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Abstract

Continual learning is an emerging paradigm in machine learning, wherein a model
is exposed in an online fashion to data from multiple different distributions (i.e.
environments), and is expected to adapt to the distribution change. Precisely, the
goal is to perform well in the new environment, while simultaneously retaining the
performance on the previous environments (i.e. avoid “catastrophic forgetting”).
While this setup has enjoyed a lot of attention in the applied community, there
hasn’t be theoretical work that even formalizes the desired guarantees. In this
paper, we propose a framework for continual learning through the framework of
feature extraction—namely, one in which features, as well as a classifier, are being
trained with each environment. When the features are linear, we design an efficient
gradient-based algorithm DPGrad, that is guaranteed to perform well on the current
environment, as well as avoid catastrophic forgetting. In the general case, when the
features are non-linear, we show such an algorithm cannot exist, whether efficient
or not.

1 Introduction

In the last few years, there has been an increasingly large focus in the modern machine learning
community on settings which go beyond iid data. This has resulted in the proliferation of new
concepts and settings such as out-of-distribution generalization [16], domain generalization [3],
multi-task learning [41], continual learning [25] and etc. Continual learning, which is the focus of
this paper, concerns learning through a sequence of environments, with the hope of retaining old
knowledge while adapting to new environments.

Unfortunately, despite a lot of interest in the applied community—as evidenced by a multitude of
NeurIPS and ICML workshops [26, 12, 30]—approaches with formal theoretical guarantees are few
and far between. The main reason, similar encountered as its cousin fields like out-of-distribution
generalization or multi-tasks learning, usually come with some “intuitive” desiderata — but no formal
definitions. What’s worse, it’s often times clear that without strong data assumptions—the problem is
woefully ill-defined.

The intuitive desiderata the continual learning community has settled on is that the setting involves
cases where an algorithm is exposed (in an online fashion) to data sequentially coming from different
distributions (typically called “environments”, inspired from a robot/agent interacting with different
environments). Moreover, the goal is to keep the size of the model being trained fixed, and make
sure the model performs well on the current environment while simultaneously maintaining a good
performance in the previously seen environments. In continual learning parlance, this is termed
“resistance to catastrophic forgetting”.

It is clear that some of the above desiderata are shared with well-studied learning theory settings
(e.g. online learning, lifelong learning), while some aspects differ. For example, in online learning,
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we don’t care about catastrophic forgetting (or we only do so in some averaged sense); in lifelong
learning, it’s not necessary to keep the size of the model fixed. It is also clear that absent some
assumptions on the data and the model being trained, these desiderata cannot possibly be satisfied:
why would there even exist a model of some fixed size that performs well on both past environments,
and current ones — let alone one that gets updated in an online fashion.

A feature-extraction formalization of continual learning Our paper formalizes a setting for
continual learning through the lens of feature extraction: the model maintains a fixed number of
(trainable) features, as well as a linear classifier on top of said features. The features are updated
for every new environment, with the objective that the features are such that a good linear classifier
exists for the new environment, while the previously trained linear classifiers (on the updated features)
are still good for the past environments. The reason the linear classifiers from previous rounds are
not allowed to be updated is storage efficiency: in order to tune the prompts, one needs to store
the training data from previous tasks, this would bring a storage overhead and potentially privacy
concerns. This is a very common approach in practice—examples of this are systems involving large
amounts of data of a streaming nature (e.g. Google searches, Youtube, a robotic agent interacting
with a continual stream of environments), and it be would prohibitive to store it for later fine tuning.
The number of features is kept fixed for the same reason: if we are to expand with new features for
every new environment, the model size (and hence storage requirements) would grow.

We prove two main results for our setting.

1. When the features are a linear function of the input data, and a good set of features exist, we
design an efficient algorithm, named doubly projected gradient descent, or DPGrad, that
has a good accuracy on all environments, and resists catastrophic forgetting. Our algorithm,
while being novel, bears some resemblance to a class of projection-based algorithms used in
practice [11, 5] – we hope the theoretical analysis can shed insight onto large scale continual
learning.

2. When the features are allowed to be a non-linear function of the input, we show that continual
learning is not possible—in general. Namely, we construct an instance for which even if a
good set of features exists, the online nature of the setting, as well as the fact that the linear
classifiers for past environments are not allowed to be updated, makes it possible for the
algorithm to “commit” to linear classifiers, such that either catastrophic forgetting, or poor
performance on the current environment has to occur.

2 Our results

2.1 Problem formulation

In a continual learning problem, the learner has sequential access to k environments. In the i-th
(i ∈ [k]) environment, the data is drawn i.i.d. from the underlying distribution Di over Rd × R,
denoted as (x, y) ∼ Di, where x ∈ Rd is the input and y ∈ R is the label. Motivated by the empirical
success of representation learning [2, 9], we formulate the continual learning problem through the
feature extraction view: The learner is required to learn a common feature mapping (also known
as representation function) R : Rd → Rr that maps the input data x ∈ Rd to a low dimensional
representation R(x) ∈ Rr (r � d), along with a sequence of task-dependent linear classifiers (also
known as linear prompts) v1, . . . , vk ∈ Rr on top of the representation. Precisely, the prediction of
the i-th environment is made by f(x) = 〈vi, R(x)〉.
As this is the first-cut study, we focus on the realizable and the proper learning setting.1 That is, we
assume the existence of a feature mapping R in the function class H (which is known in advance)
and a sequence of linear predictor v1, . . . , vk such that for any i ∈ [k] and any data (x, y) ∼ Di,
y = 〈vi, R(x)〉 (realizable). The learner is required to output a function R that belongs to the
hypothesis classH (i.e. the learner is proper).

Remark 2.1 (Known environment identity). Our model requires the knowledge of environment
identity at test time, and thus can be classified into the category of incremental task learning. We

1We note it is possible to extend our algorithmic result to the non-realizable setting, provided the label has
symmetric sub-gaussian noise.
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note there is also empirical research focusing on unknown environment identity, which would be an
interesting direction for future work (See Section 7).

The guarantee that we wish our learning algorithm to obtain is as follows:
Definition 2.2 (Goal of Continual Learning). Let d, k, r ∈ N, r � d, k, ε ∈ (0, 1/2). Let H be a
function class in which the feature mappings from Rd to Rr lie. The continual learning problem
involves k environments D1, . . . ,Dk. We assume there exists a function R? ∈ H and a sequence
of linear classifiers v?1 , . . . , v

?
k ∈ Rr such that for any (x, y) ∼ Di (i ∈ [k]), the label satisfies

y = 〈v?i , R?(x)〉.
The continual learner has sequential access to environments D1, . . . ,Dk, as well as access to
arbitrarily many samples per environment2. The goal is to learn a representation function R ∈ H
and a sequence of linear prompts v1, . . . , vk ∈ Rr that achieve a good accuracy on the current task
and do not suffer from catastrophic forgetting. Formally, in the i-th environment (i ∈ [k]), the learner
optimizes the feature mapping R and the linear classifier vi (without changing v1, . . . , vi−1) and
aims to satisfy

• Avoid catastrophic forgetting: During the execution of the i-th task, the algorithm guar-
antees that

L(R, vj) :=
1

2
E

(x,y)∼Dj

(〈vj , R(x)〉 − y)2 ≤ ε for all j = 1, . . . , i− 1,

• Good accuracy on the current task: At the end of i-th task, the algorithm guarantees that

L(R, vi) :=
1

2
E

(x,y)∼Di

(〈vi, R(x)〉 − y)2 ≤ ε.

For linear feature mapping, the representation function can be written in a linear form R(x) = U>x
for some U ∈ Rd×r, and it implies the i-th environment is generated by a linear model. That is,
defining wi = Uvi ∈ Rd, one can write y = 〈vi, U>x〉 = 〈wi, x〉.
Remark 2.3 (The benefit of continual learning with linear feature). Note, for linear features, it’s
in principle possible to just learn a sequence of linear classifiers w1, . . . , wk ∈ Rd separately—
without learning a low-dimensional featurizer. Choosing an r-dimensional featurizer confers memory
efficiency (O(kr + dr) vs. O(dk)) and sample efficiency (O(r) vs. O(d) samples per task in the
asymptotic regime k →∞). Furthermore, the linear case is a sandbox that can be mathematically
analyzed and can generate insights for the nonlinear case as well.

2.2 DPGrad: Efficient gradient based method for linear features

For the case of linear features, we propose an efficient algorithm which we term DPGrad (pseudocode
in Algorithm 1), which is an efficient gradient based method and provably learns the representation
while avoids catastrophic forgetting. Towards stating the result, we make a few technical assumptions.
Assumption 2.4 (Distribution assumption). For any i ∈ [k], we assume Di has zero means and it is
in isotropic position, that is, Ex∼Di

[x] = ~0 and Ex∼Di
[xx>] = I .

Remark 2.5. This assumption is largely for convenience. In fact, one can replace the isotropic
condition with a general bounded covariance assumption, our algorithm still can work with extra
preprocessing step, and the sample complexity scales with the condition number of covariance matrix.
Assumption 2.6 (Range assumption). For any i ∈ [k], wi has bounded norm, i.e., ‖wi‖2 ≤ D.
Assumption 2.7 (Signal assumption). For any i ∈ [k], let Wi = span(w1, . . . , wi), Wi,⊥ be the
space perpendicular to Wi andPWi

, PWi,⊥ be the projection operator. We assume eitherwi belongs to
Wi−1 or it has non-negligible component orthogonal to Wi−1, i.e., ‖PWi−1,⊥wi‖2 ∈ {0}∪ [1/D,D].
Assumption 2.8 (Bit complexity assumption). Each coordinate of wi is a multiple of ν > 0.
Remark 2.9. The Range and Signal assumptions are standard in the statistical learning literature.
The former ensures an upper bound on ‖wi‖2 and the later ensures that a new task provides enough

“signal” for new features. They are used to set up learning rate and number of gradient iterations.
2The results easily extend to the finite sample case using standard techniques. We focus on the population

results to keep the focus on the online nature of the environments.
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Remark 2.10. The Bit complexity assumption states that wi can be described with a finite number
of bits, and is mostly for convenience — namely so we can argue we exactly recover wi—which
makes calculations involving projections of features learned in the past cleaner. Since the number of
gradient iterations only depends logarithmically on ν, one can relax the bit complexity restriction to
only approximately recovering the ground truth features up to a polynomially small (in d, k,D, ε)
precision. Our argument can still go through at the cost of some additional error analysis.

