
A Visual scenes

A.1 Visualization of the scenes

(a) Barber shop (b) Bedroom

(c) Corridor (d) Forest

(e) Kitchen (f) Lakescape

(g) Loft (h) Wine shop

(i) Flat

Figure 5: Visualizations of all nine distinct 3D photorealistic scenes used for optical flow truth data generation.
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A.2 Histograms of the visual scenes

(a) Barber shop (b) Bedroom (c) Corridor

(d) Forest (e) Kitchen (f) Lakescape

(g) Loft (h) Wine shop (i) Flat

Figure 6: Histograms of RGB pixel intensity (converted to 8-bits) of the different scenes used in FlyView
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B Motion flow

B.1 Kinematic distribution of flight trajectory data

(a) calli_barber_11 (b) calli_barber_28 (c) calli_barber_7

(d) calli_loft_32
Left Eye

(e) calli_loft_32
Right Eye (f) calli_flat_6

(g) calli_flat_3 (h) drone_wine_0 (i) calli_flat_18

Figure 7: Summed polar histograms of motion flow direction for Calliphora and drone flight trajectories.
Figures are identified by the trajectory id in the dataset.
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B.2 Kinematic distribution of motion primitives

(a) mp_corridor_0 (b) mp_corridor_8 (c) mp_corridor_31

(d) mp_lakescape_2 (e) mp_lakescape_37 (f) mp_lakescape_41

(g) mp_interior_34 (h) mp_interior_54 (i) mp_interior_42

Figure 8: Summed polar histograms of motion flow direction for specific motion primitives. Figures are
identified by the trajectory id in the dataset.
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B.3 Representative tracks

The following section show some representative tracks of the drone and fly trajectories.

(a) calli_loft_32 (b) calli_forest_34 (c) calli_forest_35

(d) drone_wine_10 (e) drone_wine_3 (f) drone_bedroom_19

(g) drone_bedroom_18 (h) drone_wine_4 (i) calli_barber_20

Figure 9: 3D plots of tracks used for the collection of data in FlyView. Blue line is the trajectory. Orange
dashed line: projection of the trajectory on the ground reference plane; green dot: initial location of the agent.
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B.4 Angular and magnitude errors

The following section shows angular and magnitude error heatmaps from the pre-trained RAFT-large
network evaluated on FlyView, highlighting its difficulty in accurately estimating the motion flow in
the distorted areas at the top and bottom of the images.

(a) Angular error heatmap 1 (b) Magnitude heatmap 1

(c) Angular error heatmap 2 (d) Magnitude heatmap 2

(e) Angular error heatmap 3 (f) Magnitude heatmap 3

(g) Angular error heatmap 4 (h) Magnitude heatmap 4

Figure 10: Heatmaps showing error in motion flow estimation by the pre-trained RAFT-large network
tested on FlyView. Heatmaps use red to denote angular errors > 25◦ and magnitude errors > 10 px.
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C Dataset and subsets

C.1 Content of the dataset

The FlyView dataset includes the visual images, depth map, forward and backward motion flow maps,
and pose of the three cameras for each of the 42,472 frames generated. FlyView provides the intrinsic
and extrinsic parameters of the camera system. The intrinsic parameters are generated using the
Scaramuzza camera model [42]. In addition, FlyView comes with images of a calibration board
allowing the user to compute the intrinsic parameters of each individual camera using a different
large field-of-view camera model, such as the Mei model [43] or Kannala-Brandt model [44]. Masks
representing the edges of the visual field of Drosophila are provided for the panoramic view, allowing
the user to select the view of either the left or right compound eye. The dataset is self-contained and
will be made fully accessible upon publication of this paper, through links provided in our GitHub
repository. It is supplemented by real video data from a pair of fisheye cameras undergoing linear
motion in an indoor lab environment, for which only self-motion truth data are provided.

C.2 Description of the motions

Table 3: Summary of trajectories within our virtual dataset. Here, R stands for pure rotational motion,
T stands for pure translational motion, and R+ T stands for a combination of both.

Trajectories Type of motion Number of trajectories Number of frames Frames per second
motion primitives R, T 55 13,750 25
DJI Tello drone R, T , R+ T 20 16,025 200
blowfly Calliphora R+ T 36 12,700 16,620

C.3 Description of scenarios

Table 4: Description of the different scenarios encountered within the dataset. MP: motion primitive;
R: rotation; T: translation.

