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Abstract

Flying at speed through complex environments is a difficult task that has been
performed successfully by insects since the Carboniferous [1], but remains a
challenge for robotic and autonomous systems. Insects navigate the world using
optical flow sensed by their compound eyes, which they process using a deep neural
network implemented on hardware weighing just a few milligrams. Deploying an
insect-inspired network architecture in computer vision could therefore enable more
efficient and effective ways of estimating structure and self-motion using optical
flow. Training a bio-informed deep network to implement these tasks requires
biologically relevant training, test, and validation data. To this end, we introduce
FlyView1, a novel bio-informed truth dataset for visual navigation. This simulated
dataset is rendered using open source 3D scenes in which the agent’s position is
known at every frame, and is accompanied by truth data on depth, self-motion, and
motion flow. This dataset comprising 42,475 frames has several key features that
are missing from existing optical flow datasets, including: (i) panoramic camera
images, with a monocular and binocular field of view matched to that of a fly’s
compound eyes; (ii) dynamically meaningful self-motion, modelled on motion
primitives or the 3D trajectories of drones and flies; and (iii) complex natural and
indoor environments, including reflective surfaces, fog, and clouds.

1 Introduction

Changes in illumination (e.g. shadows, reflections), occlusion (e.g. vegetation, structures), and other
sources of large-scale variation (e.g. different substrates, water bodies) present critical challenges
to visual navigation in natural and indoor environments. Optical flow is an important visual cue
that insects such as flies use to navigate such environments with a brain containing approximately
100,000 neurons and weighing only a few milligrams [2]. Optical flow has also been used by drones
for navigation tasks involving estimation of attitude and position, using inefficient and constrained
algorithms whose application is typically limited to simple tasks such as holding position in hover.
Bio-informed technologies have therefore been suggested for making optical flow algorithms available
for small platforms [3–10], potentially reducing the number of onboard sensors required for navigation
[11, 12]. These bio-informed approaches are often distinguished by their use of cameras with a very
large field of view, which is important both to estimating the structure of the environment, and to
inferring self-motion during complex flight maneuvers.
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Figure 1: (a) Field of view of the blowfly Calliphora vicina mapped onto a panoramic view of an
indoor scene. Blue and red borders outline the visual field of the left and right eyes; tinted area
denotes area of binocular overlap. (b) Schematic representing overhead view of blowfly visual
field. Note the 20◦ sector of binocular overlap (magenta), 20◦ blind sector (hatched), and the 160◦

monocular area on each side, giving a total of 340◦ coverage in the horizontal, which the FlyView
dataset captures. The dataset includes a binary mask for extracting pixels located within these areas.

Many recent innovations in computer vision have been stimulated by the release of new datasets
for machine learning. In particular, large optical flow truth datasets have enabled data-hungry deep
learning algorithms to be trained to recognise motion flow, and to be evaluated against well defined
benchmarks. Whilst existing datasets capture a range of specific scenarios, including foreground
motion seen from the perspective of a stationary camera [13], and motion flow generated by a moving
car [14–18], applications to date have focused on estimating dense motion flow maps. Applications
to downstream guidance, navigation, and control (GNC) tasks, such as obstacle avoidance, visual
odometry, and state estimation, have typically been neglected. Yet, these are all key functions of
optical flow detection in insects [19], and it is their performance on these downstream tasks—not the
estimation of dense motion flow—that makes insects such remarkable fliers.

These downstream GNC tasks are enabled by the large field of view of an insect’s compound eyes
(Figure 1). Their almost 360◦ field of view is not matched by any previously-released optical flow
truth dataset for machine learning, but is important to facilitating disambiguation of self-motion
stimuli, aided by the embedding of prior information on the insect’s natural dynamics in the deep
neural network of its motion vision system [19]. Both features are expected to be essential to the
successful functioning of deep networks used for visual navigation during complex flight maneuvers
in complex environments. This in turn requires the relevant information to be captured in any dataset
used for machine learning. To this end, we present FlyView, a bio-informed dataset designed to
facilitate the training, validation, and testing of new deep networks using optical flow to estimate
self-motion in flight.

We generated our FlyView dataset synthetically, by rendering open-source 3D scenes in Blender 2.93
(Blender Foundation, Amsterdam) for >100 virtual camera trajectories composed of motion primitives
(i.e. pure rotation or translation) or flight trajectories captured for real agents (e.g. quadrotors or
insects). This bio-informed dataset makes four main contributions to computer vision:

1. FlyView includes panoramic RGB images rendered in both monocular and binocular views.
It provides accurate ground truth for several tasks, including forward and backward motion
flow fields generated by the camera’s self-motion through the scene, accompanied by the
depth map for all camera views.

