
A Details of RAR based algorithms

Standard ER In Algorithm 2, we present the standard experience replay method [10, 49].

Algorithm 2 ER - Experience Replay based Continual Learning
1: Input: Tasks (D1, D2, . . .DT), Model ✓, Learning Rate ⌘, Memory M, Memory Size m, Replay

Budget k
2: Output: Model ✓
3: for task i 2 [T] do
4: for (Xi, Yi) ⇠ Di do
5: (X 0

M , Y 0
M) ⇠M { // randomly select k samples from memory}

6: `ER `(Xi, Yi; ✓) + `(X 0
M , Y 0

M ; ✓)
7: ✓ SGD(`ER, ✓, ⌘)
8: M ReservoirUpdate(Xi, Yi,M,m)
9: end for

10: end for

ER-RAR In the ER-RAR method, we simply modify the replay sample selection step (line 6) of
Alg. 1. As shown in line 6 of Algorithm 3, we rely on random sampling to get a subset of the buffer
for replay.

Algorithm 3 ER-RAR - Retrospective Adversarial Replay for Continual Learning using vanilla ER
as memory-retrieval method

1: Input: Tasks (D1, D2, . . .DT), Model ✓, Learning Rate ⌘, Memory M, Memory Size m, Replay
Budget k, Trade-off Parameter �, Perturbation Strength ✏ & number of gradient steps n

2: Output: Model ✓
3: for task i 2 [T] do
4: for (Xi, Yi) ⇠ Di do
5: ✓

0
 SGD(`(Xi, Yi; ✓), ✓, ⌘) { // Look-ahead update of model parameters}

6: (X 0
M , Y 0

M) ⇠M { // randomly select k samples from memory}
7: Let S := ;
8: for x0

M 2 X 0
M do

9: x0
i 2 argminxi2Xi,y(x0

M) 6=y(xi) d✓0
l
(x0

M , xi).
10: S S [{(x0

M , x0
i)}.

11: end for
12: `RAR(S, ✓, ✓0)

P
(x0

M ,xi)2S `(g✓0
l
(x0

M , xi), y(x0
M); ✓) { // perform the targeted adversar-

ial perturbations (Appendix H) and define the corresponding loss}
13: `all `(Xi, Yi; ✓) + � `RAR(S, ✓, ✓0) + (1� �) `(X 0

M , Y 0
M ; ✓)

14: ✓ SGD(`all, ✓, ⌘)
15: M ReservoirUpdate(Xi, Yi,M,m)
16: end for
17: end for

Discussion of MIR score and its intuition (find the buffered data suffering from the most amount of
forgetting) The idea of probing to the next-step parameters ✓0 that we perform in RAR is similar to
the Maximally Interfered Retrieval (MIR) method for memory/buffer retrieval [2], where we compute
forgetting scores on the memory samples to identify a subset of memory samples that are negatively
impacted by the current-task samples. The forgetting score of MIR for every sample in the memory
buffer xM is defined as follows:

MIR(xM , ✓, ✓0) := `(xM , y(xM); ✓0)� `(xM , y(xM); ✓) (8)

Then a subset of memory samples with the largest MIR scores i.e. having the greatest loss increase
from ✓ to ✓0 are selected. We will denote such a subset as X 0

M , i.e.

X 0
M 2 argmax

X✓XM ,|X|k

X

x2X

MIR(x, ✓, ✓0). (9)

16

Algorithm 4 MIR-RAR - Retrospective Adversarial Replay for Continual Learning using MIR as
memory-retrieval method

1: Input: Tasks (D1, D2, . . .DT), Model ✓, Learning Rate ⌘, Memory M, Memory Size m, Replay
Budget k, Subset Size c, Trade-off Parameter �, Perturbation Strength ✏ & number of gradient
steps n

2: Output: Model ✓
3: for task i 2 [T] do
4: for (Xi, Yi) ⇠ Di do
5: ✓

0
 SGD(`(Xi, Yi; ✓), ✓, ⌘) { // Look-ahead update of model parameters}

6: (XM , YM) ⇠M { // randomly select c samples from memory}
7: Compute MIR(xM , ✓, ✓0) for xM 2 XM and select the subset X 0

M based on Eq. 9 s.t.
|X 0

M | = k
8: Let S := ;.
9: for x0

M 2 X 0
M do

10: x0
i 2 argminxi2Xi,y(x0

M) 6=y(xi) d✓0
l
(x0

M , xi).
11: S S [{(x0

M , x0
i)}.

12: end for
13: `RAR(S, ✓, ✓0)

P
(x0

M ,xi)2S `(g✓0
l
(x0

M , xi), y(x0
M); ✓) { // perform the targeted adversar-

ial perturbations (Appendix H) and define the corresponding loss}
14: `all `(Xi, Yi; ✓) + � `RAR(S, ✓, ✓0) + (1� �) `(X 0

M , Y 0
M ; ✓)

15: ✓ SGD(`all, ✓, ⌘)
16: M ReservoirUpdate(Xi, Yi,M,m)
17: end for
18: end for

Intuitively, X 0
M contains samples that are most confusing with the incoming ones, and thus using

such samples as the anchor samples would result in more successful adversarial perturbations.

