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Abstract

Ever since Reddi et al. (2018) pointed out the divergence issue of Adam, many new variants
have been designed to obtain convergence. However, vanilla Adam remains exceptionally
popular and it works well in practice. Why is there a gap between theory and practice? We
point out there is a mismatch between the settings of theory and practice: Reddi et al. (2018)
pick the problem after picking the hyperparameters of Adam, i.e., (β1, β2); while practical
applications often fix the problem first and then tune (β1, β2). Due to this observation, we
conjecture that the empirical convergence can be theoretically justified, only if we change the
order of picking the problem and hyperparameter. In this work, we confirm this conjecture.
We prove that, when the 2nd-order momentum parameter β2 is large and 1st-order momentum
parameter β1 <

√
β2 < 1, Adam converges to the neighborhood of critical points. The size

of the neighborhood is propositional to the variance of stochastic gradients. Under an extra
condition (strong growth condition), Adam converges to critical points. It is worth mentioning
that our results cover a wide range of hyperparameters: as β2 increases, our convergence result
can cover any β1 ∈ [0, 1) including β1 = 0.9, which is the default setting in deep learning
libraries. To our knowledge, this is the first result showing that Adam can converge without any
modification on its update rules. Further, our analysis does not require assumptions of bounded
gradients or bounded 2nd-order momentum. When β2 is small, we further point out a large
region of (β1, β2) combinations where Adam can diverge to infinity. Our divergence result
considers the same setting (fixing the optimization problem ahead) as our convergence result,
indicating that there is a phase transition from divergence to convergence when increasing β2.
These positive and negative results provide suggestions on how to tune Adam hyperparameters:
for instance, when Adam does not work well, we suggest tuning up β2 and trying β1 <

√
β2.

1 Introduction

Modern machine learning tasks often aim to solve the following finite-sum problem.

min
x∈Rd

f(x) =

n−1∑
i=0

fi(x), (1)

where n is the number of samples or mini-batches and x denotes the trainable parameters. In deep
learning, Adam (Kingma & Ba, 2014) is one of the most popular algorithms for solving (1). It
has been applied to various machine learning domains such as natural language processing (NLP)
(Vaswani et al., 2017; Brown et al., 2020; Devlin et al., 2018), generative adversarial networks (GANs)
(Radford et al., 2015; Isola et al., 2017; Zhu et al., 2017) and computer vision (CV) (Dosovitskiy
et al., 2021). Despite its prevalence, Reddi et al. (2018) point out that Adam can diverge with a wide
range of hyperparameters. A main result in (Reddi et al., 2018) states that 2:
∗Correspondence author
2We formally re-state their results in Appendix D.2.
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For any β1, β2 s.t. 0 ≤ β1 <
√
β2 < 1, there exists a problem such that Adam diverges.

Here, β1 and β2 are the hyperparameter to control Adam’s 1st-order and 2nd-order momentum.
More description of Adam can be seen in Algorithm 1 (presented later in Section 2.1). Ever since
(Reddi et al., 2018) pointed out the divergence issue, many new variants have been designed. For
instance, AMSGrad (Reddi et al., 2018) enforced the adaptor vt (defined later in Algorithm 1) to
be non-decreasing; AdaBound (Luo et al., 2019) imposed constraint vt ∈ [Cl, Cu] to ensure the
boundedness on effective stepsize. We introduce more variants in Appendix D.1.

On the other hand, counter-intuitively, vanilla Adam remains exceptionally popular (see evidence at
(Scholar)). Without any modification on its update rules, Adam works well in practice. Even more
mysteriously, we find that the commonly reported hyperparameters actually satisfy the divergence
condition stated earlier. For instance, Kingma & Ba (2014) claimed that (β1, β2) = (0.9, 0.999)
is a “good choice for the tested machine learning problems" and it is indeed the default setting in
deep learning libraries. In super-large models GPT-3 and Megatron (Brown et al., 2020; Smith
et al., 2022), (β1, β2) is chosen to be (0.9, 0.95). GAN researchers (e.g. Radford et al. (2015); Isola
et al. (2017)) use (β1, β2) = (0.5, 0.999). All these hyperparameters live in the divergence region
β1 <

√
β2. Surprisingly, instead of observing the divergence issue, these hyperparameters achieve

good performances and they actually show the sign of convergence.

Why does Adam work well despite its theoretical divergence issue? Is there any mismatch between
deep learning problems and the divergent example? We take a closer look into the divergence
example and find out the mismatch does exist. In particular, we notice an important (but often
ignored) characteristic of the divergence example: (Reddi et al., 2018) picks (β1, β2) before picking
the sample size n. Put in another way, to construct the divergence example, they change n for
different (β1, β2). For instance, for (β1, β2) = (0, 0.99), they use one n to construct the divergent
example; for (β1, β2) = (0, 0.9999), they use another n to construct another divergent example. On
the other hand, in practical applications of Adam listed above, practitioners tune the hyperparameters
(β1, β2) after the sample size n is fixed. So there is a gap between the setting of theory and practice:
the order of picking n and (β1, β2) is different.