The main result is then as follows:
Theorem 2.11 (Continual learning with linear features). Let k, d, r ∈ N, r � k, d, ε ∈ (0, 1/2).
When the features are a linear function over the input data, under Assumption 2.4 and Assumption 2.6-
2.8, with high probability, DPGrad provably achieves good loss and avoids catastrophic forgetting.
In particular, during the execution of i-th environment, DPGrad always ensures

L(U, vj) :=
1

2
E

(x,y)∼Dj

(x>Uvj − y)2 ≤ ε, for all j = 1, 2, . . . , i− 1, (1)

and at the end of i-th environment, DPGrad ensures

L(U, vi) =
1

2
E

(x,y)∼Di

(x>Uvi − y)2 ≤ ε. (2)

2.3 Fundamental obstructions for non-linear features

The continual learning setup with non-linear features turns out to be much more difficult — even
without computational constraints. Our result rules out the existence of a proper continual learner,
even when all environment distributions are uniform and the representation function is realizable by a
two-layer convolutional neural network.
Theorem 2.12 (Barrier for Continual learning with non-linear feature). Let k, r ≥ 2, d ≥ 3. There
exists a class of non-linear feature mappings and a sequence of environments, such that there is no
(proper) continual learning algorithm that can guarantee to achieve less than 1

1000 -error over all
environments with probability at least 1/2,under the feature extraction formalization of Definition 2.2.

3 Related work

Continual learning in practice The study of continual learning (or lifelong learning) dates back to
the work of [36] and it receives a surge of research interest over recent years [15, 19, 11, 5, 14, 31, 34,
17, 29, 39, 18]. A central challenge in the field is to avoid catastrophic forgetting [24, 23], which the
work of [15] observed happened for gradient-based training of neural networks. While there is a large
amount of empirical work, we’ll briefly summarize the dominant approaches. The regularization
based approach alleviates catastrophic forgetting by posing constraints on the update of the neural
weights. The elastic weight consolidation (EWC) approach [19] adds weighted `2 regularization
to the objective function that penalizes the movement of neural weights. The orthogonal gradient
descent (OGD) algorithm from [11, 5] enforces the gradient update being orthogonal to update
direction (by viewing the gradients as a high dimensional vector). The memory replay approach
restores data from previous tasks and alleviates catastrophic forgetting by rehearsing in the later tasks.
[31] introduces experience replay to continual learning. [14] trains a deep generative model (a.k.a.
GAN) to simulate past dataset for future use. The dynamic architecture approach dynamically adjusts
the neural network architecture to incorporate new knowledge and avoid forgetting. The progressive
neural network [34] blocks changes to the existing network and expands the architecture by allocating
a new subnet to be trained with the new information. We refer the interested reader to more complete
surveys [25, 7].

Continual learning in theory In comparison to the vast empirical literature, theoretical works are
comparatively few. The work of [6] characterize the memory requirement of continual learning, when
the environment identity is unknown. The works [35, 27, 1, 4] provide sample complexity guarantees
on lifelong learning. Their approaches can be categorized roughly into the duplicate and fine-tuning
paradigm: The algorithm maintains a weighted combination over a family of representation functions
and the focus is on the sample complexity guarantee. By contrast, we focus on the feature extraction
paradigm and learn linear prompts on top of a single representation function. Both the duplicate-and-
fine-tuning and the feature extraction paradigm have been extensively investigated in the literature,
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detailed discussions can be found at [7] and we provide a brief comparison. From an algorithmic
perspective, learning a weighted combination over a family of representation functions (i.e. the
duplicate and fine-tuning) is much easier, as one can always initiates a new representation function for
a new task. The algorithmic convenience allows previous literature focus more on the generalization
and sample complexity guarantee, culminating with the recent work of [4]. We note again that
learning a single representation function and task specific linear prompts is much more challenging,
but has practical benefits, e.g. memory efficiency. For example, in the applications of NLP, the
basic representation function (e.g. BERT [9]) is already overparameterized and contains billions of
parameters. It is then formidable to maintain a large amount of the basic models and learn a linear
combination over them. We mention several more works that are morally related in Appendix A.

4 Continual learning with linear feature

We restate our main result for linear feature mapping.

Theorem 2.11 (Continual learning with linear features). Let k, d, r ∈ N, r � k, d, ε ∈ (0, 1/2).
When the features are a linear function over the input data, under Assumption 2.4 and Assumption 2.6-
2.8, with high probability, DPGrad provably achieves good loss and avoids catastrophic forgetting.
In particular, during the execution of i-th environment, DPGrad always ensures

L(U, vj) :=
1

2
E

(x,y)∼Dj

(x>Uvj − y)2 ≤ ε, for all j = 1, 2, . . . , i− 1, (1)

and at the end of i-th environment, DPGrad ensures

L(U, vi) =
1

2
E

(x,y)∼Di

(x>Uvi − y)2 ≤ ε. (2)

4.1 Algorithm

A complete and formal description of DPGrad is presented in Algorithm 1. DPGrad simultaneously
updates the matrix of features U , as well as the linear classifier vi using gradient descent—with the
restriction that the update of U only occurs along directions that are orthogonal to the column and
row span of the previous feature matrix. Intuitively, one wishes the projection guarantees that existing
features that have been learned are not erased or interfered by new environments. Due to the quadratic
nature of the loss, and the appearance of “cross-terms”, this turns out to require both column and row
orthogonality, and interestingly deviates from the practically common OGD method [11, 5].

In more detail, at the beginning of the i-th (i ∈ [k]) environment, DPGrad adds Gaussian noise
to the feature matrix U and the linear classifier vi, to generate a good initialization for U and vi.
Subsequently, we perform gradient descent to both the feature mapping matrix U and linear classifier
vi—except U is only updated along orthogonal directions w.r.t. the column span and the row span.
At the end of each environment, DPGrad has a post-processing step to recover the ground truth wi by
rounding each entry of Uvi to the nearest multiple of ν,3 and then update the column and row span
if the orthogonal component is non-negligible. The reason for the later step is that we only need to
preserve row space when encountering new features.

Parameters We use σ to denote the initialization scale, η to denote the learning rate, and T to
denote the number of iterations for each task. These are all polynomially small parameters, whose
scaling is roughly D, d, k � σ−1 � η−1 < T .

Notation We write [n] = {1, 2, . . . , n}, [n1 : n2] = {n1, . . . , n2}. We use rand(n1, n2) ∈ Rn1×n2

to denote a size n1 × n2 matrix whose entries are draw from random Gaussian N(0, 1). For each
i ∈ [k], t ∈ [0 : T ], denote Ui,t to be the feature matrix in the t-th iteration of the i-th environment
(after performing the gradient update), denote vi,t similarly. DPGrad includes a projection step at
the end of i-th environment, we use Ui,end to denote the feature matrix after this projection. We use
Wi (resp. Vi) to denote the column (resp. row) space maintained at the end of i-th environment. Let
W⊥ ⊆ Rn be the subspace orthogonal to W and define V⊥ similarly. Let PW, PV, PW⊥ , PV⊥ be the
projection onto W, V, W⊥, V⊥ separately.

3This is the only place where we use the Bit complexity assumption.
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Algorithm 1 Doubly projected gradient descent (DPGrad)
1: W← ∅,V← ∅, U ← 0 . U ∈ Rd×r

2: σ ← Õ( ε
d2kD4 ), η ← O( σ3

k2D5 ), T ← O(Dη log Dkd
εν ) +O(Dη log k

σ )

3: for i = 1, . . . , k do
4: Uinit ← σ · PW⊥rand(d, r)PV⊥ , vi ← σ · rand(r) . Uinit ∈ Rd×r, vi ∈ Rr
5: U ← U + Uinit

6: for t = 1, . . . , T do
7: ∇U ← E(x,y)∼Di

[x(x>Uvi − y)v>i ],∇vi ← E(x,y)∼Di
[U>x(x>Uvi − y)]

8: U = U − ηPW⊥∇UPV⊥
9: vi = vi − η∇vi

10: end for
11: end for
12: ŵi ← Roundν(Uvi) . Round to the nearest multiple of ν, ŵi ∈ Rd
13: if ‖PW⊥ŵi‖2 ≥ 1/D then W← span(W ∪ ŵi), V← span(V ∪ vi)
14: U ← PWUPV

4.2 Analysis

We sketch the analysis of DPGrad and prove Theorem 2.11. Due to space limitation, the detailed
proof is deferred to Appendix B. The proof proceeds in the following four steps:

1. The first step, presented in Section 4.2.1, reduces continual learning to a problem of continual
matrix factorization and it allows us to focus on a more algebraically friendly objective
function.

2. We then present some basic linear-algebraic facts to decompose the feature mapping matrix
U , its gradient, and the loss into orthogonal components. The orthogonality of gradient
update allows us to decouple the process of leveraging the existing features and the process
of learning a new feature, as reflected in the loss terms and gradient update rules. See
Section 4.2.2 for details.

3. In Section 4.2.3, we zoom into one single environment, and prove DPGrad provably con-
verges to a global optimum, assuming the feature matrix U from previous environment is
well conditioned. This step contains the major bulk of our analysis: The objective function of
continual matrix factorization is non-convex, and no regularization or spectral initialization
used. (We cannot re-initialize, lest we destroy progress from prior environments.)

4. Finally, in Section 4.2.4, we inductively prove that DPGrad converges and the feature matrix
is always well-conditioned. This wraps up the entire proof.

4.2.1 Reduction

We first recall the formal statement of the problem of continual matrix factorization.

Definition 4.1 (Continual matrix factorization). Let d, k, r ∈ N, r � d, k, ε > 0. Let W =
[w1, . . . , wk] = U?(V ?)> ∈ Rd×k, where U? ∈ Rd×r, V ? ∈ Rk×r. In an continual matrix
factorization problem, the algorithm receives wi ∈ Rd in the i-th step, and it is required to maintain
a matrix U ∈ Rd×r and output a vector vi ∈ Rr such that

L̂(U, vi) =
1

2
‖Uvi − wi‖22 ≤ ε, (3)

and

L̂(U, vj) =
1

2
‖Uvj − wj‖22 ≤ ε j = 1, . . . , i− 1. (4)

The key observation is that running DPGrad on the original continual learning objective (2) implicitly
optimizes the continual matrix factorization objective (3) (Lemma 4.2). Moreover, an ε-approximate
solution of continual matrix factorization is also an ε-approximate solution of continual learning
(Lemma 4.3).
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Lemma 4.2 (Gradient equivalence). Under Assumption 2.4, for any i ∈ [k], the gradient update of
objective (2) equals the gradient update of objective (3).

Lemma 4.3 (Objective equivalence). For any w1, . . . , wk ∈ Rd, U ∈ Rd×r and v1, . . . , vk ∈ Rr,
suppose L̂(U, vi) = 1

2‖Uvi−wi‖
2
2 ≤ ε holds for all i ∈ [k], then L(U, vi) = 1

2 E(x,y)∼Di
(x>Uvi−

y)2 ≤ ε.

Combining the above observations, it suffices to analyse DPGrad for continual matrix factorization
and prove Eq. (3) and Eq. (4).

4.2.2 Decomposition

We first provide some basic linear algebraic facts about orthogonal decompositions. For any i ∈ [k],
we decompose Ui, vi, wi along Wi−1, Wi−1,⊥, Vi−1 and Vi−1,⊥.

