
Retrospective Adversarial Replay for Continual
Learning

Lilly Kumari
University of Washington
lkumari@uw.edu

Shengjie Wang
ByteDance

shengjie.wang@bytedance.com

Tianyi Zhou
University of Maryland

zhou@umiacs.umd.edu

Jeff Bilmes
University of Washington

bilmes@uw.edu

Abstract

Continual learning is an emerging research challenge in machine learning that
addresses the problem where models quickly fit the most recently trained-on data
but suffer from catastrophic forgetting of previous data due to distribution shifts —
it does this by maintaining a small historical replay buffer in replay-based methods.
To avoid these problems, this paper proposes a method, “Retrospective Adversarial
Replay (RAR)”, that synthesizes adversarial samples near the forgetting boundary.
RAR perturbs a buffered sample towards its nearest neighbor drawn from the
current task in a latent representation space. By replaying such samples, we are
able to refine the boundary between previous and current tasks, hence combating
forgetting and reducing bias towards the current task. To mitigate the severity of
a small replay buffer, we develop a novel MixUp-based strategy to increase replay
variation by replaying mixed augmentations. Combined with RAR, this achieves
a holistic framework that helps to alleviate catastrophic forgetting. We show that
this excels on broadly-used benchmarks and outperforms other continual learning
baselines especially when only a small buffer is available. We conduct a thorough
ablation study over each key component as well as a hyperparameter sensitivity
analysis to demonstrate the effectiveness and robustness of RAR.

1 Introduction

Traditional supervised machine learning methods often rely on the assumption that the data is drawn
i.i.d. from a stationary probability distribution. This assumption does not hold in many practical
scenarios where the learner must continuously learn online and adapt to new tasks without revisiting
previous tasks (and those tasks’ data). This has motivated research in Continual Learning (also
referred to as Lifelong Learning and Incremental Learning), where a machine learning model learns
from a stream of data coming from a succession of different tasks [29, 45, 66].

The primary challenge in continual learning (CL) is to alleviate the “catastrophic forgetting” of the
previously learnt tasks after learning new tasks [18, 39, 49]. This is mainly caused by a shift in
the distribution of inputs and labels over time. For example, as a model is updated using new-task
gradients, the hidden-layer representations, encoding information about previous tasks, become biased
towards these new tasks. This leads to a model confusing the former with current tasks, thus producing
incorrect predictions on older tasks. A widely studied strategy to alleviate forgetting is experience
replay (ER) [10, 49, 50], which repeatedly trains the model on buffered replay data from previous
tasks while learning the current task. However, the buffer in practice is often quite small [63], e.g., in
autonomous driving, where the incremental data is large-scale and essentially never-ending. A model

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

can thus over-fit to such small buffered data. Although forgetting is mitigated, the goal of retaining
broad and accurate knowledge about previous tasks is not achieved, and the problem remains severe.

An ideal strategy to address the above challenge is to focus on the replay of “marginal samples”
easier to forget and confuse with the current task’s data, e.g., those near the boundary between
the previous tasks’ data and the current task’s data. However, selecting such samples [2, 55] from
a small buffer only brings limited improvement because the buffer (often formed using reservoir
sampling [62] and thus is uniform) does not well cover many such marginal samples. Hence, we
surmise that the core challenge is how to generate a small and sufficient set of samples, ones that
are easier to forget and hence be confused with current task’s data — given the limited buffer size,
it is also important for these samples to be diverse and thus efficient.

Figure 1: Our proposed RAR framework

In this paper, we propose a novel targeted adversar-
ial synthesis based replay method, Retrospective
Adversarial Replay (RAR), that can generate
more informative replay instances with richer
variations optimized to capture the forgetting
frontier of continual learning, from a limited
buffer. Specifically, given an incoming batch of
the current task’s data, RAR first identifies the
most-likely-to-be-forgotten buffer samples (Stage
I in Fig. 1) and pairs them with their nearest
neighbors within the current task’s data (Stage II
in Fig. 1). For each pair, we then apply a bounded
and targeted adversarial perturbation to the buffer
sample, which moves the buffer sample’s hidden-layer representation towards that of the paired
current task’s sample (Stage III in Fig. 1). This three-step procedure, as illustrated in Fig. 1,
generates fine-grained adversarial augmentations of the buffered data that capture “forgetting” at
the local boundary to the current task’s data. We then effectively reduce the risk of forgetting by
replaying these perturbed samples. To improve the diversity and variation of the perturbed samples
(thus increasing the learnable information from a limited-size buffer), we investigate the role of
MixUp [58, 67, 68], a data augmentation technique applied together with RAR — we find that it
brings substantial improvements when there are strict buffer size constraints.

For Stage I replay data selections, we can utilize any existing methods [2, 3, 10, 55, 65] resulting in
an effective and data-efficient replay solution in CL, hence making RAR generic and complementary
to existing memory-retrieval & update methods. Extensive experiments on RAR and comparisons
to SoTA baselines from different CL categories demonstrate the advantages of RAR in mitigating
catastrophic forgetting and improving the overall accuracy. Moreover, we conduct an ablation study
showing that the key components such as replay samples selection strategy, sample pairing & adver-
sarial perturbation, MixUp, etc, each bring appreciable improvements. Additional sensitivity analysis
of the key hyperparameters implies that RAR is stable and consistently achieves these improvements.