Considering the good performance of Adam under fixed n, we conjecture that Adam can converge in
this setting. Unfortunately, the behavior of vanilla Adam is far less studied than its variants (perhaps
due to the criticism of divergence). To verify this conjecture, we run experiments for different choices
of (β1, β2) on a few tasks. First, we run Adam for a convex function (2) with fixed n (see the
definition in Section 3.2). Second, we run Adam for the classification problem on data MNIST and
CIFAR-10 with fixed batchsize. We observe some interesting phenomena in Figure 1 (a), (b) and (c).

First, when β2 is large, the optimization error is small for almost all values of β1. Second, when
β1, β2 are both small, there is a red region with relatively large error. On MNIST, CIFAR-10, the
error in the red region is increased by 1.4 times than that in the blue region. The situation is a lot
worse on function (2) (defined later in Section 3.2): the error in the red region is 70 times higher.
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Figure 1: (a), (b), (c): The performance of Adam on different tasks. For each task, we show the results with
β1 and β2 in grids {(k1/50, k2/50)|k1 = 0, · · · , 49, k2 = 0, · · · , 49}. (a): the optimality gap x− x∗ on the
convex function (2). (b) (c): The training loss on MNIST and CIFAR-10. (d): An illustration of our contribution
in (β1, β2) phase diagram. The shape of the region follows the solution to our analytic conditions. The size of
the region depends on n. The dotted curve satisfies β1 =

√
β2. In all figures, n is fixed before picking (β1, β2).

While Adam’s performances seem unstable in the red region, we find that Adam always performs
well in the top blue region in Figure 1. This seems to suggest that Adam can converge without any
algorithmic modification, as long as β1 and β2 are chosen properly. We ask the following question:
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Can Adam provably converge without any modification on its update rules?

In this work, we theoretically explore this question. Our contributions are visualized in Figure 1 (d).
We prove the following results when n is fixed (or more rigorously, when the function class is fixed):

• We prove that when β2 is large enough and β1 <
√
β2, Adam converges to the neighborhood

of critical points. The size of the neighborhood is propositional to the variance of stochastic
gradients. With an extra condition (so-called strong growth condition), we prove that Adam can
converge to critical points. As β2 increases, these results can cover any momentum parameter
β1 ∈ [0, 1) including the default setting β1 = 0.9. In particular, our analysis does not require
bounded gradient assumption.

• We study the divergence issue of small-β2 Adam. We prove that: for any fixed n (or more
rigorously, for any fixed function class), there exists a function such that, Adam diverges to
infinity when (β1, β2) is picked in the red region in Figure 1 (d). The size of the red region
increases with n. The shape of the region follows the solution to our analytic conditions.

• We emphasize a few characteristics of our results. (1) phase transition. The divergence result
considers the same setting as our convergence result, indicating that there is a phase transition
from divergence to convergence when changing β2. (2) problem-dependent bounds. Our
convergence and divergence regions of (β1, β2) are problem-dependent, which is drastically
different from (Reddi et al., 2018) which established the problem-independent worst-case choice
of (β1, β2). (3) non-asymptotic characterization. the “divergence region” of (β1, β2) expands
as n increases and converges to the whole region [0, 1)2 as n goes to infinity, which recovers
(actually stronger than) the problem-independent divergence result of (Reddi et al., 2018) that
requires β1 <

√
β2. In this sense, we can view the divergence result of (Reddi et al., 2018) as an

asymptotic characterization of the divergence region (as n→∞) and our divergence result as a
non-asymptotic characterization (for any fixed n). We provide more discussion in Section 4.

• Our positive and negative results can provide suggestions for tuning β1 and β2: for instance,when
Adam does not work well, we suggest tuning up β2 and trying β1 <

√
β2. We provide more

tuning suggestions in Appendix C.

We believe our results can boost new understandings for Adam. While Reddi et al. (2018) reveal that
“Adam can diverge", our results show the other side of the coin: when n is fixed (or when function
class is fixed), Adam can still converge without any modification on its update rules. Our results
suggest that Adam is still a theoretically justified algorithm and practitioners can use it confidently.

We further emphasize that our convergence results can cover any β1 ∈ [0, 1), which allows the
algorithm to bring arbitrarily heavy momentum signals. It turns out that large-momentum Adam is
not easy to analyze. Even with stronger assumptions like bounded gradient (‖∇f(x)‖ < C,∀x), its
convergence is not well understood (see related works in Section 2.2). To our best knowledge, this is
the first result that proves vanilla Adam with any β1 can converge without any assumption of bounded
gradient or bounded 2nd-order momentum. The proof contains a new method to handle unbounded
momentum in the stochastic non-linear dynamics system. We will highlight our technical novelties in
Section 5.