Let wi = wi,A + wi,B where wi,A ∈ Wi−1 and wi,B ∈ Wi−1,⊥. Note this decomposition is
unique. We focus on the case that ‖wi,B‖2 ∈ [1/D,D] in the following statements, and the case of
‖wi,B‖2 = 0 carries over easily. (These are the only two cases, per Assumption 2.7). Similarly, let
Ui = Ui,A + Ui,B , where each column of Ui,A lies Wi−1 and each column of wi,B lies in Wi−1,⊥.
(Note, again, Ui,A and Ui,B are unique.) We further write Ui,B = wi,Bx

>
i +Ui,2, where the columns

of Ui,2 lie in Wi−1,⊥\{wi,B}. Finally, denote vi = vi,1 + vi,2 with vi,1 ∈ Vi−1 and vi,2 ∈ Vi−1,⊥.
We summarize decompositions mentioned above, with a few additional observations, in the lemma
below:

Lemma 4.4 (Orthogonal decomposition). For any i ∈ [k] and any t ∈ [0 : T ], there exists an unique
decomposition of Ui,t, wi and vi,t of the form

Ui,t = Ui,A,0 + Ui,B,t, column(Ui,A,0) ∈Wi−1, column(Ui,B,t) ∈Wi−1,⊥,

row(Ui,A,0) ∈ Vi−1, row(Ui,B,t) ∈ Vi−1,⊥
wi = wi,A + wi,B , wi,A ∈Wi−1, wi,B ∈Wi−1,⊥

Ui,B,t = wi,Bx
>
i,t + Ui,2,t, xi,t ∈ Vi−1,⊥, row(Ui,2,t) ∈ Vi−1,⊥, wi,B ⊥ column(Ui,2,t)

vi,t = vi,1,t + vi,2,t vi,1,t ∈ Vi−1, vi,2,t ∈ Vi−1,⊥.

Here we use column(A), row(A) to denote the column and row space of matrix A, and column(A) ∈
W if the column space of A is a subspace of W.

Since Ui,A,t remains unchanged for t = [0 : T ], we abbreviate it as Ui,A hereafter. We next provide
the exact gradient update of each component under loss function L̂(Ui, vi) = 1

2‖Uivi − wi‖
2
2 and

orthogonal projection.

Lemma 4.5 (Gradient formula). For any i ∈ [k], the gradient update (after projection) obeys
the relations (1) ∇xi(L̂) = vi,2(x>i vi,2 − 1); (2) ∇U2,i(L̂) = Ui,2vi,2v

>
i,2; (3) ∇vi,1(L̂) =

U>i,AUi,Avi,1 − U>i,Awi,A and (4) ∇vi,2(L̂) = ‖wi,B‖22(x>i vi,2 − 1)xi + U>i,2Ui,2vi,2.

We perform a similar decomposition to the loss function.

Lemma 4.6 (Loss formula). For any i ∈ [k], t ∈ [T ], we have

L̂(Ui,t, vi,t) =
1

2
‖Ui,Avi,1,t − wi,A‖22 +

1

2
‖wi,B‖22(x>i,tvi,2,t − 1)2 +

1

2
‖Ui,2,tvi,2,t‖22. (5)

Decoupling existing features from “new” features We now offer some intuitive explanation for
the decomposition. The first loss term in Eq. (5) quantifies the error with already learned features.
That is, the matrix Ui,A stores existing features that have been learned, and it remains unchanged
during the execution of the i-th environment; it remains to optimize vi,1,t such that Ui,Avi,1,t matches
wi,A. The second and last loss term quantify the loss on a new feature, wherewi,B is the new feature
component, and the matrix Ui,2,t can be thought of as random noise. Intuitively, one should hope
x>i,tvi,2,t = 1 and this matches the new component of wi,B . At the same time, one hopes Ui,2,t would
disappear, or at least, ‖Ui,2,tvi,2,t‖2 → 0 when t→∞.
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4.2.3 Convergence

For a fixed environment, we prove w.h.p. DPGrad converges and the loss approaches to zero, given
the initial feature mapping matrix Ui,A is well conditioned.

Lemma 4.7. For any i ∈ [k], suppose Ui,A satisfies 1
2
√
D
≤ σmin(Ui,A) ≤ σmax(Ui,A) ≤ 2

√
D,

where σmin(Ui,A) and σmax(Ui,A) denote the minimum and maximum non-zero singular value of
matrix Ui,A. After T = O(Dη log Dkd

εν )+O(Dη log k
σ ) iterations, with probability at least 1−O(1/k),

the loss L̂(Ui, vi) ≤ εν/Dnk.

Outline of the proof DPGrad ensures existing features are preserved and it only optimizes the
linear classifier, hence a linear convergence rate can be easily derived for the first loss term, given
the feature matrix is well-conditioned. The key part is controlling the terms that capture learning
with new features, i.e., the second and last loss term, where both the feature mapping Ui,B and linear
prompt vi get updated. In this case, the objective is non-convex and non-smooth. Our analysis draws
inspiration from the recent work of [40], and divides the optimization process into two stages. We
prove DPGrad first approaches to a nice initialization position with high probability, and then show
linear convergence.4

To be concrete, in the first stage, we prove (1) x>i,tvi,2,t moves closer to 1, and (2) ‖xi,t −
‖wi,B‖2vi,2,t‖2 ≈ 0. That is, the second loss term of Eq. (5) decreases to a small constant while
the pairs xi,t, vi,2,t remain balanced and roughly equal up to scaling. Meanwhile, we note Ui,2,t
is non-increasing, though the last loss term could still increase because ‖vi,2,t‖2 increases. In the
second stage, we prove by induction that ‖U>i,2,tvi,2,t‖2 and |x>i,tvi,2,t − 1| decay with a linear rate
(hence converging to a global optimal), and ‖xi,t − ‖wi,B‖2vi,2,t‖2 ≈ 0.

4.2.4 Induction

Lemma 4.7 proves rapid convergence of DPGrad for one single environment. To extend the argument
to the whole sequence of environments, we need to ensure (1) the feature matrix is always well-
conditioned and (2) catastrophic forgetting does not happen. For (1), we need to analyse the limiting
point of DPGrad (there are infinitely many optimal solutions to Eq. (3)), make sure it is well-balance
and orthogonal to previous row/column space. For (2), we make use of the orthogonality of DPGrad.

Proof Sketch of Theorem 2.11. Thanks to the reduction established in Section 4.2.1, it suffices to
prove Eq. (3) and Eq. (4). For each environment i (i ∈ [k]), we inductively prove (1) DPGrad
achieves good accuracy on the current environment, i.e., ‖Ui,T vi − wi‖2 ≤ εν; (2) The feature
matrix Ui remains well conditioned, i.e. 1

2
√
D
≤ σmin(Ui,end) ≤ σmax(Ui,end) ≤ 2

√
D and (3) The

algorithm does not suffer from catastrophic forgetting, i.e., ‖Ui,tvj −wi‖2 ≤ ε for any j < i, t ∈ [T ].

The first claim is already implied by Lemma 4.7. For the second claim, one first shows DPGrad
exactly recovers wi by taking wi = ŵi = Roundν(Ui,T vi). When wi,B = 0, one can prove the
feature matrix does not change, i.e, Ui,end = Ui−1,end; when wi,B ∈ [1/D,D], then one can show
Ui,end ≈ Ui,end + 1

‖vi,2,T ‖22
wi,Bv

>
i,2,T , as wi,B ⊥ column(Ui−1,end), vi,2,T ⊥ row(Ui−1,end) and

‖ 1
‖vi,2,T ‖22

wBv
>
i,2,T ‖ ≤ O(

√
D), the feature matrix U remains well-conditioned. The last claim can

be derived from the orthogonality. This wraps up the proof of Theorem 2.11.

5 Lower bound for non-linear features

We next consider continual learning under a non-linear feature mapping. Learning with non-linear
features turns out to be much more difficult, and our main result is to rule out the possibility of
a (proper) continual learner. We restate the formal statement. The detailed proof are deferred to
Appendix C.

4We note most existing works on matrix factorization or matrix sensing either require some fine-grained
initialization (e.g. spectral initialization [8]) or adding a regularization term that enforces smoothness [13], none
of which are applicable in our setting.
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Theorem 2.12 (Barrier for Continual learning with non-linear feature). Let k, r ≥ 2, d ≥ 3. There
exists a class of non-linear feature mappings and a sequence of environments, such that there is no
(proper) continual learning algorithm that can guarantee to achieve less than 1

1000 -error over all
environments with probability at least 1/2,under the feature extraction formalization of Definition 2.2.

Our lower bound is constructed on a simple family of two-layer convolutional neural network with
quadratic activation functions. The input distribution is assumed to be uniform and the target function
is a polynomial over the input. The first environment is constructed such that multiple global optimum
exist (hence the optimization task is under-constrained). However, if a wrong optimum solution is
picked, when the second environment is revealed, the non-linearity makes it impossible to switch
back-and-forth.

Proof Sketch. It suffices to take k = 2, d = 3, r = 2 and we sketch the construction here. For
both environments, we assume the input data are drawn uniformly at random from B3(0, 1), where
B3(0, 1) denotes the unit ball in R3 centered at origin. The hypothesis class H consists of all
two-layer convolutional neural network with a single kernel of size 2 and the quadratic activation
function. That is, the representation function is parameterized by w ∈ R2 and takes the form of
Rw(x) = (〈w, x1:2〉2, 〈w, x2:3〉2) ∈ R2, where x ∈ R3, xi:j ∈ Rj−i+1 is a vector consists of the
i-th entry to the j-th entry of x.

The hard sequence of environments are drawn from the following distribution: (1) The objective
function f1 of the first environment is f1(x) = x22; (2) The objective function f2 of the second
environment equals f2(x) = x23 with probability 1/2, and equals f2(x) = x21 with probability 1/2.
Note the continual learning task is realizable and one can prove no (proper) continual learning
algorithm can guarantee to achieve less than 1/1000-error on both environments with probability at
least 1/2.

Though our lower bound instance uses a polynomial activation function, this assumption is not
essential – in Appendix C, we prove similar lower bounds with a ReLU activation function.

6 Experiments

For linear feature functions, we perform simulations on a synthetic dataset to verify the practicality
of DPGrad and compare its performance with vanilla SGD and Orthogonal gradient descent (OGD),
a close practical cousin of our algorithm. In our simulations, we set d = 100, r = 20, k = 500 and
the ground truth U?, V ? is drawn from Gaussian. The input data are sampled from N(0, Id) and we
draw 1000 samples for each task. Additional details about the setup can be found in Appendix D.

Figure 1: Continual learning with linear feature: comparative performance of DPGrad/OGD/SGD.
Data is synthetically generated with d = 100, r = 20, k = 500 and the ground truth U?, V ? is drawn
from Gaussian. Additional details about the setup can be found in Appendix D.