2. FlyView is designed with downstream GNC tasks of flying vehicles in mind. The camera
therefore flies through a photo-realistic indoor or outdoor environment, and its pose is known
for every frame, permitting use of the dataset for tasks involving self-motion estimation.

3. FlyView is, to our knowledge, the first optical flow truth dataset to include motion dynamics
relevant to flight. It contains a range of dynamically meaningful motions, including the
flight trajectories of small quadrotors and blowflies, and simple motion primitives involving
different axes of rotation and translation.
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4. FlyView is the second largest optical flow dataset in terms of the number of instances it
contains (42,475 frames from each of three virtual cameras, in 9 new and diverse indoor and
outdoor environments). It is available open-source, and is designed to be compatible with
existing computer vision approaches, offering new and complementary data for the training
and evaluation of computer vision algorithms.

Whilst FlyView’s field of view, stereo baseline, binocular overlap, and sampling resolution are matched
to those of a fly (Figure 1), the data are presented in a conventional rectangular pixel array from the
perspective of a high-acuity omnidirectional camera. The images may be post-processed to model the
optical input to the low-acuity hexagonal imaging array of the compound eye of an insect if desired,
but this is not done here in the interests of generality. For applications in self-motion estimation,
the synthetic data described in the main paper are supplemented by a smaller set of real video data
from a pair of divergent stereo fisheye cameras undergoing pure linear translational motion indoors.
As described in the Supplementary Materials (Section H), these real video data are accompanied
by accurate truth data on the camera’s self-motion, but lack the motion flow ground truth that is a
key feature of FlyView itself. We demonstrate the value of FlyView for computer vision by using
it to evaluate the performance of a state-of-the-art pre-trained RAFT network [20]. This analysis
shows the practical difficulties associated with applying networks trained on narrow-field of view
images to omnidirectional camera data, motivating the future use of FlyView in training of optical
flow algorithms.

2 Related works

A large number of natural and synthetic optical flow truth datasets have been created in recent
years. These have enabled computer vision researchers to implement motion flow estimation, to
highlight limitations of current methods, to develop more robust solutions, and to challenge existing
benchmarks. Here, we review the datasets that have been used in optical flow algorithm evaluation
and model training to date, highlighting their limitations for self-motion estimation. Identifying
accurate ground truth motion flow in natural scenes is a challenging task [14–16], but extracting
synthetic ground truth from simulations has proven a flexible and efficient approach [13, 17, 18,
21–23], allowing fine variation in scene parameters, and resulting in accurate and dense ground truth
compared to analyses of real video data. Recent datasets contain specific motions and environments
that simulate important challenges, including large displacements, scene occlusion, and varied
illumination, all matching real-world scenarios.

The full range of available optical flow datasets is summarised in Table 1 and reviewed briefly here.
The Middlebury dataset [21] offered an interesting first dataset for benchmarking, but MPI-Sintel [22]
was the first to be generated using synthetic scenes extracted from pre-existing 3D assets. Concerns
regarding the non-natural aspect of the images of MPI-Sintel and other datasets that followed [13,
23] led to datasets specializing in naturalistic visual images. For instance, VKitti [17] and VKitti2
[18] contain synthetic images based on the natural scenes of the original Kitti dataset [14, 15], which
are enhanced with a real-to-virtual-world cloning method to look natural while providing accurate
and complete ground truth. These standard datasets have proven fertile ground for the training and
evaluation of computer vision models for motion flow estimation. Indeed, thanks to the collective size
of these datasets, modern data-based algorithms now achieve state-of-the-art results outperforming
classical methods on every metric [20]—even computational time for mobile-oriented deep networks.

Regardless of their utility in training algorithms to perform dense motion flow estimation tasks,
standard datasets suffer from several key limitations when applied to self-motion estimation. Most
of these datasets comprise views from static or slow-moving cameras with dynamic scenes, often
involving unrealistic motions such as those contained in the FlyingChairs dataset (Table 1). This
lack of dynamically-meaningful motions means that these datasets contain motion flow fields which
poorly represent the dynamics of maneuverable vehicles in real world scenarios. Datasets collected in
autonomous driving scenarios are partial exceptions to this rule, with optical flow fields reflecting the
vehicle’s self-motion [14–18]. However, these mainly contain forward motion of a forward-facing
camera, thereby limiting the resulting optical flow fields to one simple self-motion scenario. Other
accurate datasets with a large span of annotations, such as SAMA-VTOL [24], in principle allow
the user to reconstruct a motion flow map from dense point-clouds and semantic maps, but do not
contain motion flow truth data at present.
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Table 1: Summary of key features of existing optical flow truth datasets.
Dataset Scene Dense