2 Preliminaries
2.1 Review of Adam
We consider finite-sum problem (1). We use x to denote the optimization variable. We denote∇fj as
the gradient of fj and let ◦ be the component-wise product. The division and square-root operator
are component-wise as well. We present randomly shuffled Adam in Algorithm 1.
In Algorithm 1, m denotes the 1st-order momentum and v denotes the 2nd-order momentum. they
are weighted averaged by hyperparameter β1, β2, respectively. Larger β1, β2 will adopt more history
information. We denote xk,i,mk,i, vk,i ∈ Rd as the value of x,m, v at the k-th outer loop (epoch)
and i-th inner loop (batch), respectively. We choose ηk = η1√

nk
as the stepsize. In practice, ε is

adopted for numerical stability and it is often chosen to be 10−8. In our theory, we allow ε to be an
arbitrary non-negative constant including 0.

In the original version of Adam in (Kingma & Ba, 2014), it has an additional “bias correction” step.

This “bias correction” step can be implemented by changing the stepsize ηk into η̂k =

√
1−βk2

1−βk1
ηk
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Algorithm 1 Adam
Initialize x1,0 = x0, m1,−1 = ∇f(x0) and v1,−1 = maxi∇fi(x0) ◦ ∇fi(x0).
for k = 1→∞ do

Sample {τk,0, τk,1, · · · , τk,n−1} as a random permutation of {0, 1, 2, · · · , n− 1}
for i = 0→ n− 1 do
mk,i = β1mk,i−1 + (1− β1)∇fτk,i(xk,i)
vk,i = β2vk,i−1 + (1− β2)∇fτk,i(xk,i) ◦ ∇fτk,i(xk,i)
xk,i+1 = xk,i − ηk√

vk,i+ε
◦mk,i

end for
xk+1,0 = xk,n; vk+1,−1 = vk,n−1; mk+1,−1 = mk,n−1

end for

and using zero initialization. In Algorithm 1, the “bias correction” step is replaced by a special
initialization, which corrects the bias as well. Note that η̂k ∈ [

√
1− β2ηk,

1
1−β1

ηk] is well-bounded
near ηk, so ηk and η̂k brings the same convergence rate. In addition, as the effect of initialization
becomes negligible when the training progresses, Adam with zero & our initialization will have the
same asymptotic behavior. In the main body of our proof, we follow the form of Algorithm 1, which
makes results cleaner. For completeness, we add the proof on the convergence of Adam with “bias
correction” steps in Appendix G.11.

In our analysis, we make the assumptions below.
Assumption 2.1. we consider x ∈ Rd and fi(x) satisfies gradient Lipschitz continuous with constant
L. We assume f(x) is lower bounded by a finite constant f∗.

Assumption 2.2. fi(x) and f(x) satisfy:
∑n−1
i=0 ‖∇fi(x)‖22 ≤ D1‖∇f(x)‖22 +D0,∀x ∈ Rd.

Assumption 2.2 is quite general. When D1 = 1/n, it becomes the “constant variance” with constant
D0/n. “constant variance" condition is commonly used in both SGD and Adam analysis (e.g.
(Ghadimi et al., 2016; Zaheer et al., 2018; Huang et al., 2021)). Assumption 2.2 allows more flexible
choices of D1 6= n and thus it is weaker than “constant variance”.

When D0 > 0, the problem instance is sometimes called “non-realizable" (Shi et al., 2020). In this
case, adaptive gradient methods are not guaranteed to reach the exact critical points. Instead, they
only converge to a bounded region (near critical points) (Zaheer et al., 2018; Shi et al., 2020). This
phenomenon indeed occurs for Adam in experiments, even with diminishing stepsize (see Figure 4
(a)). The behavior of SGD is similar: constant stepsize SGD converges to a bounded region with its
size propositional to the noise level D0 (Yan et al., 2018; Yu et al., 2019; Liu et al., 2020b).

When D0 = 0, Assumption 2.2 is often called “strong growth condition" (SGC) (Vaswani et al.,
2019). When ‖∇f(x)‖ = 0, under SGC we have ‖∇fj(x)‖ = 0 for all j. SGC is increasingly
popular recently e.g.(Schmidt & Roux, 2013; Vaswani et al., 2019). This condition is known to be
reasonable in the overparameterized regime where neural networks can interpolate all data points
(Vaswani et al., 2019). We will show that Adam can converge to critical points if SGC holds.

When n, f∗, L,D0, D1 are fixed a priori, we use Fn,f
∗

L,D0,D1
(Rd) to denote the function class con-

taining f(x) satisfying Assumption 2.1 and 2.2 with constant n, f∗, etc.. Since n is fixed when the
function class Fn,f

∗

L,D0,D1
(Rd), we introduce this notation to clearly present the divergence result in

Proposition 3.3. Without this pre-defined function class, the claim of divergence might be confusing.

2.2 Related Works
Ever since Reddi et al. (2018) pointed out the divergence issue, there are many attempts on designing
new variants of Adam. Since we focus on understanding Adam without modification on its update
rules, we introduce more variants later in Appendix D.1.