The results are presented at Figure 1. It indicates the (1) practicality of DPGrad and (2) DPGrad
significantly outperforms the vanilla SGD and OGD (of course, DPGrad is designed for this kind of
data). The population loss is measured at the end and the it equals ‖Uvi − wi‖2 for each task i. The
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average error of DPGrad is 0.001, the average error of OGD is 83.59, the average error of SGD is
5.16.

Moreover, in Appendix E, we provide additional experimental results on two popular benchmarks,
Rotated MNIST and Permuted MNIST. Since DPGrad is designed specifically for linear regression,
we provide two variants of DPGrad (without provable guarantees on their performance, of course)—
one is a modification suitable for multi-class classification, the other is a modification suitable for
non-linear featurizers. Detailed numbers and figures can be found in Appendix E. In brief, both
algorithms alleviate catastrophic forgetting and perform much better than vanilla SGD. Furthermore,
the performance of both is much more stable than OGD and the accuracy remains at a high level
across tasks.

7 Conclusion

In this paper, we initiate a study of continual learning through the feature extraction lens, proposing
an efficient gradient based algorithm, DPGrad, for the linear case, and a fundamental impossibility
result in the general case. Our work leaves several interesting future directions. First, it would be
interesting to generalize DPGrad to non-linear feature mappings (perhaps even without provable
guarantees) and conduct an empirical study of its performance. Second, our impossibility result
does not rule out an improper continual learner, and in general, one can always maintain a task
specific representation function and achieve good performance over all environments. It would be
thus interesting to investigate what are the fundamental memory-accuracy trade-offs.
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A Additional related work

Representation learning More broadly, our work is also closely related to representation learning.
Some recent theoretical works [20, 21, 28, 38, 22, 37, 10] provide generalization and sample com-
plexity guarantees for certain formalizations of multi-task learning based on the existence of a good
representation. The work of [33, 32] formulate the problem of out-of-distribution generalization and
provide theoretical guarantee, similarly, under the assumption of a good representation.

B Missing proof from Section 4

B.1 Missing proof from Section 4.2.1

We first present the proof of Lemma 4.2

Proof of Lemma 4.2. For any i ∈ [k], the gradient of feature matrix U w.r.t. objective Eq. (2) equals

∇U = E
(x,y)∼Di

[x(x>Uvi − y)v>i ] = E
x∼Di

[x(x>Uvi − x>wi)v>i ] = (Uvi − wi)v>i . (6)

The first step follows from y = x>wi for any (x, y) ∼ Di and the second step follows from
Exi∼Di [xx

>] = In. The RHS of the above equation exactly equals the gradient of Eq. (3) for U
(before and after projection to Wi−1).

We next observe

∇vi = E
(x,y)∼Di

[U>x(x>Uvi − y)] = E
x∼Di

[U>x(x>Uv − x>wi)] = U>(Uvi − wi), (7)

and the RHS of the above equation matches the gradient of Eq. (3) for vi. We conclude the proof
here.

We then include the proof of Lemma 4.2

Proof of Lemma 4.3. We have

1

2
E

(x,y)∼Di

(x>Uvi − y)2 =
1

2
E

(x,y)∼Di

(x>Uvi − x>wi)2

=
1

2
(Uvi − w)> E

x∼Di

[xx>](Uvi − w)>

=
1

2
‖Uvi − wi‖22 ≤ ε.

where the first step follows from y = x>wi for any (x, y) ∼ Di and the third step follows from
Exi∼Di

[xx>] = In. This concludes the proof.

B.2 Missing proof from Section 4.2.2

We first present the proof of Lemma 4.4

Proof of Lemma 4.4. For the first term, when t = 0, one has column(Ui,A,0) ∈ Wi−1 and
column(Ui,B,0) ∈ Wi−1,⊥, and these indicate (1) Ui,A,0 = Ui−1,end, row(Ui−1,end) ∈ Vi−1
and (2) Ui,B,0 = Ui,init, row(Ui,init) ∈ Vi−1,⊥. Hence we conclude row(Ui,A,0) ∈ Vi−1 and
row(Ui,A,0) ∈ Vi−1,⊥. Since the gradient update is perform along Wi−1,⊥ and Vi−1,⊥, one has Ui,A
remains unchanged, i.e., Ui,A,t = Ui,A,0 (t ∈ [T ]), and the update of Ui,B,t is along Vi−1,⊥, hence
row(Ui,B,t) ∈ Vi−1,⊥ continues to hold.

For the third term, for any t ∈ [0 : T ], one has

Vi−1,⊥ 3 w>i,BUi,B,t = w>i,Bwi,Bx
>
i,t + w>i,BUi,2,t = ‖wi,B‖22x>i,t,

where the second step follows from column(Ui,2,t) ∈ Wi−1,⊥\{wi,B}. Hence we conclude xi,t ∈
Vi−1,⊥. Since row(Ui,B,t), row(wi,Bx

>
i,t) ∈ Vi−1,⊥, one has row(Ui,2,t) ∈ Vi−1,⊥.
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We then prove

Proof of Lemma 4.5. The gradient of U (before projection) satisfies

∇Ui = (Uivi − wi)v>i
= Ui,Aviv

>
i + Ui,Bviv

>
i − wi,Av>i − wi,Bv>i

= (Ui,Aviv
>
i − wi,Av>i ) + (wi,Bx

>
i + Ui,2)viv

>
i − wi,Bv>i

= (Ui,Aviv
>
i − wi,Av>i ) + wi,Bv

>
i (x>i vi − 1) + Ui,2viv

>
i ,

where the first step follows from Eq. (6), the second and third steps follow from the first three terms
of Lemma 4.4.

The actual update (after projection) obeys

PWi−1,⊥∇Ui
PVi−1,⊥ = PWi−1,⊥((Ui,Aviv

>
i − wi,Av>i ) + wi,Bv

>
i (x>i vi − 1) + Ui,2viv

>
i )PVi−1⊥

= (wi,Bv
>
i (x>i vi − 1) + U2viv

>
i )PVi−1⊥

= wi,Bv
>
i,2(x>i vi,2 − 1) + Ui,2vi,2v

>
i,2,

where the second step follows from wi,A, column(Ui,A) ∈ Wi−1, the third step follows from
row(Ui,2) ∈ Vi−1,⊥ and xi ∈ Vi−1,⊥, see Lemma 4.4 for details.

Hence, we conclude

∇xi
= vi,2(x>i vi,2 − 1) and ∇Ui,2

= Ui,2vi,2v
>
i,2.

We next calculate the gradient of v, it satisfies

∇vi = U>i (Uivi − wi)
= U>i,AUi,Avi + U>i,BUi,Bvi − U>i,Awi,A − U>i,Bwi,B
= U>i,AUi,Avi,1 − U>i,Awi,A + U>i,BUi,Bvi,2 − U>i,Bwi,B .

The first step follows from Eq. (7), the second step follows from the first two terms of Lemma 4.4. The
third step uses the fact that row(Ui,A) ∈ Vi−1, vi,1 ∈ Vi−1, vi,2 ∈ Vi−1,⊥ and row(Ui,B) ∈ Vi−1,⊥

Hence, we have

∇vi,1 = U>i,AUi,Avi,1 − U>i,Awi,A
and

∇vi,2 = U>i,BUi,Bvi,2 − U>i,Bwi,B
= (wi,Bx

>
i + Ui,2)>(wi,Bx

>
i + Ui,2)vi,2 − (wi,Bx

>
i + Ui,2)>wi,B

= xi‖wi,B‖22x>i vi,2 + U>i,2Ui,2vi,2 − xi‖wi,B‖22
= ‖wi,B‖22(x>i vi − 1)xi + U>i,2Ui,2vi,2,

where the third step holds due to wi,B ⊥ column(Ui,2). We conclude the proof here.

Finally, we prove

Proof of Lemma 4.6. For any i ∈ [k], t ∈ [T ], we have

‖Ui,tvi,t − wi‖22 = ‖(Ui,A + Ui,B,t)(vi,1,t + vi,2,t)− wi,A − wi,B‖22
= ‖Ui,Avi,1,t + Ui,B,tvi,2,t − wi,A − wi,B‖22
= ‖Ui,A,tvi,1,t − wi,A‖22 + ‖Ui,B,tvi,2,t − wi,B‖22
= ‖Ui,Avi,1,t − wi,A‖22 + ‖(wi,Bx>i,t + Ui,2,t)vi,2,t − wi,B‖22
= ‖Ui,Avi,1,t − wi,A‖22 + ‖wi,B‖22(x>i,tvi,2,t − 1)2 + ‖Ui,2,tvi,2,t‖22.

The second step follows from row(Ui,A) ∈ Vi−1, row(Ui,B) ∈ Vi−1,⊥, vi,1,t ∈ Vi−1, vi,2,t ∈
Vi−1,⊥, the third step follows from Ui,Avi,1,t −wi,A ∈Wi−1 and Ui,B,tv2,t −wi,B ∈Wi−1,⊥. The
last step follows from wi,B ⊥ column(Ui,2,t).
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B.3 Missing proof from Section 4.2.3

In the proof, we write x = y ± z if x ∈ [y − z, y + z]. For simplicity, we assume log(1/εν)� k, d.

First, we prove linear convergence for the first loss term.

Lemma B.1 (Fast learning on existing features). For any i ∈ [k] and t ∈ [T ], we have

‖Ui,Avi,1,t − wi,A‖2 ≤
(

1− η

4D

)t
‖Ui,Avi,1,0 − wi,A‖2.

Proof of Lemma B.1. This follows easily from the standard analysis of gradient descent for least
square regressions. For any t ∈ [0 : T − 1], one has

‖Ui,Avi,1,t+1 − wi,A‖2 = ‖Ui,A(vi,1,t − η(U>i,AUi,Avi,1,t − U>i,Awi,A))− wi,A‖2
= ‖(I − ηUi,AU>i,A)(Ui,Avi,1,t − wi,A)‖2

≤ (1− η

4D
)‖(Ui,Avi,1,t − wi,A)‖2.

The first step follows from the gradient update formula (see Lemma 4.5), the third step follows from
Ui,Avi,1,t − wi,A ∈ column(Ui,A), and 2

√
D ≥ σmax(Ui,A) ≥ σmin(Ui,A) ≥ 1

2
√
D

and η < 1
4D .

We conclude the proof here.

We next focus on the second and last loss terms. One can show that x>i,tvi,2,t moves to 1 while
‖‖wi,B‖2xi,t − vi,2,t‖2 remains small in the first T1 = O(Dη log k

σ ) iterations.

Lemma B.2. With probability at least 1 − O(1/k) over the random initialization, there exists
T1 = O(Dη log k

σ ), such that for any t ≤ T1, one has (1) ‖‖wi,B‖2xi,t− vi,2,t‖2 ≤ O(rσ log(k/σ));
(2) x>i,tvi,2,t < 0.9 when t < T1 and 0.9 < x>i,T1

vi,2,T1 < 1; (3) U>i,2,tUi,2,t � U>i,2,0Ui,2,0.