As we need to compute ✓0 for the retrospective adversarial samples, the MIR score does not incur
extra computations. Moreover, we can also utilize the subset X 0

M as additional training signals
similar to the MIR approach, which allows us to trade-off between the adversarially perturbed data
points versus real data points that are uniformly sampled from previous tasks.

Algorithm 5 mix-RAR - Retrospective Adversarial Replay for Continual Learning using MixUp
1: Input: Tasks (D1, D2, . . .DT), Model ✓, Learning Rate ⌘, Memory M, Memory Size m, Replay

Budget k, Subset Size c, Trade-off Parameter �, Perturbation Strength ✏ & number of gradient
steps n

2: Output: Model ✓
3: for task i 2 [T] do
4: for (Xi, Yi) ⇠ Di do
5: ✓

0
 SGD(`(Xi, Yi; ✓), ✓, ⌘) { // Look-ahead update of model parameters}

6: Select (X 0
M , Y 0

M) from M s.t. |X 0
M | = k { // using existing memory-retrieval methods}

7: X̃ 0
M , Ỹ 0

M = mixup(X 0
M , Y 0

M ,↵) { // perform mixup on replay samples}
8: Let S := ;
9: for x̃M 2 X̃ 0

M do
10: x0

i 2 argminxi2Xi,y(x̃M) 6=y(xi) d✓0
l
(x̃M , xi).

11: S S [{(x̃M , x0
i)}.

12: end for
13: `RAR(S, ✓, ✓0)

P
(x̃M ,xi)2S `(g✓0

l
(x̃M , xi), y(x̃M); ✓) { // perform the adversarial per-

turbations (Appendix H) and define the corresponding loss}
14: `all `(Xi, Yi; ✓) + � `RAR(S, ✓, ✓0) + (1� �) `(X 0

M , Y 0
M ; ✓)

15: ✓ SGD(`all, ✓, ⌘)
16: M ReservoirUpdate(Xi, Yi,M,m)
17: end for
18: end for

17

MIR-RAR In Algorithm 4, we change line 6 of Algorithm 1 to use the MIR score to select the replay
subset X 0

M .

mix-RAR In the mix-RAR method detailed in Algorithm 5, after selecting the replay samples
X 0

M (using ER, MIR, ASER, etc.) from the memory M, we simply apply MixUp [67] to perform
perturbations/editing on the replay examples. Mixup generates virtual training samples x̃M , ỹM by
taking convex combinations of pairs of inputs and their labels.

x̃M = �xi + (1� �)xj ỹM = �yi + (1� �)yj (10)

where xi, xj 2 X 0
M and yi, yj 2 Y 0

M and � 2 [0, 1] is drawn from a Beta distribution � ⇠ Beta(↵,↵),
where ↵ is a hyperparameter.

We, then pair up these virtual samples with the current’s task samples based on the distance function
defined in Eq. 5 and use Eq. 4 to perturb them such that in the representation space modeled by ✓0l,
the augmentation of the virtual samples are closer to the paired sample from the current task, than the
source/anchor samples xi and xj .

B Details of Related Work

We include detailed explanations about prior works which are relevant in the context of task-free
continual learning:

• Experience Replay (ER) [10, 49]: ER maintains previously seen examples in a limited size
constrained memory buffer for future replay. It deals with the problem of memory retrieval
and can be used in both task-free as well as task-dependent continual learning settings, but
in all experiments in this paper, we use it as a task-free CL method. As a new incoming
batch from current task comes in, we draw a subset of examples from the buffer such that
the size of the drawn subset is same as the incoming batch size. In all experiments, we fix
this subset size (also referred to as the replay budget) as 10.

• Gradient Episodic Memory (GEM) [37]: GEM also maintains an episodic memory for
each observed task. As a new incoming batch comes in, GEM projects the gradient of the
model parameters such that loss incurred on the episodic memory maintained for each task
does not increase while learning a new task. This approach, thus needs access to the task-ids,
and is computationally intensive owing to solving a QP program at each iteration of training.

• Averaged Gradient Episodic Memory (A-GEM) [9]: Averaged-GEM is an improvement
over GEM in terms of relaxing the need to require task-ids. In stead of constraining the
model parameters using the entire stored buffer, it randomly samples a subset of examples
from the memory buffer to regularize the model parameters in order to minimize forgetting
on previously seen tasks.

• Gradient-based Sample Selection (GSS) [3]: GSS deals with the problem of Memory
Update in task-free CL setting. It aims to maximize samples diversity in the gradient space
while selecting examples for memory update. The performance improvement observed is
significant when different tasks data are imbalanced. In all experiments covered in this
paper, we have used reservoir sampling as the memory update method over all compared
SoTA methods to ensure fair comparison.