Compared with proposing new variants, the convergence of vanilla Adam is far less studied than
its variants (perhaps due to the criticism of divergence). There are only a few works analyzing
vanilla Adam and they require extra assumptions. Zhou et al. (2018b) analyze the counter-example in
(Reddi et al., 2018) and find certain hyperparameter can work. However, their analysis is restricted
to the counter-example. Zaheer et al. (2018) study the relation between mini-batch sizes and (non-
)convergence of Adam. However, this work require β1 = 0 and Adam is reduced to RMSProp
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(Hinton et al., 2012). De et al. (2018) analyze RMSProp and non-zero-β1 Adam, but they assume the
sign of all stochastic gradients to keep the same. It seems unclear how to check this condition a priori.
Additionally, they require β1 to be inversely related to the upper bound of gradient, which forces β1

to be small (as a side note, this result only applies to full-batch Adam). Défossez et al. (2020) analyze
Adam with β1 < β2 and provide some insights on the momentum mechanisms. However, their
bound is inversely proportional to ε (the hyperparameter for numerical stability) and the bound goes
to infinity when ε goes to 0. This is different from practical application since small ε such as 10−8

often works well. Further, using large ε is against the nature of adaptive gradient methods because√
v no longer dominates in the choice of stepsize. In this case, Adam is essentially transformed back

to SGD. Two recent works (Huang et al., 2021) and (Guo et al., 2021) propose novel and simple
frameworks to analyze Adam-family with large β1. Yet, they require the effective stepsize of Adam
to be bounded in certain interval, i.e., 1√

vt+ε
∈ [Cl, Cu] 3. This boundedness condition changes

Adam into AdaBound (Luo et al., 2019) and thus they cannot explain the observations on original
Adam in Section 1. To summarize, all these works require at least one strong assumption (e.g. large
ε). Additionally, they all (including those for new variants) require bounded gradient assumptions.

A recent work (Shi et al., 2020) takes the first attempt to analyze RMSProp without bounded gradient
assumption. They show that RMSProp can converge to the neighborhood of critical points. 4 We
believe it is important to study Adam rather than RMSProp: Numerically, Adam often outperforms
RMSProp on complicated tasks (e.g. on Atari games, the mean reward is improved from 88% to
110% (Agarwal et al., 2020)). Theoretically, literature on RMSProp cannot reveal the interaction
between β1 and β2; or how these hyperparameters jointly affect (or jeopardize) the convergence
of Adam. However, it is non-trivial to jointly analyze the effect of β1 and β2. We point out there
are at least three challenges. First, it seems unclear how to control the massive momentum mt of
Adam. Second, mt is multiplied by 1/

√
vt, causing non-linear perturbation. Third, mt and 1/

√
vt

are statistically dependent and cannot be decoupled. We propose new methods to resolve these issues.
We highlight our technical novelties in Section 5.

2.3 The Importance and Difficulties of Removing Bounded Gradient Assumptions

Here, we emphasize the importance to remove bounded gradient assumption. First, unlike the
assumptions in Section 2.1, bounded gradient is not common in SGD analysis. So it is of theoretical
interests to remove this condition for Adam. Second, bounded gradient condition rules out the
chances of gradient divergence a priori. However, there are numerical evidences showing that Adam’s
gradient can diverge (see Section 6 and Appendix B). Removing the boundedness assumption helps
us point out the divergence and convergence phase transition in the (β1, β2) diagram.

However, it is often difficult to analyze convergence without bounded gradient assumption. First, it is
non-trivial to control stochastic momentum. Even for SGD, this task is challenging. For instance,
An early paper Bertsekas & Tsitsiklis (2000) analyzed SGD-type methods without any boundedness
condition. But it is not until recently that Yu et al. (2019); Liu et al. (2020b); Jin et al. (2022) prove
SGDM (SGD with momentum) converges without bounded gradient assumption. Such attempts of
removing boundedness assumptions are often appreciated for general optimization problems where
“bounded-assumption-free" is considered as a major contribution.

Secondly, for Adam, the role of momentum mt is even more intricate since it is multiplied by 1/
√
vt.

Combined with vt, the impact of previous signals not only affect the update direction, but also change
the stepsize for each component. Further, both momentum mt and stepsize 1/

√
vt are random

variables and they are highly correlated. Such statistical dependency causes trouble for analysis. In
summary, the role of momentum in Adam could be much different from that in SGDM or GDM. Even
with boundedness conditions, the convergence of large-β1 Adam is still not well understood (see
related works in Section 2.2). In this work, we propose new techniques to handle Adam’s momentum
under any large β1, regardless of the gradient magnitude. These techniques are not revealed in any
existing works. We introduce our technical contribution in Section 5.

3For completeness, we explain why they require this condition in Appendix D.1.
4We notice that they also provide a convergence result for Adam with β1 close enough to 0. However, a

simple calculation by Zhang et al. (2022) shows that they require β1 < 10−7. Thus their result does not provide
much extra information other than RMSProp.
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3 Main Results
3.1 Convergence Results
Here, we give the convergence results under large β2.

