccurate
pairwise distances. Given two density estimators fX , fY for two domains, we have our constraint
defined as

Ldensity = V
(

fX (X)

fY(G(X))

)
, (4)

where V(.) is the variance function. Variance is a smooth function that depicts the variance of a
random quantity as a function of its mean. If density changes of some patches are too high or too
low, the variance can be large. It means that we would like the density changes for all images to be
close such that image with high density is still mapped to high density while image with low density
still mapped to low density. In the following sections, we provide an efficient way to get the density
estimators fX , fY and the density changing objective Ldensity.

3.3 Density Changing Regularized Unpaired Image Translation

To compute Ldensity, we need density estimators fX and fY . There are many successful autoregressive
flows for density estimation [21, 10]. However, density estimation for images is still an challenging
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task due to the high-dimensionality of images. Inspired by the recent patch-level image translation
method [39], we propose to compute the densities in the patch level rather than image level. We first
extract the feature maps at layer l of the generator G as ml(x) = Gl(x) ∈ Rc×h×w, where c is the
number of channels of the feature map and h,w represents the height and width of the maps. Then
we reshape ml(x) into patch representations P l(x) ∈ Rhw×c. For each representation of size c, it
corresponds to a patch in the input image. And we have hw patch representations. We denote the
patch representations of input image x ∈ X as P l(x) = {ali}, input image y ∈ Y as P l(y) = {cli}
where i is the index of patch representations, generated image G(x) as P l(G(x)) = {bli}. We
sometimes use al to denote the random variable whose values are ali and similar for bl and cl.

For each layer l, we employ two density estimators f l
X and f l

Y , which are parameterized as auto-
regressive flows [10]. Given patch representations of real images {ali} and {cli}, we train the density
estimators with maximum likelihood estimation as

Lnll(fX ) =

L∑
l=1

hw∑
i=1

−f l
X (ali), Lnll(fY) =

L∑
l=1

hw∑
i=1

−f l
Y(c

l
i), Lnll = Lnll(fX ) + Lnll(fY), (5)

where the outputs of the flows fX and fY are log-probabilities and we need to minimize above loss
to maximize the log-likelihood.

Given the density estimators, we can compute our density regularization easily as

Lpatch-density =

L∑
l=1

V(f l
X (al)− f l

Y(b
l)). (6)

The outputs of density estimators are log-likelihoods and therefore, f l
X (al)− f l

Y(b
l) is equivalent to

the probability ratios in the log-scale since log p
q = log p− log q. Please note that al and bl represents

the corresponding patches in the input image x and output image G(x). By minimizing Lpatch-density,
we are encouraging the transformation from al to bl should satisfy our assumption, i.e., patches with
high density should be mapped to patches with high density.

Full Objective Our full objective for the generator consists of three terms

Lfull(G) = Lgan + λidtLidentity + λdensityLpatch-density, (7)

where λidt and λdensity are hyper-parameters that balance different losses.

For the discriminator, we train it to maximize the Lgan to distinguish the real from the generated
images:

Ldis(D) = −Lgan. (8)

For the density estimators, we train them with Lnll as

Lnll({f l
X , f l

Y}Ll=1) = Lnll. (9)

For brevity, we denote our method as DEnsity Changing rEgularized uNpaired image Translation
(DECENT).

4 Implementation

Density Estimator. In our initial experiments, we consider three auto-regressive neural flows for
density estimator: MAF [38], BNAF [10] and NSF [11]. But we observe that MAF and NSF
sometimes reports NAN error, which may be caused by the exponential scaling function. BNAF
further adopts the weight normalization technique to stablize the training. Therefore, we stick to
BNAF in our experiments. More details are provided in the supplementary.

Generator and Discriminator. We follow the networks used in CUT [39]. For the generator, we
adopt the 9-block ResNet as the backbone network. For the discriminator, we adopt the 3-layer
PatchGAN discriminator. The learning rate is 0.0002 with β1 = 0.5, β2 = 0.999. The exception
is the cat→dog task, which requires large shape changes. Following NEGCUT[44], we replace the
patchGAN discriminator with a 6-layer discriminator, which captures more global information.
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Hyper-parameters. We mostly follow the hyper-parameters in CUT [39]. We set L = 5 which is
number of feature layers we use following CUT [39]. It means that we use five layers (0,4,8,12,16th)
of the generator to extract patch representations. The layers correspond to receptive fields of sizes
1×1, 9×9, 15×15, 35×35, and 99×99. We also use 256 patches in each layer instead of all patches
to save computation time and memory. We set λidt = 10 and λdensity = 0.01 across all tasks.