• Maximally Interfered Retrieval (MIR) [2]: MIR is another memory retrieval method
which does not need access to task-ids while selecting buffer exemplars for replay. It
proposes to first perform a virtual update (one-step look-ahead update) only on the incoming
batch of the current batch. It then computes the interference on the memory samples in terms
of the loss increase observed w.r.t. the virtual updated model parameters, and selects those
buffer samples for which the loss increase is maximum — it selects the maximum inter-
fered/forgotten samples from the buffer. The implementation code provided by the authors
that we have used is located at https://github.com/optimass/Maximally_Interfered_Retrieval.

• Adversarial Continual Learning (ACL) [16]: ACL focuses on learning two kind of
features for task-dependent CL: (1) shared task-invariant (2) task specific features. The
architecture grows as a new task comes by adding a task-specific module. It utilizes
adversarial learning to train a shared feature encoder and a discriminator using the classic

18

https://github.com/optimass/Maximally_Interfered_Retrieval

minimax optimization objective (as used by GANs). The role of the discriminator is to
correctly classify the encoded features by their task labels/ids while the role of the encoder
is to generate task-invariant features that can fool the discriminator. RAR, on the other
hand, focuses on the static architecture task-free CL and utilizes the idea of adversarial
perturbations in the input space to perturb the memory replay samples such that they are
located close to the forgetting frontier w.r.t. to the current tasks.

• Adversarial Shapley Value Experience Replay (ASER) [55]: ASER proposes a scoring
method based on kNN Shapley Value (SV) to select memory samples which are represen-
tative of the stored memory samples and adversarially close to the decision boundaries of
new classes. On the other hand, RAR’s objective is to minimize the worst-case experience
replay loss by generating targeted adversarial replay perturbations that are visually similar
to the chosen replay samples but the CL model mistakes them for the nearest class (from
the incoming batch) based on their distance from the decision boundaries. When we apply
RAR’s objective on ASER chosen replay samples (i.e., compute X 0

M in Sec 3.2 using
Adversarial SV), both accuracy and forgetting improve quite significantly (Table 1, 2),
suggesting that learning on the RAR’s adversarial perturbations helps the model to learn
about the boundaries between past and current tasks. Also, we use Adversarial SV only for
memory retrieval in order to ensure fair comparison across all methods. The implementation
code provided by the authors is at https://github.com/RaptorMai/online-continual-learning.

• Gradient-based Memory Editing for Continual Learning (GMED) [25]: GMED uses
gradient updates to edit/perturb the stored replay samples, to create more challenging
samples for rehearsal in a task-free setting. This work is most relevant to RAR. While their
objective aims to perturb samples individually to generate increased losses in the upcoming
model updates, our method looks into the local pairwise relationships between the most
interfered memory samples and the new task’s samples. By utilizing such information,
we locally perturb each replay sample in a targeted adversarial manner. The model then
confuses them with the new tasks’ data, creating more confusing examples close to the
forgetting frontier as well as representative of previous data. The implementation code
provided by the authors is at https://github.com/INK-USC/GMED.

C Reservoir Sampling

Algorithm 6 Reservoir Update
1: Input: Samples (xt, yt), Buffer M, reservoir/buffer size m
2: if |M| < m then
3: M = M [(xt, yt)
4: else
5: j = randint(1, t)
6: if j m then
7: M[j] (xt, yt)
8: end if
9: end if

We use traditional reservoir sampling method [62] detailed in Alg. 6 to update the limited memory
buffer when a new batch’s data comes in. Reservoir sampling uniformly samples from the incoming
task’s stream by assigning a sampling probability of m/t where t is the number of samples seen so
far. It does not need any prior information about the length of the complete data stream.

Prior works based on task-free continual learning [2, 33, 37] have shown promising results when
using reservoir sampling as the memory update method. [26, 37] have proposed modified versions of
reservoir sampling which help populate the memory with diverse samples in a balanced way when
dealing with heterogeneous and long-tailed data streams. Since, in this work, our focus is primarily
on class-balanced datasets, we use Reservoir Sampling as the memory update method and plan to
study other memory update methods which can be balanced in terms of the present classes in future
work.

19

https://github.com/RaptorMai/online-continual-learning
https://github.com/INK-USC/GMED

Table 4: Class-incremental Continual Learning Datasets Statistics
Split-MNIST Split-CIFAR10 Split-CIFAR100 Split-miniImageNet

of tasks 5 5 20 20
of classes per task 2 2 5 5

of training samples per task 1000 10000 2500 2500
of test samples per task 2000 2000 500 500

of overall classes 10 10 100 100

D Dataset Details

Based on the taxonomy described in [61], the datasets that we studied fall under the class-incremental
(CI) category. The dataset details are as follows:

Split-MNIST is a variant of the MNIST dataset (http://yann.lecun.com/exdb/mnist/) of handwritten
digits [31] split into five disjoints tasks based on the labels. Each task consists of two classes, and we
use only 1k examples from each task for training and report results on the complete test set. The goal
is to classify all ten classes at the end of the last task.