Theorem 3.1. For any f(x) ∈ Fn,f
∗

L,D0,D1
(Rd), we assume the hyperparameters in Algorithm 1

satisfy: β1 <
√
β2 < 1; β2 is greater or equal to a threshold γ1(n); and ηk = η1√

nk
. Let km ∈ N

satisfies km ≥ 4 and β(km−1)n
1 ≤ βn1√

km−1
, 5 we have the following results for any T > km:

min
k∈[km,T ]

E

{
min

[√
2D1d

D0
‖∇f(xk,0)‖22, ‖∇f(xk,0)‖2

]}
= O

(
log T√
T

)
+O(

√
D0).

Remark 1: the choice of β2. Our theory suggests that large β2 should be used to ensure conver-
gence. This message matches our experimental findings in Figure 1. We would like to point out
that the requirement of “large β2" is neccessary, because small β2 will indeed lead to divergence
(shown later in Section 3.2). We here comment a bit on the the threshold γ1(n). γ1(n) satisfies
β2 ≥ 1−O

(
1−βn1
n2ρ

)
(see inequality (34) and Remark G.7), where ρ is a constant that depends on the

training trajectory. In worst cases, ρ is upper bounded by n2.5, but we find the practical ρ to be much
smaller. In Appendix B, we estimate ρ on MNIST and CIFAR-10. In practical training process, we
empirically observe that ρ ≈ O(n), thus the required γ1(n) ≈ 1−O

(
n−3

)
. Note that our threshold

of β2 is a sufficient condition for convergence, so there may be a gap between the practical choices
and the theoretical bound of β2. Closing the gap will be an interesting future direction.

We find that γ1(n) increases with n. This property suggests that larger β2 should be used when n
is large. This phenomenon is also verified by our experiments in Appendix B. We also remark that
γ1(n) slowly increases with β1. This property is visualized in Figure 1 (d) where the lower boundary
of blue region slightly lifts up when β1 increases.

Remark 2: the choice of β1. Theorem 3.1 requires β1 <
√
β2. Since β2 is suggested to be large,

our convergence result can cover flexible choice of β1 ∈ [0, 1). For instance, β2 = 0.999 brings the
threshold of β1 < 0.9995, which covers basically all practical choices of β1 reported in the literature
(see Section 1), including the default setting β1 = 0.9. This result is much stronger than those in the
RMSProp literature (e.g. (Shi et al., 2020; Zaheer et al., 2018)). To our knowledge, we are the first to
prove convergence of Adam under any β1 ∈ [0, 1) without bounded gradient assumption.

Remark 3: convergence to a bounded region. When D0 > 0, Adam converges to a bounded
region near critical points. As discussed in Section 2.1, converging to bounded region is common
for stochastic methods including constant-stepsize SGD (Yan et al., 2018; Yu et al., 2019; Liu et al.,
2020b) and diminishing-stepsize RMSProp (Zaheer et al., 2018; Shi et al., 2020). This phenomenon
is also observed in practice: even for convex quadratic function with D0 > 0, Adam with diminishing
stepsize cannot reach exactly zero gradient (see Figure 4 (a) in Section 6). This is because: even
though ηk is decreasing, the effective stepsize ηk/

√
vk,i might not decay. The good news is that,

the constant O(
√
D0) vanishes to 0 as β2 goes to 1 (both in theory and experiments). The relation

between β2 and constant O(
√
D0) are introduced in Remark G.14 in Appendix G.9. The size shrinks

to 0 because the movement of √vk,i shrinks as β2 increases.

As a corollary of Theorem 3.1, we have the following result under SGC (i.e., D0 = 0).

Corollary 3.2. Under the setting in Theorem 3.1. When D0 = 0 for Assumption 2.2, we have

min
k∈[km,T ]

E‖∇f(xk,0)‖2 = O
(

log T√
T

)
.

Under SGC (i.e. D0 = 0), Corollary 3.2 states that Adam can converge to critical points. This is
indeed the case in practice. For instance, function (2) satisfies SGC and we observe 0 gradient norm
after Adam converges (see Section 6 and Appendix B). The convergence rate in Corollary 3.2 is
comparable to that of SGD under the same condition in (Vaswani et al., 2019).

5When β1 = 0.9, km = 15 for any n ≥ 1.
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3.2 Divergence Results
Theorem 3.1 shows that when β2 is large, any β1 <

√
β2 ensures convergence. Now we consider

the case where β2 is small. We will show that in this case, a wide range of β1 is facing the risk
of diverging to infinity. The divergence of small-β2 Adam suggests that “large β2" is necessary in
the convergence result Theorem 3.1. We construct a counter-example in Fn,f

∗

L,D0,D1
(Rd). Consider

f(x) =
∑n−1
i=0 fi(x) for x ∈ R , we define fi(x) as:

fi(x) =

{
nx, x ≥ −1
n
2

(x+ 2)2 − 3n
2
, x < −1

for i = 0,

fi(x) =

{
−x, x ≥ −1
− 1

2
(x+ 2)2 + 3

2
, x < −1

for i > 0. (2)

Summing up all the fi(x), we can see that

f(x) =

{
x, x ≥ −1
1
2
(x+ 2)2 − 3

2
, x < −1

is a lower bounded convex smooth function with optimal solution x∗ = −2. Function (2) allows
both iterates and gradients to diverge to infinity. As shown in Figure 1 (a), when running Adam on
(2), there exists a red large-error region. This shows the sign of divergence. We further theoretically
verify the conjecture in Proposition 3.3.