Connection to human false memories & their correction: In human psychology, "false
memories" [36, 42] refer to a wide variety of human memory errors ranging from the minor
misremembering of small details (e.g., distorted recollection) all the way to unmitigated fabrication.
The passage of time after experiencing an event increases the likelihood of these phenomena. They
are referred to as [42] a “natural by-product of a distributed memory system (DMS)”. Rather than
a simple search & recollect, DMS [12] helps us in recombining and reconstructing memories via
the integration of episodes from the past and present, but it is not always error-free. It is also
true that when high-confidence false memories are corrected, people attend more to the provided
feedback [17]. Despite a tendency for belief perseverance [4], the information that breaks through
this perseverance is greatly attended to. The motivation behind RAR is in line with this theory.
In RAR, we first combine/pair the replay buffer samples from previously seen tasks with the current
data. Then using the pairing, we find existing high-confidence false memories in the form of targeted
adversarial perturbations that move the previous data closer to the current data in the model’s latent
space. Finally, we train the model to produce the correct target for the perturbed input during the
replay stage. On the contrary, existing ER-based CL methods lack this adversarial interpolation
between past and present data but mainly rely on simple retrieve and replay of past data.

2

2 Related Work

Existing approaches in CL can be broadly characterized into two groups based on the model’s
architecture. Methods dealing with dynamic architecture maintain separate parameters for each
task [34, 53, 64]. These methods require the knowledge of task descriptors, are expensive to train and
often do not scale well when dealing with a long sequence of online tasks. In this work, we focus on the
task-free setting of CL [61]. Fixed architecture approaches use regularization techniques to selectively
regularize parameters (either weights or outputs) important for old tasks [1, 8, 27, 32, 35, 52, 66],
and require task information in general. This category also includes memory-based approaches for
constrained parameter updates on new samples to minimize interference with previous tasks [9, 37]
and for replaying them along with the new task’s data [2, 3, 5, 6, 10, 13, 38, 41, 43, 44, 47, 48, 59,
55, 65]. Other ER methods [2, 51, 56, 60] train generative models on previous tasks which can be
challenging owing to the online (single-pass) learning setting.

CL using Adversarial Information: ACL [16], belonging to the dynamic architecture category, uses
adversarial learning to train a shared feature encoder and a discriminator using a GAN’s minimax
objective [19]. ASER [55] proposes using the kNN-specific Shapley value [24, 54] to select replay
samples that are representative of the buffer and adversarially close to the decision boundaries of
incoming classes. GMED [25] uses gradient updates to edit buffered samples individually based
on their loss increase after a look-ahead update performed only on the incoming batch. Compared to
these methods, RAR is a fixed architecture task-free CL framework that leverages the local pairwise
relationships between the replay and current task’s samples to locally perturb each replay sample
in a targeted adversarial manner. Our targeted perturbation generates samples close to the forgetting
frontier that are hence likely confusing for the model but that are also representative of previous
data — this results in a good set to further train on. To elucidate the differences in detail, we also
provide a more extensive survey of the relevant prior literature in Appendix B.

3 Retrospective Adversarial Replay

Formally, the continual learning problem consists of a stream of data distributions (D1,D2, . . . ,DT)
that corresponds to T tasks (in this work, the boundaries between tasks are not known). We get
data points uniformly sampled from the data distribution of the current task. Our target is to train
a machine learning model f(·; ✓) parameterized by ✓ that minimizes the losses as we learn each
task in the given sequential order without increasing the loss on previously learned samples. In other
words, the objective is

min
✓

X

i=1:T

E(x,y)⇠Di
`(x, y; ✓) (1)

Here, ` denotes the loss function and i is an index over the set of tasks. To retain the knowledge of
previous tasks and mitigate catastrophic forgetting, similar to [2, 55, 65], we utilize a limited memory
buffer to store samples representing previously seen data. Let M denote the memory/buffer, which is
essentially a set of data points and |M| m. Similar to ER (Alg. 2), as we train on task i, we get an
incoming batch (Xi, Yi) ⇠ Di, and we combine it with a subset of memory samples (X 0

M , Y 0
M) ⇢M

to compute the overall loss. We can then update the memory M by replacing some samples with
the ones encountered in the current training step while keeping the size of the buffer unchanged.

In general, ER-based methods typically deal with two problems: (1) Memory Update for populating
the buffer and (2) Memory Retrieval for selecting samples from the buffer for replay. In this work, we
focus on synthesizing adversarial memory samples which provide the most conflicting information
on the look-ahead probing step. In other words, the model trained only on the incoming task
(one-step look-ahead) misclassifies the synthesized samples (anchored around previously seen classes
stored in the memory) as the incoming classes. Thus, by learning on such adversarially synthesized
memory samples in retrospect, we prevent any conflicts in the probing step. For problem (1), we
use reservoir sampling to update the memory (Appendix C), which can give us uniform samples from
the streaming data points and is widely adopted in many continual learning methods [2, 10, 55]. For
problem (2), one can utilize any existing memory retrieval methods [2, 3, 10, 55, 65], thus making
RAR complimentary and easily integratable with many existing CL methods.

3

3.1 Retrospective Adversarial Perturbation

Existing methods addressing the memory-retrieval problem optimize the model parameters using
`ER in Eq. 2 where (X 0

M , Y 0
M) are selected from the buffer M based on their proposed selection

strategies. For the ease of notation, we use y(x) to denote the ground-truth label of sample x.
`ER(X

0
M , Xi, ✓) := `(Xi, y(Xi); ✓) + `(X 0

M , y(X 0
M); ✓) (2)

ER [10] uses naive random sampling to select X 0
M , GSS [3] encourages gradient diversity while

sampling X 0
M , ASER [55] uses kNN Shapley value to select samples which are representative of

M and close to the samples in Xi in the latent space, and MIR [2] selects replay samples which
are maximally interfered/forgotten after the look-ahead probing step. In the look-ahead probing step,
the model is updated only on the incoming task samples such that ✓0 = ✓ � ⌘r✓`(Xi, y(Xi); ✓).