Training In each iteration, we first update the density estimators by minimizing Lnll. Then we
update the discriminator by Ldis. When optimizing the generator, to compute Lpatch-density, we use
the polyak averaged version of BNAF to estimate the density for patches. For Lgan, we replace the
vanilla GAN loss with the LSGAN [33] objective following CUT [39]. For all dataset, we resize
images to 256×256. We keep the learning rate for the first half of the training and linearly decay it to
0 in the last half of training.

5 Experiments

5.1 Evaluation
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Figure 3: Visualization of the high correlation be-
tween densities in cat→dog dataset.

We follow the evaluation protocols in [55, 39,
44, 20, 51] and run all tasks once. We report
results of more runs in the supplementary mate-
rial.

Datasets We follow the evaluation protocols
in CUT [39] by running experiments on three
benchmark datasets: label→city, cat→dog and
horse→zebra. We further run experiment on
selfie→anime dataset to fully verify the effec-
tiveness of our method. We run label→city
and horse→zebra for 400 epochs, cat→dog and
selfie→anime for 200 epochs.

Metrics For the label→city task, we follow
[39] and evaluate the generated photos by a pre-
trained segmentation model DRN [49]. The
DRN model translates the generated photos into
segmentation labels and then we can compare
the output labels with the input labels. We compute mean average precision (mAP), pixel-wise
accuracy (pAcc) and average class accuracy (cAcc). We find that different pretrained DRN model
can cause huge difference in the output results, so we evaluate all methods and report the results by
our code for fair comparison.

To evaluate the visual quality of generated images, we also adopt the widely-used Frechet Inception
Distance (FID) [17] and Kernel Inception Distance (KID) [6] scores. FID and KID both measure the
distribution divergence between the generated images and the real images.

Baselines For the first three tasks, we compare our method with different assumptions: cycle
consistency-CycleGAN [55], pairwise distance preservation – DistanceGAN and SelfDistance [5]
and mutual information maximization – CUT[39], DCLGAN [16], FSeSIM [54], NEGCUT [44],
MoNCE [51] and QS-Attn [20]. For selfie→anime, we compare with CycleGAN [55], U-GAT-IT
[25], CUT[39], CouncilGAN [35], ACL-GAN [53] and SpatchGAN [40]. For all tasks, we also
run the Base-GAN model, i.e., λdensity = 0, to fully examine the effectiveness of our proposed
regularization.

5.2 Justification of the Assumption

Our assumption states that patches of high density should be mapped to patches of high density
in another domain. Therefore, it is important to justify whether such assumption holds on various
datasets. For label→city dataset, we have ground truth pairs. For other three datasets, we use the
most recent method generations as pseudo pair data, i.e., we use generation by QS-Attn on cat→dog
and horse→zebra dataset and generation by SpatchGAN on selfie→anime dataset. Then we randomly
crop the pair of images to patches on the same location and apply PCA to reduce the dimension. Then
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Method label→city cat → dog H → Z Speed
mAP ↑ pAcc ↑ cAcc ↑ FID ↓ FID ↓ FID ↓ Sec/it ↓

CycleGAN [55] 22.37 57.27 29.86 66.7 146.85 76.9 0.171
DistanceGAN [5] 7.86 42.74 11.72 79.0 143.64 72.1 0.035
SelfDistance [5] 8.25 43.61 12.20 58.4 108.3 78.9 0.036

AttentionGAN [41] - - - - - 68.6 -
CUT [39] 27.79 70.70 35.90 56.4 76.2 45.5 0.137

DCLGAN [16] 27.75 68.19 36.72 49.4 61.6 42.2 0.225
FSeSim [54] 24.74 61.47 33.02 58.1 87.8 43.4 0.060

NEGCUT [44] 28.63 72.29 36.03 48.5 55.9 39.7 0.275
MoNCE [51] 29.12 72.35 36.48 54.7 - 41.9 0.231
QS-Attn [20] 29.75 71.76 37.95 50.2 80.6 42.0 0.182
Base-GAN 21.86 53.85 28.81 47.4 140.1 40.1 0.082

DECENT (Ours) 30.97 72.93 39.33 47.4 55.2 41.3 0.154
Testing Images 45.98 77.57 55.99 0 0 0 -

Table 1: Main experiment results. Abbreviations: (H)orse and (Z)ebra.