Groundtruth
Backward

Flow Depth Stereo Extrinsics Total
Scenes

Training
Frames

Test
Frames

Total
Frames

Resolution
(pixels)

UCL [31] synthetic ✓ 4 N/A N/A 4 640×480
UCL (extended) [31] synthetic ✓ 20 N/A N/A 20 640×480
Middlebury [21] both ✓ 12 84 90 174 640×480
KITTI2012 [14] natural ✓ ✓ ✓ 194 194 195 389 1226×370
KITTI2015 [15] natural ✓ ✓ ✓ 200 200 200 200 1242×375
KITTI Virtual [17] synthetic ✓ ✓ ✓ ✓ 5 21,260 0 21,260 1242×375
VKITTI2 [18] synthetic ✓ ✓ ✓ ✓ ✓ 5 21,260 0 21,260 1242×375
MPI-Sintel [22] synthetic ✓ ✓ ✓ 25 1,064 564 1,628 1024×436
FlyingChairs [13] synthetic ✓ 964 22,232 640 22,872 512×384
FlyingThings3D [23] synthetic ✓ ✓ ✓ ✓ ✓ 2,247 21,818 4248 26,066 960×540
Monka [23] synthetic ✓ ✓ ✓ ✓ ✓ 8 8,591 0 8,591 960×540
Driving [23] synthetic ✓ ✓ ✓ ✓ ✓ 1 4,392 0 4,392 960×540
SceneNet RGB-D [32] synthetic ✓ ✓ ✓ ∼17,000 ∼5,000,000 ∼300,000 ∼5,000,000 320×240
HD1K [16] natural ✓ ✓ ✓ 36 1,083 54 1,137 2560×1080
SynWoodScape [30] synthetic ✓ ✓ ✓ ✓ not available N/A N/A ∼80.000 1280×966
FlyView (this paper) synthetic ✓ ✓ ✓ ✓ ✓ 9 29,975 12,550 42,475 1700×900

Most standard optical flow truth datasets use a single camera with a narrow field of view. This is
limiting in self-motion tasks, for which a large field of view is necessary to eliminate ambiguity in
the local optical flow field [25]. Indeed, in some specific scenarios involving narrow field of view
cameras, the direction of motion may lie outside the camera field of view, leading to self-motion
estimation that is extremely sensitive to noise [26]. Despite some important advantages in using wide
angle cameras for navigation tasks [27], and with few drawbacks for lenses up to 180◦ field of view,
large field of view cameras have remained almost absent from optical flow truth datasets to date.
Recently, a new driving dataset named Kitti360 was collected from two equirectangular cameras
covering 360◦ field of view [28], but a planned update including motion flow ground truth is still
missing at the time of writing. Another four-camera fisheye surround-view dataset for autonomous
driving called WoodScape [29] was recently extended for motion flow estimation with the creation a
synthetic omnidirectional dataset called SynWoodScape containing motion flow ground truth among
other annotations [30]. SynWoodScape had not been fully released at the time of writing.

Apart from the limitations inherent to existing computer vision datasets, no analogous dataset could
be found containing input luminance, motion flow, motion state, and depth data for a flying insect.
Such data could enable important breakthroughs in modelling the visual system of insects, including
modelling the response of specific neurons, and offering better understanding of their mechanisms
of optical flow computation. For these reasons, we decided to design and collect our own synthetic
dataset matching bio-informed self-motion estimation requirements.

3 Methods

State-of-the-art algorithms for motion flow estimation rely on data-hungry deep networks. Not only
is a large volume of data necessary to train a model; additional data is also required to validate the
overall training strategy, and to test the model’s performance. These three different stages of training,
validation, and testing usually make use of three non-overlapping subsets of data sharing a similar
underlying distribution of information. Together, these three subsets must encompass a large quantity
of data that represents as accurately as possible the real-world scenario that the agent will face. The
more realistic the dataset, the better the network will perform in real-world scenarios. In light of
our analysis of existing standard datasets and their limitations (Section 2), we decided to design and
generate a dataset for bio-informed visual navigation that would also be compatible with existing
computer vision approaches.