Although the methods mentioned above cover crucial aspects (diversity, representativeness, similarity
to incoming batch) for selecting X 0

M , they do not capture the local pairwise interactions between the
memory and current-task samples. Motivated by this, Retrospective Adversarial Replay Loss (`RAR)
finds a cardinality-constrained pairing (E) between memory and incoming task samples such that the
loss on memory samples that are perturbed towards the paired current-task samples is maximized:

`RAR(XM ⇥Xi, ✓, ✓
0) := max

E⇢XM⇥Xi
|E|=c

X

(xM ,xi)2E

`(g✓0
l
(xM , xi), y(xM); ✓) (3)

Here, XM denotes the entire input samples present in M, and g✓0
l
(xM , xi) described mathematically

in Eq. 4 can be seen as a targeted perturbation of xM that is visually similar to xM but close to the la-
tent embedding of target xi 2 Xi in the l-th layer latent space modeled by ✓0. Since the min-objective
in Eq. 4 aims to move the perturbed replay sample close to the current-task sample, y(xM) 6= y(xi)
for a particular pairing to be considered and to filter out any trivial pairings while optimizing Eq. 3.

g✓0
l
(xM , xi) = argmin

z
d✓0

l
(z, xi) s.t. ||z � xM ||1 ✏ (4)

where d✓0
l
(z, xi) := ||✓0l(z)� ✓0l(xi)||2 (5)

Since xM and xi have different labels, such perturbed samples that we get from Eq. 4 are confusing
to the continual learner in terms of distinguishability from the current-task sample xi, while still
representing previous tasks based on their visual similarity to xM 2 M. Eq. 3 essentially helps
in the synthesis of targeted adversarial samples that are close to incoming samples Xi in the latent
space and hence the learner will miss making the correct prediction y(XM) despite the fact that
the adversarial samples are anchored around the original memory samples XM . Training on such
samples can help the model to learn about the boundaries between previous and current tasks and
also retain the knowledge of previous tasks [7, 11, 23]. Note that the perturbations are performed
based on the look-ahead parameters ✓0. In other words, assuming we only learn from the current-task
samples Xi and update the parameters to ✓0, the generated adversarial samples give us many training
samples that show conflicting behaviors on ✓0 and get easily forgotten by the model. In retrospect,
we can potentially prevent such forgetting when we are still at ✓ by using those targeted adversarial
samples as training signals, i.e., we minimize the RAR loss (Eq. 3) to update the model ✓.

Optimizing Eq. 3 over all feasible pairs of XM and Xi is computationally challenging as we
effectively need to compute the adversarial perturbations on all such pairs to select the most
confusing subset incurring the maximum RAR loss. Moreover, each adversarial sample synthesis
(Eq. 4) requires multiple gradient steps as we need to run adversarial attack algorithms such as the
iterative-FGSM [15, 20] covered in detail in Appendix H. Thus, to eliminate this bottleneck, we
propose two pruning strategies covered in sections 3.2 and 3.3 to reduce the candidate anchor-target
pairs in XM ⇥Xi for adversarial perturbations and approximately optimize Eq. 3.

3.2 Selecting Replay Data from Buffer

To reduce the computational overhead, we only consider a subset of the memory buffer X 0
M ⇢M

instead of considering all memory input samples XM . Memory-retrieval methods such as ER [10],
GSS [3], ASER [55], and MIR [2] can be used to select a smaller replay set X 0

M . This again reiterates
that RAR is generic and complementary to existing memory-retrieval methods.

4

3.3 Pairing between Buffer and Current-task Data

To further bring down the computational costs of adversarial perturbations, we perform another
pruning over the possible pairs between X 0

M ⇥Xi based on samples’ hidden representations. I.e.,
we first compute the distance d✓0

l
(x0

M , xi), which is essentially the target value for the adversarial
perturbation (Eq. 4) for every pair (x0

M , xi) 2 X 0
M ⇥Xi with different labels y(x0

M) 6= y(xi) and
then screen out the pairs with larger distance values, maintaining only the smaller-distance ones, in
accordance with the min-objective of Eq. 4. To utilize the information from the selected memory
samples, we pair each x0

M 2 X 0
M with its nearest neighbor with a different class/label in the incoming

batch Xi of current task. Nearest-neighbor-based matched pairs already represent the most confusing
samples as the samples in a pair belong to different classes. Thus, it is easier for the optimization
procedure approximating Eq. 4 to further reduce the distances between pairs coming from different
classes (shown in Fig. 2b), aiding in the synthesis of even more confusing adversarial samples.

Computational overhead for optimizing Eq. 3: First, we select memory samples for replay X 0
M

(Sec. 3.2) which has the same costs as the backbone memory-retrieval method. Next, we compute the
distances between latent features of X 0

M and incoming batch Xi with computational complexity of
O(|X 0

M | ⇤ |Xi|). This is minimal given the online nature of CL where the training batch size is often
set to 10. After performing the nearest neighbor matching, we optimize Eq. 4 via iterative-FGSM [15]
which introduces some additional computational costs, but we keep it marginal by using only two
steps of iterative-FGSM. We provide further details in Appendix E and H.

Combining our RAR loss with the loss on selected memory samples and incoming batch samples,
we have our overall objective (similar to Eq. 2) defined as follows, where � is a hyperparameter to
control the trade-offs between the losses on original and adversarially synthesized memory samples.