Split-CIFAR10 is a variant of the CIFAR-10 dataset [28] (https://www.cs.toronto.edu/ kriz/cifar.html)
split into 5 disjoint tasks based on labels. Each task consists of two classes and 10k training examples.

Split-CIFAR100 is a variant of the CIFAR-100 dataset (https://www.cs.toronto.edu/ kriz/cifar.html)
comprises of 20 disjoint tasks with each task dealing with 5 classes. This is 100-way classification
problem since we do not use any task information during training/testing.

Split-miniImageNet splits the mini-ImageNet dataset [14] (https://lyy.mpi-
inf.mpg.de/mtl/download/) into 20 disjoint tasks based on labels. Each task comprises of 5
classes and 2.5k training examples.

In Table 4, we present the statistics of all four datasets. Training samples used for each task is 95%
of the mentioned numbers as 5% is held-out as validation set. For fine-tuning the hyper-parameters
associated with the RAR framework, we use the held-out validation set. In case of Split-MNIST
dataset, following the setting of previous methods such as [2, 25], we use only 1000 training examples
per task.

E Complexity Analysis

We compare the replay-based methods in terms of forward and backward computations used, besides
the forward features computed on the incoming batch Xi and backward pass used for the final
parameters updates:

1. ER: 1 extra forward pass on the replay samples i.e. f(X 0
M ; ✓)

2. ER-RAR: 1 backward pass for the virtual model update to ✓0, n forward and backward
passes to generate the targeted augmentations of X 0

M using ✓0 where n denotes the number
of iterative steps used to generate the RAR data, 1 forward pass on the replay examples and
the generated RAR data using ✓.

3. MIR: 1 backward pass for the virtual model update to ✓0, 2 forward passes on the larger
memory set, i.e. f(XM ; ✓), f(XM ; ✓0), 1 forward pass on the smaller set of replay samples
i.e., f(X 0

M ; ✓).
4. MIR-RAR: 1 backward pass for the virtual model update to ✓0, 2 forward passes on the

larger memory set, i.e. f(XM ; ✓), f(XM ; ✓0), n forward and backward passes to generate
the targeted augmentations of X 0

M using ✓0 where n denotes the number of iterative steps
used to generate the RAR data, 1 forward pass on the smaller set of original replay samples
and the RAR augmented data using ✓.

Thus, comparing ER-RAR w.r.t ER, ER-RAR needs n extra forwards passes and (n + 1) extra
backward passes on top of ER. Similarly, MIR-RAR adds n additional forward and backwards passes
on top of MIR. Setting n = 2 for all datasets (except Split-MNIST with 1000 training samples per

20

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://lyy.mpi-inf.mpg.de/mtl/download/
https://lyy.mpi-inf.mpg.de/mtl/download/

task) meaning using only two gradient steps to optimize the RAR augmentation objective defined in
Eq. 4 in the input space, we limit the additional computational costs introduced by RAR.

Computational costs reduction based on Sec 3.2 and 3.3: Instead of using all |XM | examples in
the memory buffer M, replay data selection reduces the potential candidates to be considered for
adversarial data generation to |X 0

M |. For example, given a buffer size of 500 and replay budget of
k = 10, the potential buffer samples considered for generating RAR adversarial augmentations is
only 10 instead of 500.

Having reduced the size of the replay set to |X 0
M |, one would still need to consider every potential

pairing between X 0
M and Xi (current task samples) to find the most confusing subset of cardinality

c which incurs maximum RAR loss defined in Eq. 3. Here, c is essentially the replay budget.
Generating targeted adversarial samples for each pair can be computationally prohibitive. Our nearest
neighbor-based pairing brings down the number of adversarial samples to be generated (by optimizing
Eq. 3) to c from |X 0

M |⇥ |Xi|. In the above example for a current batch size of 10, we only need to
generate c = 10 targeted adversarial samples to approximately optimize Eq. 3 instead of generating
10⇥ 10 adversarial samples and then choosing c samples with the largest RAR loss.

F Implementation Details

Following the current SoTA methods [2, 10, 25], we use a MLP classifier with two hidden layers
as the backbone architecture for Split-MNIST dataset. For remaining datasets, we use the reduced
ResNet-18 classifier [22] with the output layer having as many units as the number of classes present
in the entire dataset. In all experiments based on experience replay methods, we use SGD optimizer
with a learning rate of 0.1 for all datasets. For GMED [25], ASER [55] based methods, we present
the results using the set of hyperparameters reported in the papers. Both mini-batch size and replay
budget are set to 10 following above mentioned methods to make the comparisons fair. For MIR
based methods, we set the subset size c to 50 for all datasets following [2]. c denotes the size of the
larger set of buffer examples on which the forgetting/interference score is computed.