Proposition 3.3. For any function class Fn,f
∗

L,D0,D1
(Rd), there exists a f(x) ∈ Fn,f

∗

L,D0,D1
(Rd), s.t.

when (β1, β2) satisfies analytic condition (12), (13), (14) in Appendix E, Adam’s iterates and function
values diverge to infinity. By solving these conditions in NumPy, we plot the orange region in Figure
2. The size of the region depends on n and it expands to the whole region when n goes to infinity.
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Figure 2: On function (2) with
n = 20, Adam diverges in the col-
ored region. The region is plotted
by solving condition (12), (13),
(14) in NumPy. The blue curve
satisfies β1 =

√
β2.

The proof can be seen in Appendix E. We find the “divergence
region" always stays below the “convergence threshold" γ1(n) in
Theorem 3.1, so the two results are self-consistent (see the remark
in Appendix E). Proposition 3.3 states the divergence of iterates
and function values. Consistently, our experiments also show the
divergence of gradient (see Section 6 and Appendix B). These re-
sults characterize Adam’s divergence behavior both numerically and
theoretically.

We emphasize that the orange region is not discussed in (Reddi et al.,
2018) because we consider n fixed while they allow n changing.
When n is allowed to increase, our orange region will expand to the
whole region and thus we can derive a similar (actually stronger)
result as (Reddi et al., 2018). We provide more explanation in
Section 4. Combining Theorem 3.1 and Proposition 3.3, we establish
a clearer image on the relation between (β1, β2) and qualitative
behavior of Adam.

4 Reconciling Our Results with (Reddi et al., 2018)

Figure 3: Adam’s behavior when
(β1, β2) in Case I.

We discuss more on the relation between (Reddi et al., 2018) and our
results. The divergence result shown in Section 1 does not contradict
with our convergence results in Theorem 3.1. Further, it is different
from our divergence result in Proposition 3.3. The key difference
lies in whether (β1, β2) is picked before or after picking the function
class Fn,f

∗

L,D0,D1
(Rd). We discuss the following two cases.

Case I: When (β1, β2) is picked before picking Fn,f
∗

L,D0,D1
(Rd).

As discussed in Section 1, the divergence result requires different
n for different (β1, β2). In this sense, the considered function class
is constantly changing. It does not contradict with our Theorem 3.1
which considers a fixed function class with fixed n. For Case I, we
illustrate Adam’s behavior in Figure 3. The red region is proved by
(Reddi et al., 2018). For completeness, we remove the condition
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“β1 <
√
β2" and further prove that Adam will diverge to infinity for

any (β1, β2) ∈ [0, 1)2. The result is shown in the following Corollary 4.1.
Corollary 4.1. For any (β1, β2) ∈ [0, 1)2, there exists a function satisfying Assumption 2.1 and 2.2
that the Adam’s iterates and function values diverge to infinity.

Proof of Corollary 4.1 can be seen in the final paragraph in Appendix E. In the proof, we also require
different n to cause divergence for different (β1, β2). So the function class is constantly changing.
As a result, in Case I, we cannot prove any convergence result.

Table 1: Possible algorithmic behaviors of Adam in Case II.

Setting Hyperparameters Adam’s behavior

∀f ∈ Fn,f
∗

L,D0,D1
(Rd)

with D0 = 0
β2 is large and β1 <

√
β2

converge to
critical points (Ours)

∀f ∈ Fn,f
∗

L,D0,D1
(Rd)

with D0 6= 0
β2 is large and β1 <

√
β2

converge to a bounded
region with size O(D0) (Ours)

∃f ∈ Fn,f
∗

L,D0,D1
(Rd) The orange region in Figure 2 diverge to infinity (Ours)

Case II: When (β1, β2) is picked after picking Fn,f
∗

L,D0,D1
(Rd). When the function class is picked

in advance, sample size n will also be fixed. This case is closer to most practical applications. In
this case, we find that Adam’s behavior changes significantly in the different region of Figure 3.
First, ∀f(x) ∈ Fn,f

∗

L,D0,D1
(Rd) will converge when β1 <

√
β2 and β2 is large. Second, ∃f(x) ∈

Fn,f
∗

L,D0,D1
(Rd) will diverge to infinity when (β1, β2) are in the orange region in Figure 2. Since Case

II is closer to practical scenarios, these results can provide better guidance for hyperparameter tuning
for Adam users. We provide some suggestions for practitioners in Appendix C.

For Case II, we summarize the possible behaviors of Adam in Table 1. We also illustrate our
convergence and divergence results in Figure 1 (d). Note that there are some blanket areas where
Adam’s behavior remains unknown, this part will be left as interesting future work.

5 Proof Ideas for the Convergence Result
We now (informally) introduce our proof ideas for the convergence result in Theorem 3.1. Simply
put, we want to control the update direction mk,i/

√
vk,i inside the dual cone of gradient direction.