`all(X
0
M , Xi, ✓) := `(Xi, y(Xi); ✓) + �`RAR(X

0
M ⇥Xi, ✓, ✓

0) + (1� �)`(X 0
M , y(X 0

M); ✓) (6)

Algorithm 1 RAR - Retrospective Adversarial Replay for Continual Learning
1: Input: Tasks (D1, D2, . . .DT), Model ✓, Learning Rate ⌘, Memory M, Memory Size m, Replay

Budget k, Trade-off Parameter �, Perturbation Strength ✏ & number of gradient steps n
2: Output: Model ✓
3: for task i 2 [T] do
4: for (Xi, Yi) ⇠ Di do
5: ✓

0
 SGD(`(Xi, Yi; ✓), ✓, ⌘) { // Look-ahead update of model parameters}

6: Select (X 0
M , Y 0

M) from M s.t. |X 0
M | = k { // using existing memory-retrieval methods}

7: Let S := ;
8: for x0

M 2 X 0
M do

9: x0
i 2 argminxi2Xi,y(x0

M) 6=y(xi) d✓0
l
(x0

M , xi)

10: S S [{(x0
M , x0

i)}
11: end for
12: `RAR(S, ✓, ✓0)

P
(x0

M ,xi)2S `(g✓0
l
(x0

M , xi), y(x0
M); ✓) { // perform the targeted adversar-

ial perturbations (Appendix H) and define the corresponding RAR loss}
13: `all `(Xi, Yi; ✓) + � `RAR(S, ✓, ✓0) + (1� �) `(X 0

M , Y 0
M ; ✓)

14: ✓ SGD(`all, ✓, ⌘)
15: M ReservoirUpdate(Xi, Yi,M,m)
16: end for
17: end for

Description of RAR framework: In Alg. 1, we describe our retrospective adversarial replay
algorithm for continual learning. The algorithm essentially consists of three steps: (1) in Lines 5-6,
we first perform the look-ahead parameter probing using the incoming samples of the current task
to get ✓0, and select the subset X 0

M using existing memory retrieval methods, such as ER, MIR,
ASER, etc. (2) in Lines 7-11, we prune down the pairings between X 0

M and Xi based on distances
between hidden representations computed using Eq. 5, and (3) in Line 12, we define the RAR loss
by performing adversarial perturbations on the selected pairs S. Note that since we use the selected
pairings S of size k as an approximation of the true maximum-valued pairs, we can just sum over

5

entries in S instead of picking the maximum subset as done in Eq. 3. In Line 15, we update the
memory buffer M based on incoming samples (Xi, Yi) using reservoir sampling [62] and keep the
memory limit m.

3.4 MixUp based Retrospective Adversarial Augmentation

We also propose another method mix-RAR utilizing the mixup technique [67] to bring in more diversity
to the pool of replay examples selected from the buffer. After creating virtual examples (x̃M , ỹM)
using xi, xj 2 X 0

M and � 2 [0, 1] such that x̃M = �xi + (1� �)xj and ỹM = �yi + (1� �)yj , we
follow the original RAR algorithm to achieve pairing and subsequent targeted adversarial perturbation
as shown in Alg 5 in Appendix A. The proposed MixUp strategy is different from [21, 40] as we
apply mixup among the replay samples and then generate RAR perturbed samples anchored around
them. This is consistent with RAR’s objective. Given a current-task’s sample from class (c), training
on an RAR perturbation applied to a mixup between two buffered samples from different past classes
(a,b) can potentially help in capturing the forgetting frontier between three pairs of classes (a,c), (b,c)
and (a,b), thus minimizing forgetting on both past classes.

4 Experiments

Datasets: We evaluate RAR on four supervised image classification benchmarks for task-free CL. (1)
Split-MNIST[31] has five disjoint tasks, each having two classes. (2) Split-CIFAR10 [28] consists
5 disjoint tasks with each task having two classes and 10k training examples. (3) Split-CIFAR100
deals with 20 disjoint tasks with each task having 5 classes. (4) Split-miniImageNet [14] consists 20
disjoint tasks with each task having 5 classes and 2.5k training examples. We cover further statistics
in Appendix D. All these datasets deal with the class-incremental scenario [61]. Our implementation
code is available at https://github.com/lillykumari8/RAR-CL.

Table 1: Average Accuracy (") on different task-free CL datasets across different buffer sizes (m).
We average results over 15 runs for all except for Split-MNIST where we average over 20 runs.

Split-MNIST Split-CIFAR10 Split-CIFAR100 Split-miniImageNet
Method m=500 m=1000 m=200 m=500 m=1000 m=10,000 m=10,000

Fine-tuning 19.0± 0.2 19.0± 0.2 18.4± 0.3 18.4± 0.3 18.4± 0.3 3.06± 0.2 2.84± 0.4
AGEM 29.02± 5.3 - 22.7± 1.8 22.7± 1.9 22.6± 0.7 2.40± 0.2 2.92± 0.3

ER 80.7± 2.1 83.3± 1.4 25.7± 1.3 31.9± 0.9 39.5± 1.7 26.0± 0.3 23.7± 0.5
ER-RAR (ours) 84.2± 1.8 86.9± 1.1 33.2± 1.4 40.4± 1.7 44.0± 1.4 29.8± 0.4 27.9± 0.5

ER-mix 80.9± 1.3 81.7± 1.1 24.9± 1.8 33.0± 2.3 37.5± 1.6 26.6± 0.8 23.0± 1.1
ER-mix-RAR (ours) 86.1± 1.1 86.9± 1.0 37.2± 1.0 41.6± 1.0 44.4± 0.8 31.5± 0.6 28.8± 0.5

MIR 84.8± 1.2 86.3± 1.4 28.0± 1.5 37.5± 1.6 45.3± 1.2 26.7± 0.4 24.3± 0.6
MIR-RAR (ours) 87.9± 1.4 89.4± 1.1 33.3± 1.1 43.1± 1.1 45.3± 1.5 29.3± 0.4 26.7± 0.7

MIR-mix 85.7± 0.8 86.6± 0.7 35.2± 1.2 40.7± 0.8 42.5± 1.5 27.6± 0.5 23.3± 0.8
MIR-mix-RAR (ours) 89.0± 0.7 89.1± 1.0 37.6± 1.0 42.9± 1.1 44.7± 1.3 29.9± 0.4 27.7± 0.5