Hyperparameters Tuning: We tune the hyperparameters associated with the RAR framework {n, �,
✏} on the held-out validation set across all datasets. For all datasets, we analyze (as shown in Figure 5)
the sensitivity of the performance of RAR in terms of the number of gradient steps n used to perform
the constrained targeted optimization in the input space as shown in Eq. 4. Specifically, we study
values of n 2 {2, 5, 10}. Based on the trade-off between the performance and the computational
costs associated with the forward and backward passes employed to generate the targeted adversarial
augmentation, we set n = 2 for all datasets except for Split-MNIST where we set n = 5 based on the
average forgetting score as shown in Fig. 5a. Since the MNIST dataset is relatively easier to train on,
more gradient steps are needed to generate difficult samples which are indiscernible for the model in
the learnt representation space after the look-ahead update on the new task’s data.

For the weight assigned to the `RAR computed using Eq. 3 in the final loss objective (denoted by
�), we search over {0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and fine-tune them separately for different
datasets across various buffer sizes that we study. For Split-MNIST, � equal to 0.3, 0.3, and 0.4
lead to the best reported performance across buffer size 200, 500, and 1000 respectively. For Split-
CIFAR10, these values are 0.5, 0.1, and 0.075 for buffer sizes 200, 500, and 1000 respectively. For
Split-CIFAR100 and Split-miniImageNet, we get the best setting as � = 0.4.

We search for the best perturbation tolerance ✏ hyperparameter in {0.15, 0.3} for Split-
MNIST, {0.0314, 0.07} for Split-CIFAR10 and Split-CIFAR100, and {0.01568, 0.0314} for Split-
miniImageNet. The best setting ✏ values are 0.3 for Split-MNIST and 0.0314 for remaining three
datasets.

Prior works such as [46] show that the deeper/higher layers of neural networks are disproportionately
responsible for catastrophic forgetting in line with the observation that the shallower/lower layers
learn general features of and higher layers learn more task-specific features. Therefore, we use the
penultimate layer (layer just before the final classification/softmax layer) as layer l in Eq. 4 and in the
representation space of ✓0l, we minimize the augmentation objective such that the penultimate feature
embedding of the RAR augmented sample and its paired current task sample are as close as possible,
but visually still similar to the original buffer sample.

21

Compute Resources: We use a single NVIDIA GeForce GTX 1080 Ti to train our CL models. The
PyTorch and CUDA toolkit versions used are 1.6.0 and 10.1 respectively.

G Limitations & Societal Impacts

Limitations: In this work, we have utilized Reservoir Sampling across all compared methods to
update the memory/buffer as a new batch comes in. Using other recently proposed methods [3, 55] to
tackle this problem could potentially help in maintaining a diverse & representative memory/buffer,
particularly in case of class-imbalanced incremental datasets. We also plan to explore updating the
memory/buffer with perturbed samples (in stead of original samples) and see if re-learning them at
later stages of training could help ameliorate forgetting. Similar to other CL algorithms, our work
is validated on small datasets with single pass training on streams generated in a synthetic fashion.
Therefore, the final average accuracy achieved on all set of classes is significantly small compared to
traditional (i.i.d. assumption based) supervised training on the entire dataset.

Negative Societal Impacts: The potential improvements brought in terms of mitigating forgetting
while learning on a continual stream of data might have some indirect negative impact. For example,
as spam detection systems are updated to prevent spam, bots can learn to continually evolve to
defeat them. Similar issues could arise in other surveillance systems in place. The replay of RAR
augmentations might introduce some bias if malicious attackers can manipulate the data stream in the
continual learning setting.

H Background on Targeted Adversarial Augmentations (or Attacks) &
Related Algorithms

Given a model ✓, associated layer l of the model, source input-output pair (xs, ys) and a target
input-output pair (xt, yt), the goal of targeted adversarial attack/perturbation is to generate an input z
which looks visually similar to the source input xs, but in the latent space of model’s l-th layer, the
feature embedding of z is close to the feature embedding of the target input xt.

The objective can be mathematically summarized as:
g✓l(xs, xt) 2 argmin

z
L✓l(z, xt) (11)

s.t. ||z � xs||1 ✏ (12)

Here, if we use the model’s last layer denoted by L, then often times L✓l(z, xt) can be replaced with
the cross-entropy loss w.r.t. to the target label yt of the paired sample xt i.e., `(z, yt; ✓).

In case we use layer l such that l < L, meaning layers lower/shallower than the last layer, one can
use the defined distance function in Eq. 5 i.e., d✓l(z, xt) := ||✓l(z)� ✓l(xt)||2 as the minimization
objective L✓l(z, xt) in the above constrained optimization problem.

The Fast Gradient Sign Method (FGSM) proposed in [20] can be used to solve Eq. 11 when dealing
with infinity norm constraints in the input space. Specifically:

g✓l(xs, xt) = xs � ✏ · sign(rxsL✓l(xs, xt)) (13)
where rxsL✓l(xs, xt) is the gradient of the loss function in Eq. 11 w.r.t. xs.

Iterative-FGSM [30] which iteratively applies FGSM n times with a smaller step size ↵ (proportional
to ✏/n) can also be used. Here n denotes the number of iterations used to iteratively optimize Eq. 11.

To stabilize the gradient update directions and avoid poor local maxima, [15] proposed Momentum-
Iterative FGSM (MI-FGSM) which integrates momentum with a decay factor µ and accumulates the
gradients of previous iterations while updating the targeted augmentation at each step.