Proof of Lemma B.2. Recall our goal is to prove

1. ‖‖wi,B‖2xi,t − vi,2,t‖2 ≤ O(rσ log(k/σ)),

2. x>i,tvi,2,t < 0.9 when t < T1 and 0.9 < x>i,T1
vi,2,T1

< 1,

3. U>i,2,tUi,2,t � U>i,2,0Ui,2,0.

We inductively prove these three claims. For the base case, we have that

xi,0 =
1

‖wi,B‖22
w>i,BUi,B,0 =

1

‖wi,B‖22
w>i,BPWi−1,⊥Ui,initPVi−1,⊥ =

1

‖wi,B‖22
w>i,BUi,initPVi−1,⊥

≈ σ

‖wi,B‖2
· rand(r, 1)PVi−1⊥ , (8)

where in the first step we use the fact that Ui,B,0 = wi,Bx
>
i,0 + Ui,2,0, wi,B ⊥ column(Ui,2,0), in

the third step, we use wi,B ∈Wi−1,⊥. The fourth step follows from 1
‖wi,B‖22

w>i,BUi,init is a random
Gaussian vector with variance σ

‖wi,B‖2 . Similarly, we have

vi,2,0 = σ · rand(r, 1)PVi−1,⊥ . (9)

Hence, with probability at least 1−O(1/k), we have

‖‖wi,B‖2xi,0 − vi,2,0‖2 ≤ O(rσ log(k)) and x>i,0vi,2,0 < O(σ2rD log(k))� 1.
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We have proved the base case. Now suppose the induction holds up to time t, for the (t + 1)-th
iteration, we first go over the first claim. One has

‖‖wi,B‖2xi,t+1 − vi,2,t+1‖22 − ‖‖wi,B‖2xi,t − vi,2,t‖22
= ‖‖wi,B‖2(xi,t − ηvi,2,t(x>i,tvi,2,t − 1))− (vi,2,t − ηxi,t‖wi,B‖22(x>i,tvi,2,t − 1)− ηU>i,2,tUi,2,tvi,2,t)‖22
− ‖‖wi,B‖2xi,t − vi,2,t‖22

= ‖(‖wi,B‖2xi,t − vi,2,t)− ηvi,2,t‖wi,B‖2(x>i,tvi,2,t − 1) + ηxi,t‖wi,B‖22(x>i,tvi,2,t − 1) + ηU>i,2,tUi,2,tvi,2,t‖22
− ‖‖wi,B‖2xi,t − vi,2,t‖22

= 2η〈‖wi,B‖2xi,t − vi,2,t, xi,t‖wi,B‖22(x>i,tvi,2,t − 1)− vi,2‖wi,B‖2(x>i,tvi,2,t − 1) + U>i,2,tUi,2,tvi,2,t〉
±O(η2D4)

= 2η‖wi,B‖2(x>i,tvi,2,t − 1)‖‖wi,B‖2xi,t − vi,2,t‖22 + η〈‖wi,B‖2xi,t − vi,2,t, U>i,2,tUi,2,tvi,2,t〉
±O(η2D4) (10)

≤ 2η〈‖wi,B‖2xi,t − vi,2,t, U>i,2,tUi,2,tvi,2,t〉 ±O(η2D4)

≤ Õ(ηrσ3d2D) +O(η2D4). (11)

The first step follows from the gradient update formula (see Lemma 4.5), the third step follows from
that

‖U>i,2,tUi,2,tvi,2,t‖2 � 1, ‖‖wi,B‖22(x>i,tvi,2,t − 1)xi,t‖2 ≤ O(D2)

and

‖‖wi,B‖2(x>i,tvi,2,t − 1)vi,2,t‖2 ≤ O(D2),

which can be derived easily from the induction hypothesis. The fifth step follows from x>i,tvi,2,t < 1
when t ≤ T1. The last step follows from

‖‖wi,B‖2xi,t − vi,2,t‖ ≤ Õ(rσ), ‖U>i,2,tUi,2,t‖ ≤ ‖U>i,2,0Ui,2,0‖ ≤ Õ(d2σ2), ‖vi,2,t‖2 ≤ O(D),
(12)

which can be derived easily from the induction hypothesis. Combining with η ≤ σ2

D5 , σ ≤ 1
D2d2 and

the total number of iteration is T1 ≤ O(Dη log k
σ ), one can proved the first claim.

For the second claim, we have that

x>i,t+1vi,2,t+1 − x>i,tvi,2,t
= (xi,t − ηvi,2,t(x>i,tvi,2,t − 1))>(vi,2,t − ηxi,t‖wi,B‖22(x>i,tvi,2,t − 1)− ηU>i,2,tUi,2,tvi,2,t)− x>i,tvi,2,t
= − η(‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22)(x>i,tvi,2,t − 1)− ηx>i,tU>i,2,tUi,2,tvi,2,t ±O(η2D3) (13)

≥ 1

2
η(‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22)(x>i,tvi,2,t − 1)−O(η2D3)

≥ 1

20
η(‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22)−O(η2D3). (14)

The first step follows from the gradient update formula (see Lemma 4.5), the second step holds since

‖vi,2,t(x>i,tvi,2,t−1))‖2 ≤ O(D), ‖‖wi,B‖22(x>i,tvi,2,t−1)xi,t‖2 ≤ O(D2) and ‖U>i,2,tUi,2,tvi,2,t‖2 � 1.

Again, these inequalities can be derived easily from the inductive hypothesis. The third step holds
since U>i,2,tUi,2,t � U>i,2,tUi,2,t � Õ(d2σ2) · I , and therefore,

|x>i,tU>i,2,tUi,2,tv2,t| ≤ Õ(d2σ2) · ‖xi,t‖2‖vi,2,t‖2 � |(‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22)(x>i,tvi,2,t − 1)|.

The last step uses the fact that x>i,tv2,t < 0.9 when t < T1.

We next bound the RHS of Eq. (14) and prove it can not be too small. We focus on ‖‖wi,B‖2xi,t+1 +
vi,2,t+1‖2 and prove it monotonically increasing. In particular, at initialization, with probability at
least 1−O(1/k), due to anti-concentration of Gaussian, we have

‖‖wi,B‖xi,0 + vi,2,0‖2 ≈ σ‖rand(r, 1)PVi−1,⊥‖2 ≥ σ/k. (15)
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Furthermore, we have

‖‖wi−1,B‖2xi,t+1 + vi,2,t+1‖22
= ‖‖wi−1,B‖2(xi,t − ηvi,2,t(x>i,tvi,2,t − 1)) + (vi,2,t − ηxi,t‖wi,B‖22(x>i,tvi,2,t − 1)− ηU>i,2,tUi,2,tvi,2,t)‖22
= ‖‖wi,B‖2xi,t + vi,2,t‖22 + 2η‖wi,B‖2(1− x>i,tvi,2,t)‖‖wi,B‖2xi,t + vi,2,t‖22

+ η〈‖wi,B‖2xi,t + vi,2,t, U
>
i,2,tUi,2,tvi,2,t〉 ±O(η2D4)

≥ (1 +
1

20
η‖wi,B‖2)‖wi,Bxi,t + vi,2,t‖22, (16)

where the first step holds due to the gradient update formula (see Lemma 4.5), the second step holds
due to Eq. (12). The last step holds since

‖U>i,2,tUi,2,tvi,2,t‖2 ≤ Õ(d2σ2D)� σ

40kD
≤ 1

40
‖wi,B‖2 · ‖‖wi,B‖2xi,0 + vi,2,0‖2

≤ 1

40
‖wi,B‖2 · ‖‖wi,B‖2xi,t + vi,2,t‖2

and

O(ηD4)� σ2

40k2D
≤ 1

40
‖wi,B‖2 ·‖‖wi,B‖2xi,0+vi,2,0‖22 ≤

1

40
‖wi,B‖2 ·‖‖wi,B‖2xi,t+vi,2,t‖22.

Hence, we conclude that ‖‖wi,B‖2xt + v2,t‖2 is monotonically increasing, and in particular,

‖‖wi,B‖2xi,t + vi,2,t‖22 ≥ ‖‖wi,B‖2xi,0 + vi,2,0‖22 = Ω(σ2/k2) ∀t ∈ [T1]

‖‖wi,B‖2xi,t + vi,2,t‖22 ≥ Ω(1) t ≥ O(
D

η
log

k

σ
)

The second inequality follows from Eq. (16). Plugging into Eq. (14), one has

x>i,t+1vi,2,t+1 − x>i,tvi,2,t ≥
1

20
η(‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22)−O(η2D3)

≥ 1

40
η(‖‖wi,B‖2xi,t + vi,2,t‖22)−O(η2D3)

≥
{

0 t ∈ [T ]
Ω(η) t ≥ O(Dη log k

σ )

Hence, after at most T1 ≤ O(Dη log k
σ ) iterations, we have 0.9 ≤ x>i,T1

vi,2,T1
< 1. It would not

exceed 0.9 too much since by Eq. (13), the change per iteration is at most

|x>i,t+1vi,2,t+1 − x>i,tvi,2,t| . η(‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22)

≤ η(‖‖wi,B‖2xt − vi,2,t‖22 + 2‖wi,B‖2x>i,tvi,2,t) ≤ 4ηD � 1 (17)

For the third claim, we have

U>i,2,t+1Ui,2,t+1 = (Ui,2,t − ηUi,2,tvi,2,tv>i,2,t)>(Ui,2,t − ηUi,2,tvi,2,tv>i,2,t) � U>i,2,tUi,2,t.

The last step holds since (I − vi,2,tv>i,2,t) is a PSD matrix and (I − vi,2,tv>i,2,t) � I . We have proved
all three claims.

A linear convergence of the second and the last loss terms can be shown, after the first T1 iterations.

Lemma B.3. Let T2 = O(Dη log(kdDεν )). After T = T1+T2 iterations, we have (1) |x>i,T vi,2,T−1| ≤
εν/kdD; (2) ‖U>i,2,TU>i,2,T vi,2,T ‖2 ≤ εν.

Proof of Lemma B.3. For the t-th iteration (t ∈ [T1 : T2]), we prove the following claims inductively.

1. |x>i,tvi,2,t − 1| ≤ 1
2 (1− η

4D )t−T1 ,
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2. ‖Ui,tvi,t‖2 ≤ (1− η
4D )t−T1 ,

3. ‖‖wi,B‖2xi,t − vi,2,t‖2 ≤ Õ(rσ).

The inductive base (t = T1) holds trivially. Assuming the hypothesis holds up to time t, we start
from the first claim. We have that

(1− x>i,t+1vi,2,t+1)− (1− x>i,tvi,2,t)
= − (xi,t − ηvi,2,t(x>t vi,2,t − 1))>(vi,t − ηxi,t‖wi,B‖22(x>i,tvi,2,t − 1)− ηU>i,2,tUi,2,tvi,2,t) + x>i,tvi,2,t

= η(‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22)(x>i,tvi,2,t − 1) + ηx>i,tU
>
i,2,tUi,2,tvi,2 ±O(η2D3|x>i,tvi,2,t − 1|).