ASER 79.6± 2.5 79.5± 1.5 24.2± 1.2 32.2± 1.5 37.0± 2.3 26.5± 0.6 25.0± 0.8
ASER-RAR (ours) 81.3± 1.5 83.2± 1.1 34.5± 1.2 40.4± 1.0 42.7± 1.3 29.5± 0.4 26.9± 0.7

ASER-mix 80.2± 1.8 79.6± 1.7 25.9± 1.2 29.5± 1.8 34.0± 1.7 26.8± 0.6 22.1± 0.9
ASER-mix-RAR (ours) 82.0± 1.6 84.0± 1.2 35.6± 0.9 39.2± 1.4 41.5± 1.6 29.9± 0.3 27.5± 0.5

iid-online 86.8± 1.1 86.8± 1.1 60.8± 1.0 60.8± 1.0 60.8± 1.0 18.13± 0.8 17.53± 1.6
iid-offline 92.3± 0.5 92.3± 0.5 79.2± 0.4 79.2± 0.4 79.2± 0.4 42.0± 0.9 37.46± 1.3

Evaluation Metrics: Following [8, 37], we use two standard metrics used in CL to evaluate RAR’s
performance. Final average accuracy (AT) assesses the overall performance of the model whereas
Final average forgetting (FT) measures how much the model has forgotten each task once the online
learning has completed. Lower forgetting is better. Below, ai,j denotes the accuracy evaluated on
the test set of task j after the model has experienced all tasks up to i.

AT =
1

T

TX

j=1

aT,j FT =
1

T � 1

T�1X

j=1

max
l2{1,...T�1}

(al,j � aT,j) (7)

Settings and Hyperparameters: We follow the same setup as [2] for deciding model architectures
for all four datasets. For Split-MNIST, we use an MLP classifier with two hidden layers, each with

6

https://github.com/lillykumari8/RAR-CL

Table 2: Average Forgetting (#) on different task-free CL datasets across different buffer sizes (m).
We average results over 15 runs for all except for Split-MNIST where we average over 20 runs.

Split-MNIST Split-CIFAR10 Split-CIFAR100 Split-miniImageNet
Method m=500 m=1000 m=200 m=500 m=1000 m=10,000 m=10,000

ER 17.1± 2.6 13.1± 1.8 51.3± 4.1 39.0± 2.1 26.3± 2.4 17.1± 0.5 28.3± 0.6
ER-RAR (ours) 11.0± 2.5 7.4± 1.1 37.6± 2.1 25.1± 2.5 18.1± 2.0 10.8± 0.4 16.4± 0.8

ER-mix 17.3± 1.6 15.8± 1.5 54.9± 5.2 37.2± 3.5 25.8± 4.0 21.9± 1.1 33.9± 1.5
ER-mix-RAR (ours) 9.6± 1.4 8.4± 1.5 27.4± 2.3 20.1± 1.6 15.4± 1.1 10.7± 0.4 16.5± 1.1

MIR 10.7± 1.6 7.5± 1.8 48.1± 2.9 32.2± 2.1 19.1± 1.8 13.8± 0.4 21.4± 0.6
MIR-RAR (ours) 6.1± 1.2 3.1± 0.7 33.5± 2.2 21.1± 2.2 14.1± 1.6 10.9± 0.5 15.5± 0.8

MIR-mix 8.7± 0.9 7.8± 1.1 24.7± 2.6 16.1± 2.2 12.9± 2.7 16.4± 0.6 30.3± 1.2
MIR-mix-RAR (ours) 4.6± 1.0 4.1± 1.0 26.6± 1.9 17.4± 1.7 13.1± 2.0 11.3± 0.5 13.7± 1.0

ASER 19.1± 3.0 17.8± 2.4 64.3± 3.3 45.5± 3.3 29.3± 3.4 16.8± 0.6 27.0± 1.0
ASER-RAR (ours) 15.4± 2.2 12.0± 1.9 35.4± 2.0 21.4± 2.0 14.5± 1.6 8.9± 0.4 15.9± 1.0

ASER-mix 18.6± 2.2 18.9± 2.6 54.7± 3.8 50.1± 4.7 38.1± 3.3 21.7± 0.8 33.7± 1.0
ASER-mix-RAR (ours) 16.1± 2.3 12.0± 1.7 30.3± 1.8 21.5± 3.3 18.7± 3.2 11.0± 0.5 12.4± 1.0

400 units with ReLU activation, followed by a linear classifier layer with 10 units. For Split CIFAR-
10, Split CIFAR-100, and Split mini-ImageNet, we use a reduced ResNet-18 classifier [22]. The
replay budget k is the same as the mini-batch size (fixed to 10) irrespective of the buffer size m. For
hyperparameters tuning on each dataset, we hold-out 5% of the training samples for each task and use
it as a validation set. We provide additional details about the implementation settings in Appendix F.

4.1 Main Results

(a) (b)

Figure 2: Split-MNIST - (a) Buffer samples selected for
replay using MIR strategy along with their paired current-
task sample. (b) Visualization of how the distance between
the buffered replay samples and its nearest neighbor in the
current tasks’ batch evolves across different stages of RAR

We report the average accuracy and
forgetting in Table 1 and 2 respectively
for experiments on all four datasets
under various buffer size constraints.
We use three different memory-retrieval
methods, namely ER [10], MIR [2],
and ASER [55] and compare RAR and
mix-RAR with their respective baselines
which do not use the RAR loss (Eq. 3).
For fair comparison, we compare mix-
RAR with baseline retrieval methods us-
ing mixup between replay samples. We
also compare against standard baseline
methods: (a) Fine-tuning, which trains
the model continuously on the stream of
tasks without employing any strategy to
avoid forgetting, (b) Averaged Gradient
Episodic Memory (AGEM) [9] (c) iid-online, which trains a model on the iid-data sampled from entire
dataset D = [Ti=1Di for a single epoch, (d) iid-offline, which trains a model similar to the iid-online
setting but for multiple epochs (three epochs considered in the reported results). We compare against
another memory sample perturbation method called GMED [25] in Table 3 to avoid repetition.