Namely:

E〈∇f(xk,0),

n−1∑
i=0

mk,i√
vk,i
〉 > 0. (3)

However, directly proving (3) could be difficult because both mk,i and vk,i distort the trajectory. To
start with, we try to control the movement of vk,i by increasing β2 (similar idea as (Shi et al., 2020;
Zou et al., 2019; Chen et al., 2021)). Recall vk,i = (1−β2)

∑i
j=1 β

i−j
2 ∇fτk,j (xk,j)◦∇fτk,j (xk,j)+

βi2vk,0, we have vk,i ≈ vk,0 when β2 is large. In this case, we have:

E

〈
∇f(xk,0),

n−1∑
i=0

mk,i√
vk,i

〉
≈ E

〈
∇f(xk,0)
√
vk,0

,

n−1∑
i=0

mk,i

〉
≈ E

〈
∇f(xk,0)
√
vk,0

,∇f(xk,0)

〉
> 0,

where the first “≈" is due to the large β2 and the second “≈" is our goal. Now we need to show:

E

〈
∇f(xk,0)
√
vk,0

,

(
n−1∑
i=0

mk,i

)
−∇f(xk,0)

〉
(∗)
= E

(
d∑
l=1

n−1∑
i=0

∂lf(xk,0)
√
vl,k,0

(
ml,k,i − ∂lfτk,i(xk,0)

))
≈ 0,

(4)
where ∂lf(xk,0) is the l-th component of∇f(xk,0), similarly for ml,k,0 and vl,k,0. (∗) is due to the
finite-sum structure. However, it is not easy to prove (4). We point out some technical issues below.

Issue I: massive momentum. Directly proving (4) is still not easy. We need to first consider a
simplified problem: for every l ∈ [d], assume we treat ∂lf(xk,0)/

√
vl,k,0 as a constant, how to bound

E
∑n−1
i=0

(
ml,k,i − ∂lfτk,i(xk,0)

)
?

It turns out that this simplified problem is still non-trivial. When β1 is large, ml,k,i contains heavy
historical signals which significantly distort the trajectory from gradient direction. Existing literature
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(Zaheer et al., 2018; De et al., 2018; Shi et al., 2020) take a naive approach: they set β1 ≈ 0 so that
ml,k,i ≈ ∂lfτk,i(xk,i). Then we get (4) ≈ 0. However, this method cannot be applied here since we
are interested in practical cases where β1 is large in [0, 1).

Issue II: stochastic non-linear dynamics. Even if we solve Issue I, it is still unclear how to prove
(4). This is because: for every l ∈ [d], ∂lf(xk,0)/

√
vl,k,0 is a r.v. instead of a constant. With this term

involved, we are facing with a stochastic non-linear dynamics, which could be difficult to analyze.
Further, ∂lf(xk,0)/

√
vl,k,0 is statistically dependent with

(
ml,k,i − ∂lfτk,i(xk,0)

)
, so we are not

allowed to handle the expectation E(∂lf(xk,0)/
√
vl,k,0) separately .

Unfortunately, even with additional assumptions like bounded gradient, there is no general approach
to tackle the above issues. In this work, we propose solutions regardless of gradient magnitude.

Solution to Issue I. We prove the following Lemma to resolve Issue I.
Lemma 5.1. (Informal) Consider Algorithm 1. For every l ∈ [d] and any β1 ∈ [0, 1), we have the
following result under Assumption 2.1.

δ(β1) := E
n−1∑
i=0

(
ml,k,i − ∂lfτk,i(xk,0)

)
= O

(
1√
k

)
,

where ∂lf(xk,0) is the l-th component of∇f(xk,0); ml,k,i = (1− β1)∂lfτk,i(xk,i) + β1ml,k,i−1.

We present the proof idea in Appendix A. Simply put, we construct a simple toy example called
“color-ball" model (of the 1st kind). This toy model shows a special property of δ(β1). We find out:
for Algorithm 1, error terms from successive epochs can be canceled, which keeps the momentum
roughly in the descent direction. This important property is not revealed in any existing work.

Remark 4: When assuming bounded gradient ‖∇f(x)‖ ≤ G, a naive upper bound would be
δ(β1) = O(G). However, such constant upper bound does not imply δ(β1) is close to 0. It will not
help prove the convergence. This might be partially the reason why large-β1 Adam is hard to analyze
even under bounded gradient (see related works in Section 2.2). We emphasize Lemma 5.1 holds true
regardless of gradient norm, so it could be deployed in both bounded or unbounded gradient analysis.