3.1 Dataset requirements

To maximise compatibility, we require our optical flow truth dataset to comprise rectangular images
composed of square pixels, rather than outputs modelling the hexagonal sensor array of an insect’s
compound eyes. We define five biologically-motivated requirements for our data, analogous to the
autonomous driving requirements defined previously [16]:

R1 Images with a large field of view matching an insect’s compound eyes. Besides affording
biological realism, this is important in avoiding ambiguities in self-motion estimation [25],
guaranteeing that the axes of rotation and translation fall within the field of view.
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R2 Stereo images with binocular overlap modelled on an insect’s compound eyes, allowing
downstream fusion of input from the two visual hemispheres. Binocular vision offers
continuity across the midline of the visual field, reduces uncertainty in complex scenarios,
and in principle enables stereo depth estimation within the area of binocular overlap.

R3 Dynamically-meaningful self-motions modelled on the flight trajectories of flies and other
agents such as quadrotors, plus simpler motion primitives corresponding to pure translation
or rotation, without the complexities of coupled rotational and translational motion flow.

R4 Photo-realistic indoor and outdoor environments allowing functional discrimination of dorsal
motion flow from ventral motion flow. The latter is generally more useful for self-motion
estimation, as reflected in the matched filters of the fly motion vision system.

R5 A large array of photoreceptors offering a sampling resolution sufficient to model the
compound eyes of insects, which may contain from a few hundred to tens of thousands of
discrete photoreceptive units called ommatidia.

We respond to these requirements by describing our ground truth generation method for a synthetic
camera system modelled specifically on the visual anatomy of flies (Section 3.2). We then describe
the flight trajectories used to sample the virtual environments generating the data (Section 3.3).

3.2 Camera rendering method

We used open-source 3D photo-realistic synthetic scenes, which we rendered using the Cycles
engine in Blender (Figure 3). This 3D render engine generates visual images of the scenes using ray
tracing. Predefined flight trajectories (see below) were loaded onto the Blender key frames using
a customer-made Python script interacting with the Blender API. The scenes were selected for the
range of environments they covered, including indoor and outdoor environments (R4). These include
both bright and dark scenes covering a range of volumes, with varying illumination, occlusion, and
miscellaneous optical effects including fog and specular reflection (see Supplementary Materials,
Section A). The camera setup that we used to render the scenes comprised three virtual cameras, each
modelled using the equirectangular model officially supported by Blender. This approach allowed us
to cover the complete field of view of a fly (R1), and to represent the motion flow field over a similar
range of azimuth and elevation to that represented in a fly’s measured response to widefield optical
flow stimuli [33].

We set up one pair of cameras to represent the compound eyes of either Drosophila melanogaster [34]
or Calliphora vicina, with a horizontal and vertical field of view of 180◦ in each eye. The principal
axes of the cameras were oriented 160◦ apart (see Figure 1), giving a biologically-realistic field of
view of 340◦ in the horizontal, with 20◦ of binocular overlap (R2). The cameras are separated by
a 4 mm stereo baseline, modelled on measurements performed on adult female Calliphora which
are several times larger than Drosophila. Typical stereo vision systems have a baseline from tens
of centimeters (HD1K 0.3m, KITTI 0.54m) to more than one meter (FlyingThings3D, Monkaa,
Driving), enabling accurate depth extraction over distances of tens of metres. In contrast, the 4 mm
baseline between the compound eyes of the fly is too small for the binocular disparity to be used to
extract useful depth information, except at distances much less than 1 m. This baseline displacement
may nevertheless be relevant when modelling downstream fusion of binocular information in flies
(e.g. when analysing structure-from-motion), so is retained accordingly.

The third camera was used to render images with a monocular field of view equivalent to that of
the camera pair, allowing almost complete visualization of the scene in one panoramic view (R5).
This approach allows us to mimic the fly’s 340◦ field of view, without the issues of discontinuous
motion flow that arise with a 360◦ virtual camera in Blender. This single panoramic camera captures
a 1700× 900 pixel image, whereas the two cameras in the pair each capture a 900× 900 pixel image.
Each camera thereby samples 5 pixels per degree in the horizontal and vertical directions at the
centre of the image, with an even higher sampling resolution towards the edges of the images. This
sampling resolution exceeds the typical angular resolution of Drosophila and Calliphora, which are
estimated to sample 0.2 or 2 photoreceptors per degree, respectively. The high sampling resolution
of the images in our FlyView dataset therefore allows it to be used to model a wide range of insects
having a similar field of view, and offers fine-grained ground truth for computer vision applications.