We provide the pseudo-code for ER (Alg. 2), ER-RAR (Alg. 3), MIR-RAR (Alg. 4), and mix-RAR
(Alg. 5) in Appendix A to describe how our proposed framework can be unified with existing CL
methods. Also, we leave out the results against GSS [3] as both MIR [2] and ASER [55] outperform
it in terms of accuracy and forgetting. As shown in Table 1, both RAR and mix-RAR using different
memory-retrieval methods consistently outperform their respective non-RAR baselines (without and
with mixup) across all four datasets. From Table 2, we observe that the improvements obtained by
integrating RAR with respective replay selection methods {ER, MIR & ASER} (both without and
with mixup) are significant. In case of Split-CIFAR10, MIR-mix tends to perform slightly better than
MIR-mix-RAR in terms of forgetting, but based on accuracy improvement that MIR-mix-RAR brings,
the relative difference is negligible since forgetting is dependent on the maximum accuracy that a
continual learner achieves across different tasks.

In the case of Split-miniImageNet, ER-mix-RAR method achieves the best average accuracy of
28.8%, outperforming other MIR & ASER based methods, and has similar observation on the
Split-CIFAR100 dataset. We hypothesize that for large buffer sizes such as 10k (100 examples per

7

class), the ER-based selection aids in sampling a diverse set of classes from the memory buffer
compared to MIR & ASER, thus improving the overall accuracy. However, since MIR & ASER
consider samples suffering interference from the new task’s data, MIR-mix-RAR & ASER-mix-RAR
help minimize the forgetting on the old tasks.

The improved performance of ER-RAR, MIR-RAR, and ASER-RAR compared to ER, RAR, and
ASER respectively demonstrates that RAR is able to alleviate catastrophic forgetting on old tasks via
generating diverse and confusing samples close to the forgetting frontier. To ensure fair comparison
in terms of computational costs, in Table 5 in Appendix I, we also compare RAR to GMED [25],
ER-3-iters, and MIR-3-iters. 3-iters means that the model is trained for multiple iterations on the
incoming batch and buffer samples as a new batch comes in.

Table 3: Comparison of RAR to other replay data perturbation methods: (a) Random edit using same
perturbation tolerance as RAR (b) GMED. Numbers within bracket denote overall buffer size used.

Split-MNIST (200) Split-CIFAR10 (200) Split-CIFAR10 (500) Split-CIFAR100 (10k)
Method Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

ER-Random 80.2± 2.3 18.7± 3.1 28.5± 1.6 41.9± 2.5 38.3± 1.1 30.2± 1.6 26.3± 0.5 14.4± 0.5
ER-GMED 82.5± 1.4 15.0± 1.7 30.4± 0.9 39.0± 1.3 38.3± 1.1 27.7± 1.3 25.5± 0.5 13.5± 0.5

ER-RAR (ours) 84.0± 1.1 11.8± 1.5 33.2± 1.4 37.6± 2.1 40.4± 1.7 25.1± 2.5 29.8± 0.4 10.8± 0.4

MIR-Random 82.3± 1.6 15.9± 1.7 29.1± 1.2 45.3± 2.4 39.2± 1.3 29.0± 2.1 26.5± 0.3 13.6± 0.5
MIR-GMED 84.2± 1.2 12.2± 1.0 27.5± 1.3 45.5± 1.6 37.2± 1.1 28.6± 1.9 25.1± 0.3 11.7± 0.4

MIR-RAR (ours) 86.2± 0.6 9.1± 0.8 33.3± 1.1 33.5± 2.2 43.1± 1.1 21.1± 2.2 29.3± 0.4 10.9± 0.5

Figure 3: Retrospective Adversarial Perturbations (top-right of each sub-figure) for different replay
samples shown along side original replay samples (top-left) and paired current-task sample (bottom-
left). The bottom-right image shows the scaled perturbation that was added to the original buffered
sample to generate the RAR perturbed data.

(a) Accuracy (") (b) Forgetting (#)

Figure 4: Results under small buffer constraints, 20 examples per class for each dataset

Case study: Visualizing the Three Stages of RAR For the Split-MNIST dataset, we visually analyze
the three stages of the RAR framework for a buffer size of 500 using MIR as the memory-retrieval
method. Fig. 2a shows the samples selected for replay using the MIR score (Eq. 8) and their paired
samples from the current task’s batch based on distances computed using Eq. 5. Fig. 2b shows how
the distance between a replaying sample and current task’s data changes over the three stages: (1) for
each sample selected from the buffer, the blue bar represents its average distance to all samples in the
current-task batch; (2) after pairing each buffered replay sample with its nearest neighbor as described
in Section 3.3, its distance to the paired sample (orange bar) becomes smaller than the blue bar; (3) af-
ter applying adversarial perturbations to each buffered sample as described in Section 3.1, the distance
is further reduced. The decrease of distance indicates that the pairing and adversarial perturbation in
RAR are effective in generating samples closer to the forgetting frontier than the original buffer data
selected for replay, meaning the RAR perturbations are similar to XM but very close to the paired
samples in Xi (current task’s batch) in the l-th layer latent representation space of model ✓. In Fig. 3,
we show four examples of RAR perturbed samples generated via Eq. 4 from four buffer samples and
their paired samples from the current task. For most of the buffer samples, a single gradient step of ✓

8

replaying them and their RAR perturbed counterparts suffices to correct their wrong predictions (e.g.,
the current task’s classes), hence effectively alleviating the model’s forgetting on previous tasks.