Solution to Issue II. We try to show (4) by adopting Lemma 5.1. However, the direct application
cannot work since ∂lf(xk,0)√

vl,k,0
is random. Despite its randomness, we find out that when β2 is large, the

changes of ∂lf(xk,0)
√
vl,k,0

shrinks along iteration. As such, although ∂lf(xk,0)√
vl,k,0

brings extra perturbation, the
quantity in (4) share the similar asymptotic behavior as δ(β1). We prove the following Lemma 5.2.
Lemma 5.2. (Informal) Under Assumption 2.1 and 2.2, consider Algorithm 1 with large β2 and
β1 <

√
β2. For those l with gradient component larger than certain threshold, we have:∣∣∣∣∂lf(xk,0)

√
vk,0

− ∂lf(xk−1,0)
√
vk−1,0

∣∣∣∣ = O
(

1√
k

)
; (5)

E

(
∂lf(xk,0)
√
vl,k,0

n−1∑
i=0

(ml,k,i − ∂lfτk,i(xk,0))

)
= O

(
1√
k

)
. (6)

In Appendix A, we introduce how to derive (6) from (5). To do so, we introduce a new type of
“color-ball" model (we call it color-ball of the 2nd kind) which adopts the random perturbation of
∂lf(xk,0)√
vl,k,0

. Understanding color-ball model of the 2nd kind is crucial for proving Lemma 5.2.

We conclude the proof of (4) by some additional analysis on “those l with small gradient component".
This case is a bit easier since it reduces to bounded gradient case. For readers who wants to learn more
about the idea of tackling Issue I and II, please refer to Appendix A where we formally introduce the
1st and 2nd kind of color-ball models. Since the whole proof is quite long, we provide a proof sketch
in Appendix G.1. The whole proof is presented in Appendix G.

6 Experiments
To support our theory, we provide more simulations and real-data experiments. All the experimental
settings and hyperparameters are presented in Appendix B.1. We aim to show:
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(I). When β2 is large, a large range of β1 gives good performance, including all β1 <
√
β2.

(II). When β2 is small, a large range of β1 performs relatively badly.

(a) Function (9) withD0 > 0

0 20000 40000 60000 80000 100000 120000 140000
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

gr
ad

ie
nt

 n
or

m

[0,0.999]
[0.1,0.999]
[0.3,0.999]
[0.5,0.999]
[0.7,0.999]
[0.9,0.999]

(b) Function (2) withD0 = 0

0 10000 20000 30000 40000 50000
iterations

0

20

40

60

80

100

120

140

160

gr
ad

ie
nt

 n
or

m

[0.1,0.99]
[0.1,0.9]
[0.1,0.7]
[0.1,0.5]
[0.1,0.3]
[0.1,0.1]
[0.1,0]

(c) The trajectories of small-β2 Adam
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Figure 4: The performance of Adam on different tasks. (a) (b): large-β2 Adam converges to bounded region
when D0 > 0 and converges to critical points when D0 = 0. We use diminishing stepsize ηk = 0.1/

√
k. (c):

When β2 is small, gradient norm of Adam iterates can be unbounded. We use function 2 with initialization
x = −5 and n = 20. The legends in (b) and (c) stand for [β1, β2]. (d): The training loss under different (β1, β2)
on NLP tasks. We use Adam to train Transformer XL on WikiText-103 dataset.

Convergence to bounded region when D0 > 0. In Figure 4, we run large-β2 Adam on function
(9) (defined later in Appendix B). This function satisfies with D0 > 0. We find that even with
diminishing stepsize ηk = 1/

√
k, Adam may not converge to an exact critical point. Instead, it

converges to a bounded region. This is because: even though ηk is decreasing, the effective stepsize
ηk/
√
vk,i might not decay. Further, the size of the region shrinks when β2 increases. This is because

the movement of√vk,i shrinks as β2 increases. These phenomena match Remark 3 and claim (I).

Convergence to critical points when D0 = 0 Since function (2) satisfies D0 = 0, we run more
experiments on (2) with initialization x = −5 and n = 5, 10, 15, 20. We show the result of n = 20 in
Figure 4 (a), (b); the rest are shown in Appendix B. We find that: when β2 is large, Adam converges
to critical points for β1 <

√
β2. These phenomena match claim (I).

Gradient norm of iterates can be unbounded when β2 is small. On function (2), We further
run Adam with small β2 at initialization x = −5. In this case, gradient norms of iterates increase
dramatically. This emphasizes the importance of discarding bounded gradient assumptions. These
phenomena match claim (II).

MNIST and CIFAR-10. As shown in Figure 1 (b)& (c) in Section 1, the training results match
both claim (I) and (II). In addition, there is a convex-shaped boundary on the transition from low
loss to higher loss, this boundary roughly matches the condition in Theorem 3.1.

NLP. We use Adam to train Transformer XL (Dai et al., 2019) on the WikiText-103 dataset (Merity
et al., 2016). This architecture and dataset is widely used in NLP tasks (e.g. (Howard & Ruder, 2018;
See et al., 2017)). As shown in Figure 4 (d), the training results match both claim (I) and (II).

7 Conclusions
In this work, we explore the (non-)convergence of Adam. When β2 is large, we prove that Adam
can converge with any β1 <

√
β2. When β2 is small, we further show that Adam might diverge to

infinity for a wide range of β1. One interesting question is to verify the advantage of Adam over
SGD. In this work, we focus on the fundamental issue of convergence. Proving faster convergence of
Adam would be our future work.
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https://iclr-blog-track.github.io/2022/03/25/does-adam/


(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applica-

ble? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]
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