The first step follows from the gradient update formula (see Lemma 4.5), the second step follows
from

‖wi,B‖22‖xi,t‖ ≤ O(D2), ‖vi,2,t‖2 ≤ D and ‖Ui,2,tvi,2,t‖2 � 1.

Since

‖wi,B‖22‖xi,t‖22 + ‖vi,2,t‖22 = ‖‖wi,B‖xi,t − vi,2,t‖22 + 2〈‖wi,B‖2xi,t, vi,2,t〉 ≥
1

D

holds due to our inductive hypothesis, we further have that

|1− x>i,t+1vi,2,t+1| ≤ (1− η

D
)|1− x>i,tvi,2,t|+ η|x>i,tU>i,2,tUi,2,tvi,2,t| ±O(η2D3|x>i,tvi,2,t − 1|).

(18)

Case 1. Suppose 1
2 (1− η

4D )t+2−T1 ≤ |x>i,tvi,2,t − 1| ≤ 1
2 (1− η

4D )t−T1 , then we have

|1− x>i,t+1vi,2,t+1| ≤ (1− η

4D
)|1− x>i,tvi,2,t| ≤

1

2
(1− η

4D
)t+1−T1 .

This holds due to Eq. (18), ηD3 � 1
4D and

|x>i,tU>i,2,tUi,2,tvi,2,t| ≤ ‖x>i,tU>i,2,t‖2‖Ui,2,tvi,2,t‖2 ≤ Õ(Ddσ) · 2|x>i,tvi,2,t − 1| ≤ 1

4D
|x>i,tvi,2,t − 1|,

where the second step holds due to the induction hypothesis.

Case 2. Suppose |x>i,tvi,2,t − 1| ≤ 1
2 (1− η

4D )t+2−T1 , then we have

η|x>i,tU>i,2,tUi,2,tv2| ±O(η2|x>i,tvi,2,t − 1|D3) ≤ η · Õ(Ddσ) · (1− η

4D
)t−T1 +O(η2D3) · (1− η

4D
)t−T1

≤ 1

2
(1− η

4D
)t+1−T1 · η

4D
,

where the first step holds due to induction hypothesis and

|x>i,tU>i,2,tUi,2,tvi,2| ≤ ‖x>i,tU>i,2,t‖2‖Ui,2,tvi,2,t‖2 ≤ Õ(Ddσ) · (1− η

4D
)t−T1 .

Therefore

|1− x>i,t+1vi,2,t+1| ≤
1

2
(1− η

4D
)t+2−T1 +

1

2
(1− η

4D
)t+1−T1 · η

4D
=

1

2
(1− η

4D
)t+1−T1 .

Next, we prove the second claim. We have

‖Ui,2,t+1vi,2,t+1‖2
= ‖(Ui,2,t − ηUi,2,tvi,2,tv>i,2,t)(vi,2,t − ηxi,t‖wi,B‖22(x>i,tvi,2,t − 1)− ηU>i,2,tUi,2,tvi,2,t)‖2
≤ ‖Ui,2,tvi,2,t(1− ηv>i,2,tvi,2,t)− ηUi,2,tU>i,2,tUi,2,tvi,2,t‖2 + η‖wi,B‖22|x>i,tvi,2,t − 1|‖Ui,2,txi,t‖2
±O(η2D3) · ‖Ui,2,tvi,2,t‖2

≤ (1− 5η‖vi,2,t‖22/6)‖Ui,2,tvi,2,t‖2 + η‖wi,B‖22|x>i,tvi,2,t − 1|‖Ui,2,txi,t‖2

≤ (1− η

3D
)‖Ui,2,tvi,2,t‖2 + η‖wi,B‖22|x>i,tvi,2,t − 1|‖Ui,2,txi,t‖2, (19)
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where the first step follows from the gradient update rule (Lemma 4.5), the second step holds due to
triangle inequality and

‖vi,2,t‖2 ≤ O(D), |x>i,tvi,2,t − 1|‖wi,B‖22‖xi,t‖2 ≤ O(D2) and ‖U>i,2,tUi,2,tvi,2,t‖ � 1,

the third step holds due to ηD3 ≤ ‖vi,2,t‖22/6 and the last step holds since

‖vi,2,t‖22 = v>i,2,t(‖wi,B‖2xi,t + vi,2,t − ‖wi,B‖2xi,t)
≥ ‖wi,B‖2x>i,2,tvi,2,t − ‖vi,2,t‖2‖‖wi,B‖2xi,t − vi,2,t‖2

≥ 1

2D
− Õ(Drσ) ≥ 2

5D
.

Case 1. Suppose (1− η
4D )t+2−T1 ≤ ‖Ui,2,tv2,t‖2 ≤ (1− η

4D )t−T1 , then

‖Ui,2,t+1vi,2,t+1‖2 ≤ (1− η

3D
)‖Ui,2,tvi,2,t‖2 + η‖wi,B‖22|x>i,tvi,2,t − 1|‖Ui,2,txi,t‖2

≤ (1− η

4D
)‖Ui,2,tvi,2,t‖2 ≤ (1− η

4D
)t+1−T1 ,

where the first step comes from Eq. (19), the second step comes from

η‖wi,B‖22|x>i,tvi,2,t − 1|‖Ui,2,txi,t‖2 ≤ ηD2 · 1

2
(1− η

4D
)t−T1 · Õ(Ddσ)

≤ η

12D
(1− η

4D
)t+2−T1 ≤ η

12D
‖Ui,2,tvi,2,t‖2.

Case 2. Suppose ‖Utv2,t‖2 ≤ (1− η
4D )t+2−T1 , then

‖Ui,2,t+1vi,2,t+1‖2 ≤ ‖Ui,2,tvi,2,t‖2 + η‖wi,B‖22 · |x>i,tvi,2,t − 1| · ‖Ui,2,txi,t‖2

≤ (1− η

4D
)t+2−T1 +

1

2
ηD2(1− η

4D
)t−T1 · Õ(Ddσ)

≤ (1− η

4D
)t+2−T1 + (1− η

4D
)t+1−T1 · η

4D

= (1− η

4D
)t+1−T1 ,

where the first step comes from Eq. (19), the second step follows from the induction hypothesis and
‖Ui,2,txi,t‖22 ≤ Õ(Ddσ). We have proved the second claim.

Now we move to the third claim. One has

‖‖wi,B‖2xi,t+1 − vi,2,t+1‖22 − ‖‖wi,B‖2xi,t − vi,2,t‖22
= 2η(x>i,tvi,2,t − 1)‖wi,B‖2‖‖wi,B‖2xi,t − vi,2,t‖22 + η〈‖wi,B‖2xi,t − vi,2,t, U>i,2,tUi,2,tvi,2,t〉 ±O(η2D4)

. 2η · d2D3σ2 ·D · (rσ)2 + η · rσ · d2σ2D + η2D4

. ηDd2rσ3.

The first step comes from Eq. (10), the second step follows from

‖wi,B‖2 ≤ D, ‖‖wi,B‖2xi,t − vi,2,t‖2 ≤ Õ(rσ), ‖U>i,2,tUi,2,tvi,2,t‖2 ≤ Õ(d2σ2D)

and

x>i,tvi,2,t − 1 ≤ Õ(d2D3σ2).

Here the last term holds since (i) |x>i,τ+1vi,2,τ+1 − x>i,τvi,2,τ | ≤ O(ηD), i.e., the step size is at most
ηD (see Eq. (13) (17)); (ii) x>i,T1

vi,2,T1 < 1 and (iii) |x>i,τ+1vi,2,τ+1−1| < |x>i,τvi,2,τ −1| whenever

η‖x>i,tU>i,2,tUi,2,tv2‖2 ≤ η · Õ(d2D2σ2) .
η

2D
|x>i,τvi,2,τ − 1| ⇒ |x>i,τvi,2,τ − 1| & d2D3σ2.

That is, combining (i) (ii), we know that the first time x>i,τvi,τ being greater 1 must obey x>i,τvi,τ <
1 + O(ηD), (iii) implies that whenever x>i,τ+1vi,2,τ+1 − 1 & d2D3σ2, it value should decrease,
hence we conclude

x>i,T1
vi,2,T1

− 1 . ηD + d2D3σ2 . d2D3σ2.
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Taking a telescopic summation, one has

‖‖wi,B‖2xi,t − vi,2,t‖22 − ‖‖wi,B‖2xi,T1
− vi,2,T1

‖22 ≤ (t− T1) ·O(ηDd2r2σ3)

≤ Õ(D2d2rσ3) ≤ r2σ2.

This concludes the third claim. We conclude the proof here.

Combining Lemma 4.6, Lemma B.1 – B.3, one can conclude the proof of Lemma 4.7.

B.4 Missing proof from Section 4.2.4

Proof of Theorem 2.11. Due to the reduction established in Section 4.2.1, it suffices to prove Eq. (3)
and Eq. (4). For each environment i (i ∈ [k]), we inductively prove

1. DPGrad achieves good accuracy on the current environment, i.e., ‖Ui,T vi − wi‖2 ≤ εν;

2. The feature matrix Ui remains well conditioned, i.e. 1
2
√
D
≤ σmin(Ui,end) ≤

σmax(Ui,end) ≤ 2
√
D.

3. The algorithm does not suffer from catastrophic forgetting, i.e., ‖Ui,tvj − wi‖2 ≤ ε for any
j < i and t ∈ [T ];

The base case (i = 0) holds trivially as at the beginning of CL, we have W,V = ∅ and U = 0.
Suppose the induction holds up to the (i− 1)-th environment, we focus on the second and last claim,
as the first claim holds directly due to Lemma 4.7.

For the second claim, we have already proved ‖Ui,T vi−wi‖2 ≤ εν, this indicates that each coordinate
of Ui,T vi − wi is less than ν/2. Since we assume each coordinate of wi is a multiple of ν, therefore,
we have ŵi = Roundν(Ui,T vi) = wi. That is, we exact recover wi. We divide into two cases.

Case 1. If ‖wi,B‖2 = 0, i.e., wi ∈ W, then ‖PW⊥ŵi‖2 = ‖PW⊥wi‖2 = 0, Therefore, we do not
update W and V, and

Ui,end = PWUi,TPV = PW(Ui,A,0 + Ui,B,T )PV = PWUi,A,0PV = Ui−1,end,

where the second and the third step holds to Lemma 4.4 and the last step just holds due to definition.
Hence Ui continues to be well-conditioned (since it does not change).