4.2 Advantage of MixUp in Small-Buffer Cases

On each dataset, as reported in Table 2, all mix-RAR methods perform better compared to RAR meth-
ods in terms of reducing forgetting on previous tasks with slight improvement in average accuracy. The
proposed use of MixUp among the replay samples before RAR is able to increase the variation of RAR
perturbed samples, which is essential to CL with a small buffer. To verify its effectiveness, we conduct
experiments that store only 20 examples per class. Figure 4 shows that ER-mix-RAR & MIR-mix-
RAR consistently outperform other ER & MIR methods respectively. We can achieve even more sig-
nificant improvements in forgetting, particularly for more challenging tasks such as Split-CIFAR100.

4.3 Ablation Study to Verify the Effectiveness of RAR

In Table 3, we compare RAR methods to two baseline methods: (a) Random which add a perturbation
of the same tolerance as the RAR method to the replay samples before the experience replay stage,
(b) GMED [25] which performs smart gradient updates in the input space by treating each replay
sample individually (no local pairing considered between buffer and current task’s data). As can be
seen in Table 3, ER-RAR and MIR-RAR consistently outperform other methods confirming RAR’s
superior ability to tackle catastrophic forgetting via generating targeted perturbations influenced by
the local interference between different task’s data.

4.4 Sensitivity Analysis of Hyperparameters

In Fig. 5, we plot the sensitivity of RAR’s performance with respect to the number of gradient steps
n used to generate the retrospective adversarial samples via optimizing Eq. 4 in the input space.
For Split-CIFAR10 and Split-miniImageNet (where we report results using two gradient steps), we
observe that for a larger number of steps {5, 10}, the performance stays comparable. This suggests
that nearest-neighbor-based pairing using distance computations (covered in Sec 3.3) helps achieve
anchor-target pairs which are already optimized and hence do not require numerous gradient updates
to get classified as the paired target class from the current task.

(a) Split-MNIST (b) Split-CIFAR10 (c) Split-miniImg

Figure 5: Sensitivity of the performance of RAR (using MIR) to number of perturbation steps (n)
used to generate the RAR perturbed samples on different datasets under various buffer constraints.

(a) Split-MNIST (b) Split-CIFAR10 (c) Split-CIFAR100

Figure 6: Sensitivity of the performance of RAR (using MIR) to the trade-off coefficient (�) dedicated
to `RAR on different datasets under various buffer constraints.

Next, we study the sensitivity of RAR corresponding to � which denotes the trade-off coefficient
associated with `RAR in the final loss objective Eq. 6 — we use only one coefficient to reduce
hyperparameter search costs. Fig. 6 shows that RAR (using MIR) outperforms vanilla MIR in terms
of both accuracy (solid blue line is always above the dashed blue line) and forgetting (solid orange line
always stays below the dashed orange line) for various non-zero values of � across the studied datasets.

9

5 Conclusion

In this paper, we study how to perturb limited buffer replay data to mitigate catastrophic forgetting
in continual learning. We propose “Retrospective Adversarial Replay (RAR)”, which focuses on pre-
vious tasks’ data near the forgetting boundary to the current task in the model’s representation space.
RAR first allocates the most confusing pairs of a buffered sample and a current task’s sample and then
applies a bounded targeted adversarial perturbation to the former, which further moves it towards the
latter in the model’s representation space and creates a perturbed sample close to the boundary. More-
over, we study the role of MixUp in increasing the variation of replay augmentations, which signif-
icantly improves CL in the small buffer regime. When integrated with existing replay methods, RAR
consistently outperforms previous CL methods across benchmark datasets under different settings.

Acknowledgements

This work was supported in part by the CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA. We would also like to
thank the Melodi lab students: Arnav Das and Gantavya Bhatt for their useful discussions.

References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 139–154, 2018.

[2] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin,
and Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. arXiv
preprint arXiv:1908.04742, 2019.

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. arXiv preprint arXiv:1903.08671, 2019.

[4] Craig A Anderson, Mark R Lepper, and Lee Ross. Perseverance of social theories: The role
of explanation in the persistence of discredited information. Journal of personality and social
psychology, 39(6):1037, 1980.

[5] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for
continual learning and streaming. Advances in Neural Information Processing Systems, 33:
14879–14890, 2020.

[6] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural
information processing systems, 33:15920–15930, 2020.

[7] Xiaoyu Cao and Neil Zhenqiang Gong. Mitigating evasion attacks to deep neural networks via
region-based classification. In Proceedings of the 33rd Annual Computer Security Applications
Conference, pages 278–287, 2017.

[8] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 532–547, 2018.

[9] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[10] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

[11] Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-
free quantization with synthetic boundary supporting samples. Advances in Neural Information
Processing Systems, 34, 2021.

10

[12] Thomas B Christophel, P Christiaan Klink, Bernhard Spitzer, Pieter R Roelfsema, and John-
Dylan Haynes. The distributed nature of working memory. Trends in cognitive sciences, 21(2):
111–124, 2017.

[13] Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from
non-stationary data streams. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8250–8259, 2021.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[15] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9185–9193, 2018.

[16] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach.
Adversarial continual learning. In European Conference on Computer Vision, pages 386–402.
Springer, 2020.

[17] Lisa K Fazio and Elizabeth J Marsh. Correcting false memories. Psychological science, 21(6):
801–803, 2010.

[18] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[20] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[21] Xuejun Han and Yuhong Guo. Continual learning with dual regularizations. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 619–634.
Springer, 2021.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[23] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge distillation with
adversarial samples supporting decision boundary. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3771–3778, 2019.

[24] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel,
Bo Li, Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on
the shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 1167–1176. PMLR, 2019.

[25] Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory examples
for online task-free continual learning. Advances in Neural Information Processing Systems, 34,
2021.