At step t = 0, we initialize x0
s = xs. Then, at step t, the accumulated gradient and targeted

augmentation are derived as follows (the superscript t denotes the iteration step, while the subscript t
denotes the target example):

gt+1 = µ · gt +
rxsL✓l(x

t
s, xt)

||rxsL✓l(x
t
s, xt)||1

(14)

xt+1
s = xt

s � ↵ · sign(gt+1) (15)

22

At the end of each step, we project back into the norm ball ||xt+1
s � xs||1 ✏ and we also clip the

values back to the input range observed corresponding to the original pixel values when using image
data. In this work, we use MI-FGSM with the decay factor µ as 1.0, the step-size ↵ same as ✏ since
we employ only two iterations to generate the RAR augmented data using buffer replay samples
(X 0

M , Y 0
M) as the source/anchor sample. The paired sample from the incoming batch of current task

(Xi, Yi) can be seen as the target sample.

I Additional Experiments

Table 5: Comparison of RAR with other non-RAR baselines having similar computational costs.
Numbers within bracket denote the overall buffer size used.

Split-MNIST (200) Split-CIFAR10 (200) Split-CIFAR10 (500) Split-CIFAR10 (1000)
Method Accuracy (") Forgetting (#) Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

ER-3-iters 82.3± 0.8 17.6± 0.8 28.5± 1.3 52.5± 3.7 36.1± 1.5 39.5± 2.1 41.5± 1.2 30.8± 1.9
ER-GMED 82.5± 1.4 15.0± 1.7 30.4± 0.9 39.0± 1.3 38.3± 1.1 27.7± 1.3 42.8± 1.5 20.5± 1.2

ER-RAR (ours) 84.0± 1.1 11.8± 1.5 33.2± 1.4 37.6± 2.1 40.4± 1.7 25.1± 2.5 44.0± 1.4 18.1± 2.0

MIR-3-iters 83.1± 0.8 15.3± 1.4 28.4± 1.0 53.4± 2.1 41.1± 0.8 33.3± 1.5 48.9± 1.1 22.4± 1.9
MIR-GMED 84.2± 1.2 12.2± 1.0 27.5± 1.3 45.5± 1.6 37.2± 1.1 28.6± 1.9 43.0± 1.5 17.6± 2.1

MIR-RAR (ours) 86.2± 0.6 9.1± 0.8 33.3± 1.1 33.5± 2.2 43.1± 1.1 21.1± 2.2 45.3± 1.5 14.1± 1.6

To ensure fair comparison in terms of computational costs (extra forward and backward passes as
described in Sec. E), in Table 5, we compare RAR to GMED [25], ER-3-iters, and MIR-3-iters.
3-iters means that the model is trained for three iterations on the incoming batch and buffer samples
as a new batch comes in. GMED also performs multiple iterations of gradient updates to edit/perturb
the buffer samples. Across all compared methods, RAR-based methods perform significantly better
in terms of forgetting (lower is better) as well as final accuracy.

Comparison to knowledge distillation based methods: On Split-CIFAR10 dataset for two different
buffer sizes, we augment RAR with DER [6] which utilizes knowledge distillation in the logits space.
DER which imposes regularization in the logits space can be seen as a complimnetary method to RAR
and we observe that combining them together leads to further improvements in Table 6. ER-DER is
essentially DER that uses random sampling to select the replay samples and was proposed in the DER
paper. In MIR-DER, we use MIR scores to select the replay batch for DER. In Table 6, aug means
that we apply standard augmentations such as random cropping and rotations on the replay samples.

Table 6: Comparison of RAR with DER (with and without augmentation) to non-RAR baselines.
Numbers within bracket denote the overall buffer size used.

Split-CIFAR10 (200) Split-CIFAR10 (500)
Method Accuracy (") Forgetting (#) Accuracy (") Forgetting (#)
ER-DER 28.0± 1.3 47.2± 7.2 32.9± 1.9 28.4± 3.3

ER-RAR-DER 36.0± 1.6 21.2± 2.6 39.8± 0.5 15.5± 2.2
ER-DER-aug 34.0± 3.3 37.4± 7.6 39.6± 1.5 18.2± 4.1

ER-RAR-DER-aug 36.7± 1.5 15.8± 2.3 40.3± 1.1 10.3± 1.9

MIR-DER 36.6± 2.3 20.0± 1.5 38.6± 1.7 10.8± 1.9
MIR-RAR-DER 35.9± 1.9 20.1± 3.3 38.5± 0.8 10.8± 1.8
MIR-DER-aug 36.5± 2.3 17.0± 1.8 39.5± 1.0 15.0± 1.7

MIR-RAR-DER-aug 37.2± 1.8 13.4± 1.1 40.1± 0.8 9.5± 2.3

Comparison to other augmentation techniques: In Table 3, we compare RAR to another pertur-
bation method random which adds random noise of the same perturbation magnitude as RAR, and
show that RAR leads to significant improvement in reducing forgetting as well as increasing the
average accuracy on different CL benchmark datasets. In Table 7, we compare to other standard
augmentations techniques such as random cropping and rotations applied to the replay samples.
Utilizing these standard augmentation strategies along with RAR leads to impressive improvements
in terms of the forgetting metric as shown in Table 7.