Subsets Motion
type Scene Number of

trajectories
Total
Frames

Indoor/
Outdoor

Bright/
Dark

Motion
description

Scale of apparent
displacement

S1 MP Lakescape 14 3500 Outdoor Bright R, T Large
S1‘ Calliphora Lakescape 11 4000 Outdoor Bright R+T Small
S2 MP Forest 13 3250 Outdoor Bright R, T Large
S2‘ Calliphora Forest 3 1500 Outdoor Bright R+T Small
S3 MP Interior 14 3500 Indoor Bright R, T Large
S4 MP Corridor 14 3500 Indoor Dark R, T Large
S5 Drone Wine shop 12 12511 Indoor Dark R+T, R, T Small
S6 Drone Bedroom 8 3514 Indoor Bright R+T, R, T Small
S7 Calliphora Flat 12 3300 Indoor Bright R+T Small
S8 Calliphora Barber shop 9 2900 Indoor Bright R+T Small
S9 Calliphora Loft 1 1000 Indoor Bright R+T Small
S10 MP 3D cubes 1 20 Outdoor Dark T Large

C.4 Recommended split

Datasets for machine learning applications are usually split into three separate sets each dedicated to
a specific stage of the training strategy, comprising training, validation, and test data.

We suggest below a split of the data with respect to the different subsets available, which leads to
29,925 frames for the training subset, 10,050 frames for the validation subset, and 2,500 frames for
the test subset.

• Train : 29,925 frames (73.1%)
– S1 + S1’
– S3
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– S5
– S6
– S8

• Validation : 10,050 frames (23.6%)
– S2
– S4
– S7

• Test : 2,500 frames (5.9%)
– S9
– S2’

Note that dataset S10 comprising 3D cubes is not included within any of these subsets, as it does not
represent a realistic flight scene, and is shared instead as a dataset that can easily be reproduced by
other users.
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C.5 List of trajectories

The following tables list the different trajectories used in FlyView.

Motion primitives

Table 5: Description of the different motion primitives generated. R: rotation; T: translation.
ID Subset Name Motion type Number of frames
0 S4 mp_corridor_0 T 250
1 S2 mp_forest_1 R 250
2 S1 mp_lakescape_2 T 250
3 S3 mp_kitchen_3 T 250
4 S4 mp_corridor_4 T 250
5 S2 mp_forest_5 T 250
6 S1 mp_lakescape_6 T 250
7 S3 mp_kitchen_7 R 250
8 S4 mp_corridor_8 R 250
9 S2 mp_forest_9 T 250
10 S1 mp_lakescape_10 T 250
11 S3 mp_kitchen_11 T 250
12 S4 mp_corridor_12 T 250
13 S1 mp_lakescape_13 R 250
14 S3 mp_kitchen_14 T 250
15 S4 mp_corridor_15 T 250
16 S2 mp_forest_16 T 250
17 S1 mp_lakescape_17 T 250
18 S3 mp_kitchen_18 T 250
19 S4 mp_corridor_19 T 250
20 S2 mp_forest_20 R 250
21 S1 mp_lakescape_21 T 250
22 S3 mp_kitchen_22 T 250
23 S4 mp_corridor_23 T 250
24 S2 mp_forest_24 T 250
25 S1 mp_lakescape_25 T 250
26 S3 mp_kitchen_26 R 250
27 S4 mp_corridor_27 R 250
28 S2 mp_forest_28 R 250
29 S1 mp_lakescape_29 T 250
30 S3 mp_kitchen_30 T 250
31 S4 mp_corridor_31 T 250
32 S2 mp_forest_32 T 250
33 S1 mp_lakescape_33 T 250
34 S3 mp_kitchen_34 T 250
35 S4 mp_corridor_35 R 250
36 S2 mp_forest_36 R 250
37 S1 mp_lakescape_37 R 250
38 S3 mp_kitchen_38 R 250
39 S4 mp_corridor_39 R 250
40 S2 mp_forest_40 R 250
41 S1 mp_lakescape_41 R 250
42 S3 mp_kitchen_42 R 250
43 S4 mp_corridor_43 R 250
44 S2 mp_forest_44 R 250
45 S1 mp_lakescape_45 R 250
46 S3 mp_kitchen_46 R 250
47 S4 mp_corridor_47 R 250
48 S2 mp_forest_48 R 250
49 S1 mp_lakescape_49 R 250
50 S3 mp_kitchen_50 R 250
51 S4 mp_corridor_51 R 250
52 S2 mp_forest_52 R 250
53 S1 mp_lakescape_53 R 250
54 S3 mp_kitchen_54 R 250
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Drone trajectories

Table 6: Description of the different Calliphora trajectories used in FlyView. R: rotation; T: transla-
tion.