[26] Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with
partitioning reservoir sampling. In European Conference on Computer Vision, pages 411–428.
Springer, 2020.

[27] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

11

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[29] Abhishek Kumar and Hal Daumé. Learning task grouping and overlap in multi-task learning.
In Proceedings of the 29th International Coference on International Conference on Machine
Learning, ICML’12, page 1723–1730, 2012.

[30] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in the physical
world, 2016.

[31] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[32] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. Advances in neural information
processing systems, 30, 2017.

[33] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. arXiv preprint arXiv:2001.00689, 2020.

[34] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. In International
Conference on Machine Learning, pages 3925–3934. PMLR, 2019.

[35] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[36] Elizabeth F Loftus and Jacqueline E Pickrell. The formation of false memories, 1995.

[37] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30:6467–6476, 2017.

[38] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay:
Revisiting the nearest class mean classifier in online class-incremental continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3589–3599, 2021.

[39] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[40] Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Faltings. Generalized class incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 240–241, 2020.

[41] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning. Advances in Neural Information
Processing Systems, 33:7308–7320, 2020.

[42] Eryn J Newman and D Stephen Lindsay. False memories: What the hell are they for? Applied
Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and
Cognition, 23(8):1105–1121, 2009.

[43] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BkQqq0gRb.

[44] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner, and
Mohammad Emtiyaz E Khan. Continual deep learning by functional regularisation of memorable
past. Advances in Neural Information Processing Systems, 33:4453–4464, 2020.

[45] Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. Advances in
Neural Information Processing Systems, 28:1540–1548, 2015.

12

https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=BkQqq0gRb

[46] Vinay V Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting:
Hidden representations and task semantics. arXiv preprint arXiv:2007.07400, 2020.

[47] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[48] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, , and
Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=B1gTShAct7.

[49] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7
(2):123–146, 1995.

[50] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence replay for continual learning. Advances in Neural Information Processing Systems, 32,
2019.

[51] Mohammad Rostami, Soheil Kolouri, and Praveen K Pilly. Complementary learning for
overcoming catastrophic forgetting using experience replay. arXiv preprint arXiv:1903.04566,
2019.

[52] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In International Conference on Machine Learning, pages 4528–4537.
PMLR, 2018.

[53] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning,
pages 4548–4557. PMLR, 2018.

[54] Lloyd S Shapley. A value for n-person games, contributions to the theory of games, 2, 307–317,
1953.

[55] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang.
Online class-incremental continual learning with adversarial shapley value. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 9630–9638, 2021.

[56] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. arXiv preprint arXiv:1705.08690, 2017.

[57] Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Bara-
niuk, Micah Goldblum, and Tom Goldstein. Can neural nets learn the same model twice?
investigating reproducibility and double descent from the decision boundary perspective. arXiv
preprint arXiv:2203.08124, 2022.

[58] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and Sarah
Michalak. On mixup training: Improved calibration and predictive uncertainty for deep neural
networks. Advances in Neural Information Processing Systems, 32, 2019.

[59] Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and
Yee Whye Teh. Functional regularisation for continual learning with gaussian processes. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HkxCzeHFDB.

[60] Gido M Van de Ven and Andreas S Tolias. Generative replay with feedback connections as a
general strategy for continual learning. arXiv preprint arXiv:1809.10635, 2018.

[61] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[62] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57, 1985.

13

https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=HkxCzeHFDB

[63] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing HONG,
Shifeng Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression
for continual learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=a7H7OucbWaU.

[64] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[65] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection for
rehearsal-based continual learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=f9D-5WNG4Nv.

[66] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International Conference on Machine Learning, pages 3987–3995. PMLR,
2017.

[67] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[68] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does
mixup help with robustness and generalization? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=8yKEo06dKNo.

[69] Amy Zhao, Guha Balakrishnan, Fredo Durand, John V Guttag, and Adrian V Dalca. Data
augmentation using learned transformations for one-shot medical image segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
8543–8553, 2019.

[70] Yu Zheng, Zhi Zhang, Shen Yan, and Mi Zhang. Deep autoaugment. arXiv preprint
arXiv:2203.06172, 2022.

Checklist

1. For all authors...
1.1. Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
1.2. Did you describe the limitations of your work? [Yes] See section G.
1.3. Did you discuss any potential negative societal impacts of your work? [Yes] See

section G.
1.4. Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

2.1. Did you state the full set of assumptions of all theoretical results? [N/A]
2.2. Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
3.1. Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
3.2. Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See section 4, F.
3.3. Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See section 4.
3.4. Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See section F.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

4.1. If your work uses existing assets, did you cite the creators? [Yes]
4.2. Did you mention the license of the assets? [Yes]

14

https://openreview.net/forum?id=a7H7OucbWaU
https://openreview.net/forum?id=f9D-5WNG4Nv
https://openreview.net/forum?id=8yKEo06dKNo

4.3. Did you include any new assets either in the supplemental material or as a URL? [Yes]
4.4. Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
4.5. Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

5.1. Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

5.2. Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

5.3. Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

	Introduction
	Related Work
	Retrospective Adversarial Replay
	Retrospective Adversarial Perturbation
	Selecting Replay Data from Buffer
	Pairing between Buffer and Current-task Data
	MixUp based Retrospective Adversarial Augmentation

	Experiments
	Main Results
	Advantage of MixUp in Small-Buffer Cases
	Ablation Study to Verify the Effectiveness of RAR
	Sensitivity Analysis of Hyperparameters

	Conclusion
	Details of RAR based algorithms
	Details of Related Work
	Reservoir Sampling
	Dataset Details
	Complexity Analysis
	Implementation Details
	Limitations & Societal Impacts
	Background on Targeted Adversarial Augmentations (or Attacks) & Related Algorithms
	Additional Experiments
	Visualizations of Learnt Decision Regions