When using standard augmentations along with RAR, ER-RAR-aug and MIR-RAR-aug achieve
similar performance irrespective of the memory retrieval/selection method used. This indicates that
RAR, when combined with standard augmentations such as random cropping and rotations, is more

23

Table 7: Comparison of RAR to standard augmentation techniques. Numbers within bracket denote
the overall buffer size used.

Split-CIFAR10 (200) Split-CIFAR10 (500)
Method Accuracy (") Forgetting (#) Accuracy (") Forgetting (#)

ER 25.7± 1.3 51.3± 4.1 31.9± 0.9 39.0± 2.1
ER-aug 30.0± 4.1 43.2± 6.9 39.4± 2.8 26.0± 6.3

ER-RAR 33.2± 1.4 37.6± 2.1 40.4± 1.7 25.1± 2.5
ER-RAR-aug 39.3± 1.6 21.6± 3.4 42.2± 1.9 13.6± 2.5

MIR 28.0± 1.5 48.1± 2.9 37.5± 1.6 32.2± 2.1
MIR-aug 36.1± 2.6 23.7± 3.6 40.5± 1.2 18.4± 3.3

MIR-RAR 33.3± 1.1 33.5± 2.2 43.1± 1.1 21.1± 2.2
MIR-RAR-aug 41.6± 1.2 21.0± 2.8 42.2± 2.3 12.5± 2.6

robust to replay data selection and can generate high-quality replay samples (diverse, confusing, and
representative of previously seen tasks).

However, such augmentation strategies rely on strong human priors, and manually selecting such
augmentation operators requires domain expertise and prior knowledge of the dataset of interest [70].
They may perform poorly in the scenarios when human knowledge is weak for the targeted domain.
For example, for medical image analysis, such simple transformations are shown to be insufficient
in capturing many of the subtle variations present in the data [69]. Moreover, they are static and
pre-defined before the training so they cannot capture the training dynamics during the continual
learning process for the purpose of reducing the forgetting. RAR, on the other hand, automatically
generates augmentations adaptive to the forgetting dynamics of the model and thus focuses on
reducing the local interference near the forgetting frontier between different tasks.

Virtual update for RAR samples generation: When training sequentially on a set of tasks, catas-
trophic forgetting of previous tasks occurs as the network weights become biased to meet the
objectives of the new task. Performing a single-step virtual update of the model by exposing it only
to the current task’s data helps us explore which buffer samples are most likely to be forgotten. We
use ✓0, the virtually updated model to generate the adversarial samples using Eq. 4 as such perturbed
samples are likely to be forgotten in future updates and confused with the current task’s classes
leading to increased loss on them. In retrospect, using the generated perturbed sample (visually close
to the original sample xM in the input space and hence in-distribution) with its correct label y(xM)
and replaying it while we are still at ✓ helps in alleviating forgetting. As we combine the losses, we
may also consider the procedure as first doing an update on the incoming task to get ✓0 and then
performing an adversarial training step based on ✓0 using the RAR augmented samples.

One can argue that the step size used to perform this virtual update (⌘virtual) could be different from
the step size (⌘) used to update the continual learner such that the adversarial samples generated using
✓0 are not too easy or too hard to classify by the current model ✓. We perform experiments on the
Split-CIFAR10 dataset with a buffer size of 500 and an SGD optimizer with a learning rate (⌘) of 0.1.
We find that using the same learning rate as the SGD optimizer to perform the virtual update results
in the best performance on MIR-RAR as shown in Table 8.

Table 8: Performance of MIR-RAR for different values of ⌘virtual when ⌘ = 0.1

⌘virtual Accuracy (") Forgetting (#)
No virtual update 41.7± 1.3 21.8± 1.4

0.02 42.1± 1.6 22.1± 2.8
0.05 42.6± 1.1 20.6± 3.7
0.1 43.1± 1.1 21.1± 2.2
0.15 43.1± 1.6 22.1± 3.5
0.2 41.9± 1.1 23.1± 3.6

Ratio between incoming mini-batch size and replay budget: Following prior works [2, 25, 55],
we select the same number of replay samples from the buffer as the mini-batch size of the incoming
new task. This is set to 10 irrespective of the buffer size. Here, we perform additional experiments
where we vary the ratio between the incoming mini-batch size and replay budget. As expected, when

24

the combined batch is dominated primarily by the incoming task samples (mini-batch size / replay
budget = 15/5), we observe a significant drop on the overall performance with respect to both the
average accuracy and forgetting as shown in Table 9. However, when replaying more samples from
the buffer (mini-batch size / replay budget = 5/15) in each training iteration, which over-compensates
for forgetting, we do not observe any improvement in reducing the forgetting. This suggests that to
achieve a good plasticity-stability trade-off, the ratio between incoming mini-batch size and replay
budget need to be close to one.