Case 2. If ‖wi,B‖2 ∈ [1/D,D], then ‖PW⊥ŵi‖2 = ‖PW⊥wi‖2 = ‖wi,B‖ ≥ 1/D. Hence, we
augment Wi = Wi−1 ∪ {wi} and Vi = Vi−1 ∪ {vi} and have

Ui,end = PWUi,TPV = PW(Ui,A,0 + Ui,B,T )PV

= Ui,A,0 + (
1

‖wi,B‖22
wi,Bw

>
i,B)Ui,B,T (

1

‖vi,2,T ‖22
vi,2,T v

>
i,2,T )

= Ui,A,0 + (
1

‖wB‖22
wBw

>
B)(wBx

>
i,T + Ui,2,T )(

1

‖vi,2,T ‖22
vi,2,T v

>
i,2,T )

= Ui,A,0 + wBv
>
i,2,T

x>i,T vi,2,T

‖vi,2,T ‖22

= Ui,A,0 + (1± o(ε/D))
1

‖vi,2,T ‖22
wBv

>
i,2,T . (20)

The third step holds since row(Ui,A,0) ∈ V, column(Ui,A,0) ∈ W, column(Ui,B,T ) ∩W = wi,B ,
row(Ui,B,T ) ∩ V = vi,2,T (see Lemma 4.4), the later two imply the projection operation essentially
boils to projection on wi,B and vi,2,T . The fifth step follows from column(Ui,2,T ) ⊥ wB (see Lemma
4.4), the sixth step follows from x>i,T vi,T = 1± o(ε/D) (see Lemma B.3). To bound the condition
number, it suffices to note that wi,B ⊥ Wi−1, vi,2,T ⊥ Vi−1 (see Lemma 4.4), and therefore,
wB ⊥ column(Ui,A,0), vi,2,T ⊥ row(Ui,A,0) (i.e., we add an orthogonal basis) and

(1±o(ε/D))
1

‖vi,2,T ‖22
‖wB‖2‖v>i,2,T ‖2 = (1±o(ε/D))

‖wB‖2
‖vi,2,T ‖2

= (1+o(1))
√
‖wB‖2 ∈

[
1

2
√
D
,

√
D

2

]
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where the last step is derived from x>i,tvi,2,T ≈ 1 + o(1) and ‖‖wB‖2xi,t − vi,2,t‖2 ≈ 1± o(1/D3).
We have proved the second claim.

For the last claim, fix an index j < i, we prove the accuracy of j-th environment would not drop
significantly and remain good. Note by inductive hypothesis, we already have ‖Uj,T vj − wj‖2 ≤
εν/kd before the final projection step of j-th environment. After the projection step, one has

‖Uj,endvj − wj‖2 = ‖PWUj,TPVvj − wj‖2 = ‖PW(Uj,A,T + wj,Bx
>
j,T + Uj,2,T )PVvj − wj‖2

We divide into two cases.

Case 1. Suppose ‖wj,B‖2 = 0. We have Wj = Wj−1,Vj = Vj−1 and

‖Uj,endvj − wj‖2 = ‖PWj
(Uj,A,T + Uj,2,T )PVj

vj − wj‖2 = ‖Uj,A,T vj − wj‖2
≤ ‖Uj,A,T vj,1,T − wj‖2 ≤ εν.

The second step follows from column(Uj,A,T ) ∈ Wj , row(Uj,A,T ) ∈ Vk and row(Uj,2,T ) ∈ Vj,⊥
(see Lemma 4.4), the third step follows from row(Uj,A,T ) ∈ Vi−1. Hence, we have that the error
remains small after the projection.

During the i-th environment, for any t ∈ [T ], we decompose Ui,t = Uj,end + Ûi,t. We have

‖Ui,tvj − wj‖2 = ‖(Uj,end + Ûi,t)vj − wj‖2
≤ ‖Uj,endvj − wj‖2 + ‖Ûi,tvj‖2
= ‖Uj,endvj − wj‖2 + ‖Ûi,tvj,2,T ‖2
≤ εν + Õ(

√
D · rσ)

≤ ε.

The third step holds due to the fact that row(Ûi,t) ∈ Vj,⊥, the fourth step holds due to (1) ‖vj,2,t‖2
is non-decreasing during the j-th environment (see the gradient update formula in Lemma 4.5) and
therefore ‖vj,2,T ‖2 ≤ ‖vj,2,0‖2 ≤ Õ(rσ) w.h.p.; (2) the spectral norm ‖Ûi,t‖ ≤ O(

√
D), since

‖Ûi,t‖ ≤ ‖Ui,t‖+ ‖Uj,end‖2 ≤ ‖Ui,A‖+ ‖wi,Bx>i,t + Ui,2,T ‖+ ‖Uj,end‖2
≤ 2
√
D + 2

√
D + 2

√
D = O(

√
D).

Here the first step and the second step hold due to triangle inequality, the second step holds due to the
inductive hypothesis and ‖wi,Bx>i,t + Ui,2,T ‖ ≤ 2

√
D. We finished the proof of the first case.

Case 2. Suppose ‖wj,B‖2 ∈ [1/D,D]. Then we augment Wj = Wj−1 ∪ {wj} and Vj =
Vj−1 ∪ {vj}. We first prove the loss remains small after the final projection step of j-th environment.
In particular, we have

‖Uj,endvj − wj‖2 = ‖
(
Uj,A,0 + (1± o(ε/D))

1

‖vj,2,T ‖22
wBv

>
j,2,T

)
(vj,1,T + vj,2,T )− wj,A − wj,B‖2

= ‖(Uj,A,0vj,1,T − wj,A) + (1± o(ε/D))
1

‖vj,2,T ‖22
wj,Bv

>
j,2,T vj,2,T − wj,B‖2

≤ ‖(Uj,A,0vj,1,T − wj,A)‖2 + o(ε/D)‖wj,B‖2
≤ εν + o(ε) ≤ ε.

The first step holds due to Eq. (20), the third step holds due to triangle inequality, the fourth step
holds due to the inductive hypothesis and ‖wj,B‖2 ≤ D.

During the i-th environment, since the update is performed in the orthogonal space, we expect Uvj
does not change. Formally, let Ui,t = Uj,end + Ûi,t, where column(Ûi,t) ⊥Wj and row(Ûi,t) ⊥ Vj ,
then

Ui,tvj = (Uj,end + Ûi,t)vj = Uj,endvj ,

Hence ‖Ui,tvj − wj‖ ≤ ε continues to hold. We conclude the proof here.
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C Missing proof from Section 5

Proof of Theorem 2.12. We take k = 2, n = 3, d = 2. For both environments, we assume the
input data are drawn uniformly at random from B3(0, 1), where B3(0, 1) denotes the unit ball in R3

centered at origin. The hypothesis classH consists of all two-layer convolutional neural network with
a single kernel of size 2 and the quadratic activation function. That is, the representation function
is parameterized by w ∈ R2 and takes the form of Rw(x) = (〈w, x1:2〉2, 〈w, x2:3〉2) ∈ R2, where
x ∈ R3, xi:j ∈ Rj−i+1 is a vector consists of the i-th entry to the j-th entry of x.

The hard sequence of environments are drawn from the following distribution.

• The objective function f1 of the first environment is f1(x) = x22

• The objective function f2 of the second environment equals f2(x) = x23 with probability
1/2, and equals f2(x) = x21 with probability 1/2.

First, the continual learning task is realizable: (1) if f2(x) = x23, then one can take w = (0, 1) and
v1 = (1, 0), v2 = (0, 1); (2) if f2(x) = x21, then one can take w = (1, 0), v1 = (0, 1), v2 = (1, 0).

We then prove no (proper) continual learning algorithm can guarantee to achieve less than 1/1000-
error on both environments with probability at least 1/2. Suppose the algorithm takes v1 = (v1,1, v1,2)
for the first environment. Due to symmetry, one can assume |v1,1| ≥ |v1,2|. With probability 1/2,
the objective function of the second environment is f2(x) = x21. Let v2 = (v2,1, v2,2) be the linear
prompt and w = (w1, w2) be the parameter of neural network. We prove by contradiction and assume

E
x∼B3(0,1)

[|〈v1, Rw(x)〉 − x22|2] ≤ 1/1000 and E
x∼B3(0,1)

[|〈v2, Rw(x)〉 − x21|2] ≤ 1/1000.

Let Πd
n be the space of all polynomial of degree at most d in n variables. By Lemma C.1, notice

that 〈v1, Rw(x)〉, 〈v2, Rw(x)〉 ∈ Π2
3, we must have that their coefficients match well with x22 and x21

respectively (in the sense that the absolute deviation is no larger than 1/4).

First, compare the polynomials of 〈v2, Rw(x)〉 and x21, we must have (1) v2,1w2
1 ≥ 3/4 due to the x21

term, and due to the x1x22 term, one has (2) |v2,1w1w2| ≤ 1/4. These two indicate (3) |w1| ≥ 3|w2|.
Then compare the polynomials of 〈v1, Rw(x)〉 and x22, we have (4) |v1,1w2

1| ≤ 1/4 due to the x21
term. Combining (3) and (4), one has (5) |v1,1w2

2| ≤ 1
9 |v1,1w

2
1| ≤ 1

36 . Since the x22 term is roughly
matched, one must have (6) |v1,2w2

1| ≥ 1− 1
4 −

1
36 = 13

18 . However, note that (4) and (6) contradicts
with the assumption that |v1,1| ≥ |v1,2|. We conclude the proof.

We provide the proof of a technical Lemma used in proving Theorem 2.12

Lemma C.1 (Technical tool). Let Πd
n be the space of all polynomial of degree at most d in n variables.

For any two polynomials p1(x), p2(x) ∈ Π2
3, if

E
x∼B3(0,1)

[(p1(x)− p2(x))2] ≤ 1

1000
,

then the absolute deviation of each coefficient is at most 1/4.

Proof. Let p(x) = (p1(x)− p2(x))2, taking an integral over B3(0, 1), we can only need to consider
all quadratic terms, since all odd terms would be canceled due to symmetry. We divide into cases.
(1) The coefficient of the constant term is greater than 1/4, then p(x) ≥ 1/16. (2) The coefficient
of x1 is greater than 1/4, then p(x) ≥ Ex∼B3(0,1)

1
16x

2
1 = 1

16 ·
1
5 = 1

80 . (3) The coefficient of x1x2
is greater than 1/4, then then p(x) ≥ Ex∼B3(0,1)

1
16x

2
1x

2
2 = 1

16 ·
1
35 = 1

560 . (4) The coefficient of
x21 is greater than 1/4, then then p(x) ≥ Ex∼B3(0,1)

1
16x

4
1 = 1

16 ·
3
35 = 3

560 . Hence we conclude no
coefficient has difference greater than 1/4.

Lower bound with ReLU activation There is nothing particularly special about the activation
quadratic activation function: here, we provide a similar lower bound for features are represented via
one-layer convolutional neural network with ReLU activation.
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Theorem C.2. Let k, r, d ≥ 2. There exists a class of non-linear feature mappings and a sequence
of environments, such that there is no (proper) continual learning algorithm that can guarantee to
achieve less than 1/3-error over all environments with probability at least 1/16. The lower bound is
constructed on a single family of two-layer neural network with ReLU activation.