ID Subset Name Motion type Number of frames
0 S5 drone_wine_0 R+T 5,387
1 S5 drone_wine_1 R+T 580
2 S5 drone_wine_2 R+T 499
3 S5 drone_wine_3 R+T 511
4 S5 drone_wine_4 R+T 525
5 S5 drone_wine_5 R+T 521
6 S5 drone_wine_6 R+T 839
7 S5 drone_wine_7 R+T 968
8 S5 drone_wine_8 R+T 701
9 S5 drone_wine_9 R+T 1,449
10 S5 drone_wine_10 R+T 117
11 S6 drone_bedroom_11 R+T 119
12 S6 drone_bedroom_12 R+T 714
13 S6 drone_bedroom_13 R+T 365
14 S6 drone_bedroom_14 R+T 435
15 S6 drone_bedroom_15 R+T 914
16 S5 drone_wine_16 R+T 414
17 S6 drone_bedroom_17 R+T 361
18 S6 drone_bedroom_18 R+T 373
19 S6 drone_bedroom_19 R+T 233

Calliphora trajectories

Table 7: Description of the different Calliphora trajectories used in FlyView. R: rotation; T: transla-
tion.

ID Subset Name Motion type Number of frames
0 S7 calli_flat_0 R+T 400
1 S7 calli_flat_1 R+T 200
2 S7 calli_flat_2 R+T 400
3 S7 calli_flat_3 R+T 100
4 S7 calli_flat_4 R+T 100
5 S7 calli_flat_5 R+T 100
6 S7 calli_flat_6 R+T 400
7 S8 calli_barber_7 R+T 400
8 S8 calli_barber_8 R+T 200
9 S7 calli_flat_9 R+T 200
10 S7 calli_flat_10 R+T 200
11 S8 calli_barber_11 R+T 300
12 S1’ calli_lakescape_12 R+T 400
13 S1’ calli_lakescape_13 R+T 400
14 S1’ calli_lakescape_14 R+T 400
15 S7 calli_flat_15 R+T 400
16 S7 calli_flat_16 R+T 400
17 S1’ calli_lakescape_17 R+T 400
18 S7 calli_flat_18 R+T 400
19 S1’ calli_lakescape_19 R+T 400
20 S8 calli_barber_20 R+T 400
21 S1’ calli_lakescape_21 R+T 400
22 S8 calli_barber_22 R+T 400
23 S1’ calli_lakescape_23 R+T 400
24 S8 calli_barber_24 R+T 300
25 S1’ calli_lakescape_25 R+T 300
26 S8 calli_barber_26 R+T 300
27 S1’ calli_lakescape_27 R+T 300
28 S8 calli_barber_28 R+T 300
29 S1’ calli_lakescape_29 R+T 300
30 S8 calli_barber_30 R+T 300
31 S1’ calli_lakescape_31 R+T 300
32 S9 calli_loft_32 R+T 1000
33 S2’ calli_forest_33 R+T 500
34 S2’ calli_forest_34 R+T 500
35 S2’ calli_forest_35 R+T 500
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D 3D assets

This section describes where all 3D assets used in the FlyView dataset can be found, and the license
under which they were released. Most 3D assets being made by Blender artists, we do not provide
the original Blender files used in our data generation. However, the original files can be downloaded
from the links to the artists’ pages that are given below. The Sample scene provides Blender files
containing the camera definition and a minimal scene, to aid understanding of how the optical flow
truth data was generated.