Method selfie→anime
FID ↓ KID ↓

CycleGAN [55] 92.4 2.99
DistanceGAN [5] 94.5 2.36
U-GAT-IT [25] 94.8 2.71

CUT [39] 87.2 2.55
CouncilGAN [35] 92.4 2.65
ACL-GAN [53] 98.0 2.85
SpatchGAN [40] 83.3 2.14

Base-GAN 89.5 3.09
DECENT (Ours) 80.7 1.42
Training Images 76.7 0.30

Setting label→city
Model λ mAP ↑ pAcc ↑ cAcc ↑

Base-GAN 0 21.86 53.85 28.81
DECENT 0.001 28.15 64.82 35.40

0.01 30.97 72.93 39.33
0.1 30.29 71.51 38.67
0.5 23.77 66.80 31.42

PatchDist 0.001 25.12 59.93 34.12
0.01 22.10 54.75 29.73
0.1 28.43 64.67 38.47
0.5 25.87 67.87 33.92

Table 3: Ablation Study

we fit a kernel density estimator for each domain. Finally, we can obtain pair of densities for paired
image patches and we compute Pearson correlation coefficient between the two sets of densities. The
results are shown in Table. 4. We can observe that p-values for all datasets are 0, suggesting that the
null hypothesis that the densities are uncorrelated can be rejected safely. The correlation coefficients
are also significantly greater than 0 and we can arrive at 0.837 on cat→dog dataset. We also visualize
the estimated log-densities of cat→dog dataset in Figure. 3. for each dot in the figure, its coordinate
is determined by log-densities of a paired image patches in two domains. We can observe a clear
positive correlation between the densities. This encouraging result well supports our assumption.

5.3 Comparison against Baselines

Dataset Coefficient p-value
label→city 0.540 0.0
cat→dog 0.837 0.0

horse→zebra 0.511 0.0
selfie→anime 0.779 0.0

Table 4: Pearson linear correlation between densi-
ties of (pseudo) paired image patches.

We present the quantitative results in Table.
1 and 2. Among the four tasks, our method
achieves the best performance on the label→city,
cat→dog tasks and selfie→anime tasks. In par-
ticular, our method is the first one to improve
mAP above 30 on the label→city task. Please
note that all recent state-of-the-art methods are
improved versions of CUT [39]. By contrast, we
propose an effectiveness regularization which
is orthogonal to the contrastive learning [39]
and cycle consistency losses [55]. Our method
brings substantial improvements over the Base-GAN model. For the label→city task, we outperform
it by 41.7% on mAP, 35.4% on pAcc and 36.5% on cAcc. The significant improvements demonstrates
that our proposed density regularization is able to preserve important semantic information in inputs.
On the cat→dog task, our method improves the FID from 140.1 to 55.2. On the selfie→anime task,
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Input QS-Attn [20] DECENT Truth

Input CycleGAN NEGCUT QS-Attn BaseGAN DECENT

Input Distance Council SPatchGAN BaseGAN DECENT

Figure 4: Visualization of samples generated by different methods: label→city, cat→dog,
horse→zebra and selfie→anime. We provide more samples and more baseline results in the Supple-
mentary material.

our method improves the FID from 89.5 to 80.7 and KID from 3.09 to 1.42. The encouraging results
suggest that our regularization is also helpful in distribution matching.

We also present the generated samples in Figure. 4 and more samples are provided in the supplemen-
tary material. For the label→city task, we can observe that the SOTA method– QS-Attn [20] still
faces some label flipping issue, i.e., mapping the gray area to the trees. By contrast, our method is
able to map the gray area into the building accurately. For the cat→dog task, we can observe that the
Base-GAN model suffers the well-known mode collapse issue while our method is able to avoid it by
our proposed regularization. For the selfie→anime, our method learns to preserve the hair color of
the first input person while keeping the headphone cable in the output image. Unlike CouncilGAN
[35] and SpatchGAN [40], our method doesn’t apply additional data augmentations, such as random
brightness and hue offset.

5.4 Analysis

Sensitivity of λdensity. Although our method only introduces one loss, it is still important to investigate
the sensitivity of the introduced hyper-parameter λdensity. We run our method on label→city task since
the testing images are paired. The results are shown in Table. 3. We can observe that our method
is robust to the scale of λ. When λ = 0.01 or 0.1, we can achieve state-of-the-art results. When
λ = 0.0001, it still improves the Base-GAN model from 21.86 to 28.15 on mAP metric. When we
increase it to 0.5, which is quite far from the optimal value, we can still observe large improvements
over the Base-GAN model.