Proof. It suffices to take k = 2, d = 2, r = 2. The input distribution is uniform over
(1, 1), (−1,−1), (1,−1), (−1, 1) for both tasks. The hypothesis class H contains all two-layer
convolutional neural network with a single kernel of size 1 and ReLU activation. That is, the repre-
sentation function is parameterized by w ∈ R and Rw(x) = (max{wx1, 0},max{wx2, 0}) ∈ R2

for input x = (x1, x2) ∈ R2.

The hard sequence of environment are drawn as follow: (1) The objective value in first environment
is always (0, 0, 1,−1); (2) The objective value of the second environment equals (2, 0, 1, 1) with
probability 1/2 and (0, 2, 1, 1) with probability 1/2.

One can easily verify that the continual learning task is realizable: in the first case, one takes w = 1,
v1 = (1,−1), v2 = (1, 1) while in the second case, one takes w = −1, v1 = (−1, 1), v2 = (1, 1).

We next prove any proper continual learning algorithm makes error at least 1/10. We prove by
contradiction and assume the continual learning algorithm takes value w for the convolutional layer
in the first task. It is easy to verify that w 6= 0, otherwise the first environment suffers loss at least
1/2. When w > 0, then representation function equals (w,w), (0, 0), (w, 0), (0, w) and we have
v1 = ( 1

w ±
1
2w ,−

1
w ±

1
2w ) ∈ (R+,R−). For the second environment, suppose the objective value

equals (0, 2, 1, 1) (note this happens with probability 1/2). Then the algorithm must change the
parameter to w′ < 0, otherwise the loss on point (−1,−1) is at least 4. Then for the first task, the
loss on point (1,−1) is at least 1. The case of w < 0 is similar and we conclude the proof here.

D Additional details of simulation

We provide further details for our simulations. In our simulations, we set input dimension d = 100,
the number of features r = 20 and the continual learning setup uses k = 500 tasks. Each entry
of the ground truth U? ∈ Rd×r (and V ? ∈ Rk×r) is drawn from the Gaussian N(0, 1), and
W = U?(V ?)> ∈ Rd×k. The input data x of each task is drawn from the multivariate gaussian
N(0, Id), and the label is set to be y = 〈wi, x〉. For each task, we drawn N = 1000 samples, and
perform DPGrad/OGD/SGD for T = 3000 iterations, with learning rate η = 0.01/0.0001/0.01
respectively, and the initialization scale σ = 0.01. We omit the rounding step of DPGrad and simply
takes ŵi = Uvi (Line 12 in Algorithm 1), and the result of simulation empirically verifies that our
Bit complexity assumption is indeed for convenience of analysis and one does not need it for practice.
The OGD algorithm does not always converge in our simulations and we (1) decrease the learning
rate and (2) perform early stopping: the projection is only w.r.t. the first 20 tasks. Our experiments
are executed on an Apple M1 CPU.

E Additional Experiments

In addition to our synthetic data experiments, we also perform experiments on two common bench-
mark datasets: Permuted MNISTs and Rotated MNISTs. We do this both to verify the behavior of our
proposed algorithm, as well as compare with two baseline approaches: Vanilla Stochastic Gradient
Descent (SGD) and Orthogonal gradient descent (OGD) [11].

Datasets We consider two datasets, Permuted MNIST and Rotated MNIST. In the Permuted MNIST
dataset, a task is created by performing a random permutation to the input pixels; in the Rotated
MNISTs a task is created by randomly rotating the input image. We generated 10 tasks for both
benchmark datasets and the continual learning algorithm is sequentially exposed to these 10 tasks.
The permutation/rotation is same within each task but different across tasks. Each task contains
60000 training samples and the test set contains 10000 images.

Our methods Our DPGrad algorithm is tailored to the linear regression setting we consider, so it
has to be modified to apply it to multi-class classification problems like Rotated/Permuted MNIST
and/or to handle non-linear representations. We consider two natural generalizations of DPGrad.
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To adapt it to a multi-class classification problem, we view each task as having 10 linear predictors—
one for each class. Recall the key idea of DPGrad is to perform (fine-grained) column/row projection
for the gradient of weight matrix and the column/row space is increased by (at most) 1 after each task.
In the multi-class case, we force the increase of the row/column space to be (at most) 10 dimensions
per task. In the tables/figures below we just call this DPGrad.

To adapt it to non-linear representations, we use a modified approach we call DPGrad+. In the linear
setting, the column/row space increases by (at most) one dimension after each task and the newly
added column/row is essentially the top eigenvector of the feature matrix U as it is close to a rank-one
matrix (see Lemma B.3) after projection. For non-linear feature, there is no reason to hope the weight
matrix is rank-one, but instead, we perform singular value decomposition (SVD) to the matrix and
take the top-h eigenvectors and then add them to the column/row space. In other words, the only
difference between DPGrad+ and DPGrad is that DPGrad+ augment the column/row space by the
top-h eigenvector instead of the top-1 eigenvector. We take h = 15 in both experiments.

Hyperparameter choices We use a two-layer fully connected neural network, where the hidden
layer contains 300 neurons and uses ReLU activation (for DPGrad+; for DPGrad the activation is
linear). The parameters of the first layer are shared across tasks, while the weights of the second layer
are different across tasks (i.e. the linear predictor). We perform 5 epochs of training for each task, the
learning rate is fixed to be 0.1 and the batch size is 100.

Experimental results The experimental results on Permuted MNIST can be found at Figure 3,
Figure 5 and Table 4, the results on Rotated MNIST can be found at Figure 2, Figure 4 and Table
3. Figure 2-5 plot the test accuracy on the 10 tasks over time, Table 4 and Table 3 record the test
accuracy of each tasks at the end of training (i.e., after the 10-th task). The average accuracy is
reported in Table 1. The deviations of the values and confidence intervals are gotten from 5 runs,
randomizing over the order of the tasks, as well as the randomness of the algorithm (i.e. seed).

Both DPGrad+ and DPGrad alleviate catastrophic forgetting and perform much better than vanilla
SGD. Both outperform OGD, which is a strong baseline approach and outperforms classical ap-
proaches like elastic weight consolidation [19]. The performance of DPGrad+ and DPGrad is much
more stable than OGD and the accuracy remains at a high level across tasks. By contrast, OGD has
large variance across tasks—it obtains high accuracy in recent tasks but much lower accuracy in early
tasks (especially in Rotated MNIST).

Rotated MNIST Permuted MNIST
DPGrad+ 76.6% (±2.1%) 89.5% (±0.2%)
DPGrad 74.3% (±1.5%) 86.3% (±0.1%)

OGD 73.0% (±2.4%) 88.7% (±0.6%)
SGD 66.8% (±2.9%) 81.6% (±1.6%)

Table 1: Average Accuracy

Finally, we provide values for a common metric for quantifying forgetting: the backward transfer
value, defined as

1

k − 1

k−1∑
i=1

ACCk,i − ACCi,i

where ACCi,j is the test accuracy of task j, after training with task i. A large negative backward
transfer value means the algorithm suffers from catastrophic forgetting, a small or even positive
backward transfer value indicates the algorithm avoids catastrophic forgetting. We report the backward
transfer value in Table 2. In brief, OGD is more plastic than DPGrad, however at the expense of
incurring a larger forgetting ratio (or negative backward transfer).
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Rotated MNIST Permuted MNIST
DPGrad+ -0.04 (±0.01) -0.01 (±0.01)
DPGrad -0.01 (±0.01) 0 (±0.01)

OGD -0.20 (±0.06) - 0.03 (±0.01)
SGD -0.28 (±0.09) -0.10 (±0.05)

Table 2: Backward Transfer

(a) DPGrad+ (b) DPGrad

(c) OGD (d) SGD

Figure 2: Rotated MNIST

Task 1 Task 2 Task 3 Task 4 Task 5
DPGrad+ 80.4% (±4.59%) 83.2% (±1.98%) 82.6% (±2.86%) 81.8% (±1.31%) 78.5% (±2.75%)
DPGrad 82.6% (±1.19%) 79.5% (±1.46%) 77.3% (±6.02%) 76.6% (±2.97%) 76.3% (±2.85%)

OGD 47.0% (±9.31%) 59.9% (±6.56%) 69.1% (±6.25%) 65.1% (±5.62%) 70.2% (±14.4%)
SGD 49.7% (±9.37%) 52.8% (±12.8%) 56.5% (±14.9%) 55.3% (±15.0%) 63.5% (±8.45%)

Task 6 Task 7 Task 8 Task 9 Task 10
DPGrad+ 74.8% (±9.24%) 71.7% (±4.68%) 73.2% (±3.27%) 70.6% (±4.79%) 69.5% (±5.22%)
DPGrad 72.6% (±3.66%) 71.3% (±5.02%) 71.5% (±3.29%) 70.2% (±6.16%) 64.7% (±8.49%)

OGD 77.0% (±4.80%) 83.6% (±4.73%) 78.9% (±5.64%) 87.6% (±2.33%) 91.7% (±0.29%)
SGD 67.6% (±8.54%) 69.1% (±12.1%) 77.3% (±4.31%) 84.3% (±2.69%) 91.5% (±0.12%)

Table 3: Rotated MNIST

27



(a) DPGrad+ (b) DPGrad

(c) OGD (d) SGD

Figure 3: Permuted MNIST

Task 1 Task 2 Task 3 Task 4 Task 5
DPGrad+ 87.1% (±2.14%) 88.8% (±1.08%) 87.9% (±1.12%) 89.5% (±0.57%) 89.2% (±1.32%)
DPGrad 86.3% (±0.36%) 86.1% (±0.64%) 86.3% (±0.18%) 86.3% (±0.36%) 86.3% (±0.23%)

OGD 82.9% (±4.37%) 86.3% (±1.17%) 88.2% (±1.05%) 88.5% (±1.38%) 89.2% (±0.59%)
SGD 76.0% (±6.83%) 67.9% (±9.03%) 75.1% (±7.88%) 78.6% (±3.85%) 84.5% (±2.11%)

Task 6 Task 7 Task 8 Task 9 Task 10
DPGrad+ 90.3% (±0.19%) 90.5% (±0.16%) 90.4% (±0.24%) 90.4% (±0.11%) 90.4% (±0.24%)
DPGrad 86.2% (±0.32%) 86.2% (±0.12%) 86.3% (±0.05%) 86.3% (±0.25%) 86.3% (±0.13%)

OGD 90.0% (±0.50%) 90.3% (±0.50%) 90.5% (±0.40%) 90.6% (±0.13%) 91.0% (±0.12%)
SGD 82.9% (±7.05%) 85.6% (±3.20%) 86.6% (±2.33%) 88.6% (±2.87%) 90.7% (±0.24%)

Table 4: Permuted MNIST
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(a) DPGrad+ (b) DPGrad

(c) OGD (d) SGD

Figure 4: Rotated MNIST (with error bar)

(a) DPGrad+ (b) DPGrad

(c) OGD (d) SGD

Figure 5: Permuted MNIST (with error bar)
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