Barber shop

• Author : blender.org
• Original asset : https://svn.blender.org/svnroot/bf-blender/trunk/lib/benchmarks/cycles/barbershop_interior/
• License : CC-BY

Bedroom

• Author : https://www.cgtrader.com/harshitverma1308
• Original asset : https://www.cgtrader.com/free-3d-models/interior/bedroom/bedroom-

ca552be4-08d8-427b-8f5a-8391962983fe
• License : Royalty Free License

Corridor

• Author : https://www.cgtrader.com/iamcyberalex
• Original asset : https://www.cgtrader.com/free-3d-models/space/spaceship/dead-space-sci-

fi-corridor-by-cyberalex
• License : Royalty Free License

Forest

• Author : https://www.cgtrader.com/ankitsarkar
• Original asset : https://www.cgtrader.com/free-3d-models/scanned/various/realistic-forest-

model-for-blender
• License : Royalty Free License

Kitchen

• Author : https://www.cgtrader.com/jpartsky
• Original asset : https://www.cgtrader.com/free-3d-models/interior/living-room/interior-b
• License : Royalty Free License

Lakescape

• Author : https://www.cgtrader.com/mohdarbaaz3
• Original asset : https://www.cgtrader.com/3d-models/exterior/landscape/scene-lake
• License : Royalty Free License
• Price paid : $4.80

Loft

• Author : https://www.cgtrader.com/jpartsky
• Original asset : https://www.cgtrader.com/free-3d-models/interior/living-room/project-b-

54e79cb8-6763-471e-9d42-1e7e6cf01e14
• License : Royalty Free License
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Wine shop

• Author : https://www.cgtrader.com/harshitverma1308
• Original asset : https://www.cgtrader.com/free-3d-models/interior/other/old-wine-shop
• License : Royalty Free License

Flat

• Author : Flavio Della Tommasa
• Original asset : https://download.blender.org/demo/cycles/flat-archiviz.blend
• License : CC-BY

Sample

The example scene was homemade with basic Blender items. This scene is fully available online
and is intended to aid future users in understanding the data generation and the setup of the camera
system. The sample scene is provided by the University of Oxford and released under the Creative
Commons Attribution-NonCommercial-ShareAlike license (CC BY-NC-SA).

• Author : Alix Leroy
• Original asset : https://github.com/Ahleroy/FlyView
• License : CC BY-NC-SA

E Camera and positioning

E.1 µCT scan measurement

We used a µCT scan of an female adult Calliphora to measure the baseline between the two eyes.
Whilst the notion of a stereo baseline is well defined for two camera sensors, it is ambiguous for a
pair of compound eyes, as each of the several hundred to tens of thousands of facets is a lens. We
therefore decided to measure the two most distant points of the eyes from the anteroposterior axis
anatomically. The measured distance was 3.51 mm which was rounded to 4 mm in Blender.

Figure 11: Measured baseline distance between the compound eyes of a female adult Calliphora.

E.2 Camera setup comparison

The equirectangular camera model allowed us reconstruct a virtual stereo camera setup that reflects
the distribution of optical axes in Drosophila [34].
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Table 8: Comparison of the camera setup and distribution of the optical axes in Drosophila.
Virtual camera setup Drosophila

Monocular horizontal field of view 180◦ Up to 180◦
Monocular vertical field of view 180◦ Up to 180 ◦

Binocular overlap 20◦ approximately 20◦
Total Horizontal field of view 340◦ Up to 340◦
Sensor resolution 900×900 px 750 ommatidia per eye
Horizontal angular sampling density 0.2◦/ px 5◦/ ommatidia
Vertical angular sampling density 0.2◦/ px 5◦/ ommatidia
Baseline 4 mm <1 mm

The sensor resolution is larger than the number of photoreceptors in each compound eye of Drosophila
allowing to study a large spectrum of insect species. The baseline is based on Calliphora measure-
ments but stereo disparity is only relevant below 1m at the maximum resolution. It

F Accuracy of the motion capture system

A Vicon Vantage motion capture system was used to track spherical retroreflective markers in a
volume of 20× 6× 4 m. A total of 22 VICON Vantage V16 cameras are set up in such a way that
their field of view covers the entire volume in which the markers need to be detected. These cameras
use LED strobes to emit pulsed near-infrared light (850 nm), and have an image sensor probing the
reflection of the emitted wavelength from surfaces.

Objects that are intended to be tracked, such as the DJI Tello drone, are equipped with markers
highlighting their position to the Vicon system. The Vicon system is calibrated by a consensus over
thousands of calibration points captured in space that allows the relative position of each camera
to be identified in the global system. The accuracy with which a trajectory can be collected with
the motion capture system depends on both the intrinsic accuracy of pose estimation system and its
ability to detect the markers in the first place.