Table 9: Performance of replay-based CL methods when using different ratios between incoming
mini-batch size and replay budget. Dataset used is Split-CIFAR10 with a buffer size of 500.

Ratio 10/10 5/15 15/5
Method Accuracy (") Forgetting (#) Accuracy (") Forgetting (#) Accuracy (") Forgetting (#)

ER 31.9± 0.9 39.0± 2.1 30.5± 2.7 53.0± 4.4 20.9± 2.1 55.7± 6.1
ER-RAR 40.4± 1.7 25.1± 2.5 40.2± 2.2 26.0± 3.2 26.0± 3.6 31.4± 3.5

MIR 37.5± 1.6 32.2± 2.1 37.4± 1.4 35.1± 2.0 16.5± 1.5 68.5± 3.3
MIR-RAR 43.1± 1.1 21.1± 2.2 41.0± 1.4 22.9± 3.2 18.6± 2.6 58.0± 5.1

J Visualizations of Learnt Decision Regions

(a) ER (b) MIR (c) MIR-RAR (d) MIR-mix-RAR

Figure 7: Decision regions are generated using a triplet of training samples on which the model
makes the right predictions. All samples are from same class Auto (Task 1). Legend in (a) applies to
all and describes the color used to denote different classes. Remaining legends denote the classes
corresponding to the chosen triplet samples.

(a) ER (b) MIR (c) MIR-RAR (d) MIR-mix-RAR

Figure 8: Decision regions are generated using a triplet of training samples on which the model
makes the right predictions. Two samples belong to class Auto (Task 1), while the third samples is
from class Truck (Task 5). Legend in (a) applies to all and describes the color used to denote different
classes. Remaining legends denote the classes corresponding to the chosen triplet samples.

25

(a) ER (b) MIR (c) MIR-RAR (d) MIR-mix-RAR

Figure 9: Decision regions are generated using a triplet of training samples on which the model
makes the right predictions. Samples are from the following classes: Auto (Task 1), Dog (Task 3),
Truck (Task 5). Legend in (a) applies to all and describes the color used to denote different classes.
Remaining legends denote the classes corresponding to the chosen triplet samples.

Inspired from recent works in decision boundaries visualization [57], we try to visualize the decision
regions learnt by the continual learner along the data manifold. To plot the decision regions, we use
the plotting technique from [57] (https://github.com/somepago/dbViz). Using a sampled triplet of
data points (x1, x2, x3), we construct a plane spanned by vectors �!v1 = x2 � x1 and �!v2 = x3 � x1

and plot decision regions in this plane.

Specifically, for our use-case, once the training on all tasks (5 in case of Split-CIFAR10) is finished,
we use the trained model to make predictions on the trained data. We, then, select three training set
instances (x1, x2, x3) on which the model makes the correct predictions in following ways: (1) all
samples are from the same class, (2) two samples share the same class label while the third belongs
to a different class, and (3) all three samples are from different classes.

We analyze the decision regions learnt by the ResNet-18 model using ER [10], MIR [2], MIR-RAR,
and MIR-mix-RAR methods on the Split-CIFAR10 dataset. Task to classes mapping is as follows:
Task 1: {AIRPL, AUTO}, Task 2: {BIRD, CAT}, Task 3: {DEER, DOG}, Task 4: {FROG, HORSE},
Task 5: {SHIP, TRUCK}.

For case (1), we select all samples from class Auto and plot the regions in Fig 7. It is expected that
in case of worse forgetting, the decision regions would be dominated by the last task classes even
when we use the first task’s samples to model the visualization plane. In Fig. 7, the plane is mostly
dominated by green (and blue) color in case of ER. In case of MIR-mix-RAR, we see the plane
mostly covering the class used to construct the visualization plane, even when the class selected
(Auto) belongs to the first task the model encountered.

Similarly, in Fig. 8 (case (2)) & 9 (case (3)), as we go from left to right, we see the decision regions
being more structured around the classes covered in the triplet set and less dominated by the color of
the classes from the last task — this demonstrates that forgetting is minimized when using RAR and
mix-RAR.

26

https://github.com/somepago/dbViz

	Introduction
	Related Work
	Retrospective Adversarial Replay
	Retrospective Adversarial Perturbation
	Selecting Replay Data from Buffer
	Pairing between Buffer and Current-task Data
	MixUp based Retrospective Adversarial Augmentation

	Experiments
	Main Results
	Advantage of MixUp in Small-Buffer Cases
	Ablation Study to Verify the Effectiveness of RAR
	Sensitivity Analysis of Hyperparameters

	Conclusion
	Details of RAR based algorithms
	Details of Related Work
	Reservoir Sampling
	Dataset Details
	Complexity Analysis
	Implementation Details
	Limitations & Societal Impacts
	Background on Targeted Adversarial Augmentations (or Attacks) & Related Algorithms
	Additional Experiments
	Visualizations of Learnt Decision Regions