Pairwise relationship vs Density We can observe that the performance of DistanceGAN and
SelfDistance [5] are unsatisfactory in Table. 1. As we have argued in section 2, it may be caused by
insufficient samples. Therefore, we build a stronger version of DistanceGAN – Patchdist. Patchdist is
trained to preserve the pairwise distance between all patch representations now. Since many patches
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Figure 5: An example of the learned densities (best viewed in color) on label→city task. Densities
increases as the color transition from blue to red. We provide the learned densities for more samples
and tasks in the supplementary.

are available in each iteration, the pairwise relations should be more accurate. As shown in Table. 3,
PatchDist can also bring improvements over Base-GAN model now (DistanceGAN and SelfDistance
are worse). The improvements supports our argument that the neighboring information is very useful
in image translation tasks. Our method still outperforms PatchDist by a large margin, which implies
that the densities values are more informative than the pairwise relation in image translation tasks.

Training Time We run all methods on NVIDIA Tesla V100-SXM2 GPU and report their training
speed in table 2. One may notice that DistanceGAN [5], SelfDistance [5] and FSeSim [54] are faster
than the Base-GAN model. The main reason is that they don’t apply the identity regularization.
When compared to the three SOTA methods (NEGCUT [44], MoNCE [51] and QS-Attn [20]),
our method achieves the best performance with the highest training speed. NEGCUT needs to
generate negative samples with additional networks, MoNCE needs to compute the entropy of all
patch representations and MoNCE needs to address an optimal transport problem every iteration.
In contrast, we only introduce the density estimators and avoids the heavy global information
computation. As a consequence, our method only needs approximately 56%, 67% and 86% training
time of NEGCUT [44], MoNCE [51] and QS-Attn [20], respectively.

Learned densities We visualize the learned densities in Figure.5. The densities increase as the
color goes from blue to red. Firstly, we observe that our learned densities are consistent with human
judgements and reveal the neighboring information accurately. For example, human can easily tell
that gray patches should have more neighbors than green patches in the first row. The densities of
gray patches shown in the second row are higher than the green patches.

Then we examine whether our method effectively enforces our assumption and whether it brings
improvements. On the label→city task, we observe that the mapping of Base-GAN violates our
assumption, i.e., Base-GAN maps the green patches (low density) to the building (high density) while
gray patches (high density) to the trees (low density). As a consequence, it suffers the label-flipping
issue when compared with the ground truth photo. In contrast, our method is able to find the correct
mapping through our density regularization.

6 Limitation and Discussion

Although our method achieved state-of-the-art performance across many tasks, our method still suffers
from some limitations: (1) the violation of the assumption; One may notice that the Base-GAN model
achieves the second best FID on the horse→zebra task as shown in Table. 1. Although our method is
slightly better than other SOTA methods, it still brings some performance degradation (40.1→41.3).
This may be caused by the unmatched dataset statistics since it is reported that horse takes 18% pixel
of the image and zebra takes 37% pixels in the dataset [39]. Therefore, patches of high density in
the horse domain may not still be of high density. We also provide visualization and analysis in
the supplementary. A possible solution can be adopting the attention module to only enforce our
density regularization on the important patches. (2) patch correspondence. Using representation at
patch level provides more samples than image level. But our method also faces the same limitation
as patch-based methods [39, 20, 51]: the patches may not be well corresponded in some tasks. For
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example, when the first domain is the front face while the second domain is the face profiles, we
need to learn the rotation mapping between two domains, which may cause patch-based methods to
fail. A possible solution would be considering larger patches, i.e., increase the number of layer used
to extract patch representations. Large patches ought to contain more global information and may
address this issue.

7 Conclusion

In this paper, we propose a simple yet effective method to address the ill-posed unpaired image-to-
image translation problem. Departing from existing cycle and contrastive learning based methods, we
propose to preserve the neighboring information of image patches from the density persepective. If
the probability density of a patch is high, it is highly likely that it has many neighbors (similar patches).
Then we propose our density changing regularization where patches with high density should be
mapped to patches with high density in another domain. We also propose a simple implementation to
achieve this assumptions. The superior performance on various benchmark datasets demonstrate the
effectiveness of our method.

Societal Impact

Image-to-image translation is a double-edged sword: On the one hand, it allows creative applications,
such as the selfie→anime task and label→city. It also has great potential in related tasks, such as
image super-resolution, medical image analysis and domain adaptation. On the other hand, it becomes
easier to manipulate image data. In particular, DeepFakes have been used to create fake celebrity
videos and fake news. How to avoid such misuse remains an important research problem.
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