F.1 Detection of markers

Initial data collection of drone trajectories revealed certain difficulties in detecting and localizing the
different markers on the drone body. There are two main reasons for this. Firstly, the markers used
are the smallest spherical markers available for the motion capture system (only 4 mm diameter),
reducing the capability to detect the markers at large distances. Secondly, because the main body of
the drone is small, the markers were fixed relatively close to each other. This led the system to fuse
one marker’s position with another’s and to erroneously identify a phantom marker in between the
two.

To improve the accuracy of the system, larger markers (spheres of 9 mm diameter) were then attached
to the drone. Because the new markers were larger, only two of them could be fixed on the main
body. Whilst the drone’s body surface could accommodate more markers, additional markers would
risk collision with the rotary blades of the drone. These new markers were successfully fixed on both
the main body and the protective structure surrounding the rotors. This new setup resulted in a more
robust and stable detection of the markers, allowing us to track the drone at higher speeds and even
during extreme maneuvers.

F.2 Evaluating the intrinsic accuracy of the motion capture system

In order to evaluate the accuracy of our motion capture system, we compared the outputs of the
motion capture system with a calibrated Direct-Drive Linear Actuator ACT140DL-1500 controlled
by an Aerotech Automation 3200 whose expected accuracy after calibration is ±5µm. To do so, we
first expressed their outputs in the same reference frame.

Since the motion capture system outputs a 3D signal, whereas the linear motors output a 1D signal,
we assumed that the cameras were moving on a straight line. We therefore computed a 3D linear
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regression on the motion capture system points using a RANSAC algorithm to remove outliers. The
result is a 3D vector giving us the 3D direction of the linear motors in the motion capture frame.

For a 0.5 mm residual threshold, 100% of the points are considered inliers by the RANSAC system.
For a 0.1 mm residual threshold, 66% of the points are considered as inliers. This is already a good
indication that the motion capture system has accurate detection, at least on axes orthogonal to the
linear motor’s direction.

Once the 3D direction was found, we projected all the points collected by the motion capture system
onto the X-axis ([1, 0, 0] in the motion capture frame). To do so, we calculated the rotation matrix
from the 3D direction to the X-axis using Rodriguez’s formula. The final result is a motion capture
signal aligned to a single axis, similar to the signal reported from the linear motors.

The two systems were not synchronized together, and the acquisition of the linear motors signal was
started with a delay of a few seconds. Before estimating the time shift between the two signals, we
had to resample the motion capture signal (Figure 12 a), since the linear motors’ sampling frequency
was about 1000Hz (Figure 12 b), whereas the motion capture system’s frequency was about 200Hz.

(a) (b) (c)

(d) (e) (f)

Figure 12: (a) The resampled signal of the motion capture system. (b) The feedback position of the linear
motors. (c) The cross-correlation of the two signals. (d) The two signals aligned, showing an almost perfect
match. (e) The cross-correlation of the aligned signals. (f) The absolute error between the two signals.

Once the signal was resampled, we computed the cross-correlation between the two signals. We found
the lag between the signals (Figure 12 c), and were able to shift the signals and remove unshared
parts (motion capture system starts acquisition before the linear motors and the acquisition of the
motors finishes after the motion capture). We found that the aligned signals match almost perfectly
(Figure 12 d).

F.2.1 Errors between the two signals

The Pearson correlation coefficient between the two signals is > 0.9999, indicating an almost perfect
correlation between the two signals. Results given in Table 9 confirm the very high accuracy of the
motion capture system.
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Table 9: Differences between the two systems’ signals
Metric Value

Maximum (mm) 1.797
Minimum (mm) 8.518e-07
Average (mm) 0.897

Standard Deviation (mm) 0.553
Median (mm) 0.937

First Quartile (mm) 0.417
Last Quartile (mm) 1.474

Pearson correlation coefficient > 0.9999

The absolute distance between the signals was found to be proportional to the distance travelled. The
further from the origin point, the larger the difference. This highlighted the need for a new factory
calibration of the linear motors.

G Applications of FlyView

As a bio-informed dataset, FlyView is intended to be useful to the study of biological and computer
vision alike. It therefore represents the panoramic sampling of a fly’s hexagonal imaging array using
rectangular images and a square pixel array. A lifelike analysis of the fly’s motion vision system can
in principle be implemented through a second stage of data processing. For instance, the luminance
signals resulting from a hexagonal array of photoreceptors can be approximated by filtering the
images appropriately, and processing the regions of interest using masks outlining the field of view
of the fly’s compound eyes (See Figure 1a). This would enable the FlyView dataset to be used in
biological analysis of the fly’s visual system and its response to luminance signals. This could be
used to advance our understanding of how these signals propagate within the neural circuits of the
visual system, and particularly how this enables detection of specific patterns of optical flow when
navigating.

Nevertheless, because deep learning techniques boast state-of-the-art results in motion flow estimation,
the FlyView dataset was primarily designed with machine learning applications in mind. A key
application of the dataset is for autonomous vehicles equipped with omnidirectional cameras. Motion
flow estimation in this case requires the processing of panoramic images obtained in a wide range
of motions including those involved in flight, which FlyView provides. For example, continuing
efforts to miniaturise aerial drone platforms aim to limit sensor payload to allocate more weight and
volume to batteries, thereby offering enhanced autonomy and operating range. Such micro-drones
could use large field of view cameras to navigate in complex GPS-denied environments without
the use of LiDAR, in applications ranging from agriculture and maintenance, to monitoring and
reconnaissance. FlyView could serve as an initial training ground for such systems in both indoor and
outdoor environments.

H Real data for testing

Whilst FlyView contains only synthetic data, real data could also be interesting for testing scenarios.
As mentioned in Section 1, collecting accurate optical flow ground truth can be challenging with
natural data. Existing natural datasets such as Kitti [14, 15] were able to extract only sparse motion
flow ground truth, which can nevertheless be useful provided that there is no requirement for sub-pixel
optical flow accuracy in the end-application. A similar method was in fact used in our first attempt
to collect data for FlyView, but because of multiple bottlenecks, we pivoted from collecting sparse
natural data to a dense and accurate synthetic dataset.

This initial data collection involved tracking a pair of fisheye cameras with the MoCap system
described above. Whilst the resulting data does not contain any motion flow ground truth, it can still
be used to validate models trained on large field-of-view images that aim to estimate self-motion,
where the detection of optical flow represents an intermediate stage in the processing rather than
an end in itself. For this reason, we have released videos of the camera pair and the corresponding
motion state of the camera system as a supplement to FlyView. These experimental data will be made
available on the GitHub repository at the same time as the rest of the FlyView dataset. The following
sections provide more information on the context and the content of the real dataset.
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H.1 Initial data collection

We collected real data in the lab, using a divergent stereo vision system composed of a pair of
fisheye cameras with submillimetre tracking of the cameras using the same MoCap system presented
elsewhere in this paper. These real data were collected using two 8 mm focal length lenses that output
images different to the equirectangular projection used in our synthetic dataset FlyView. Figure 13
shows the camera setup used during our initial data collection.

Figure 13: Camera setup fixed on an aluminium baseplate to ensure fixed and repeatable positioning
of the two cameras.

The real cameras were calibrated using the Scaramuzza camera model [42] that we then integrated
into a custom-built version of Blender to reproduce the camera model with the ray-tracing system of
the Blender’s Cycles engine. Whilst the camera model was integrated with CUDA and OptiX-enabled
kernels, the resulting ground truth generation was slow and potentially inaccurate, especially around
the optical axis where a strong flow singularity was observed. This singularity in the optical flow field
could be avoided by augmenting the order of the Scaramuzza polynomial function used to re-project
the world onto the sensor, but not without having a severe impact on the computational time. For this
reason, we decided to switch to a pure synthetic dataset with an equirectangular camera.

H.2 Content of the dataset

The stereo vision system was fixed to a linear actuator (See Figure 14). A broader range of motions
was initially planned, but was abandoned for the reasons explained above.

Figure 14: Camera setup fixed on the linear actuator.
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For these translational motions, a total of 9 sessions of trajectories were generated. Each session
consisted of 5 minutes of motion back and forth along a single axis with different kinematics. Each
session was performed 3 times, once with an empty environment and twice with visible rigid and
static obstacles positioned randomly. Having different camera views for the exact same motion allows
the generation of a wide range of optical flow patterns compatible with a unique relative pose. The
obstacles consisted of pipes that were painted with dark or bright colors resulting in different pixel
brightness and features to be displayed in a single image.

Figure 15: View from a camera with multiple obstacles facing it.

All sessions were captured using the motion capture system to within submillimetre accuracy.

The data resulting from these sessions includes the RAW visual images for both cameras captured at
a 30 Hz frame-rate, the position of the linear motors commanded for each trajectory, and the tracked
position of the camera-setup captured by the motion capture system.
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