We used Blender to extract the RGB renderings, motion flow, and depth map for each camera, at a
frame rate appropriate to the motion dynamics (see Section 3.3 below). The images and other Blender
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passes were generated using two NVIDIA RTX 3090 GPUs. This computational power allowed us
to generate high resolution truth data for tens of thousands images over a period of a few months.
Motion flow was retrieved directly from the projection of the pixel’s 3D position onto the image
sensor, and the depth map was generated by computing the distance between the pixel’s position
and the scene along the corresponding ray. Additional information related to camera positioning,
sampling resolution and field of view can be found in the Supplementary Materials (Section E).

3.3 Trajectory generation

To diversify the dataset (R3) and enable better understanding of visual navigation tasks, we modelled
three distinct classes of motion. The first class of motion comprises simple motion primitives (Section
3.3.1), being composed of either pure translational or pure rotational motion. This is important to
modelling the different kinds of optical flow field that are generated by these two distinct kinds
of motion, without the additional complexities that arise from their coupling. The second class of
motion was generated by tracking a small quadrotor in flight (Section 3.3.2). The resulting motions
are composed of comparatively simple combinations of rotation and translation, made more complex
by the drone’s flight dynamics. The third class of motion was generated based on previous work
[35] tracking Calliphora flies using high-speed video photogrammetry (Section 3.3.3). Each class of
motion is described below, and summarised in the Supplementary Materials (Section B.2).

3.3.1 Motion primitives

Pure rotational motion flow is invariant to the structure of the environment, so rotations around the
same camera-body axis always result in the same characteristic motion flow field. In contrast, transla-
tional motion flow depends on the distance from the observer to every point in the observed scene. In
order to highlight the differences between rotational and translational self-motion, and to account
for the possibility that gaze may be stabilized rotationally during the flight maneuvers represented
by the other two classes of motion, we included pure translational and rotational trajectories in the
dataset. We generated these trajectories as constant velocity or constant angular velocity motions, in
directions sampled along the principal axes of the visual system, and uniformly along intermediate
axes on the unit sphere. The trajectories were generated with the assumption of camera height not
exceeding 2 m above the ground, and usually began with the camera system level, such that the
resulting dataset contains meaningful prior information on the distribution of luminance and structure
within a typical scene. Some specific translational motions were repeated in multiple scenes, as the
same translational motion leads to different motion flow in different scenes. The angular speeds of
the motions ranged up to 36◦ s-1, and we used a 25 Hz sampling rate, chosen to match the frame rate
of a basic video camera.

3.3.2 Drone trajectories

We designed the quadrotor trajectories (Figure 9) to complement these motion primitives, by including
time-varying velocities and/or angular velocities in translational and/or rotational motion. Using a
DJI Tello drone, we were able to produce simple motions such as pure translation or rotation, whilst
also aggregating some complexity on the dynamics resulting from the vehicle’s stability and control.
For example, in order to perform forward translational motion from an initial condition of stationary
hover, the drone will pitch nose-down and throttle up so that its rotor discs can push it in the desired
direction. A similar pitching mechanism is used by flies to control the elevation of their flight path
[36], so the kinds of motion coupling that the drone dataset contains are typical of those experienced
in rotary-wing and flapping-wing flight. Other couplings would be present in fixed-wing vehicles,
and could in principle be exploited in training a deep network to estimate their self-motion.

The drone was equipped with retroreflective markers fixed onto its fuselage and rotor guards (Figure
2) and was tracked using a motion capture system (MoCap) with 22 Vicon Vantage V16 cameras
sampling at 200 Hz [37]. This sampling frequency is comparable to the flicker fusion frequency of a
blowfly Calliphora [38], so is expected to represent all relevant frequencies of the drone’s motion
dynamics. We used the same 200 Hz sampling rate for the renderings, thereby capturing all of the
motion information contained in the MoCap trajectories. The flight trajectories were realized by using
the official DJI Tello application to control the drone. This offers a range of pre-defined motions and
actions such as take-off, landing, circling around a specific point, or even directional flips. Most of
these pre-defined motions were straightforward for the MoCap to track, but some involved complex
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Figure 2: (a) Top view of a DJI Tello drone with retro-reflective markers to enable tracking. Two
markers were fixed on the fuselage, and another three markers were fixed on the protective structure to
maximize the distance between them. (b) Schematic of the flight arena in which the drone trajectories
were collected with a sub-millimeter accuracy covering the entire flight volume.(c) Example of a
free-flight drone trajectory (blue) captured with the MoCap and replicated in the FlyView dataset.
The trajectory includes both take-off (green point) and landing motions (red point). The trajectory is
projected to the ground (orange) for visualization.

maneuvers that were more challenging to track. For instance, the flip motion leads to fast and unstable
flight maneuvers, reducing the visibility of the markers because of possible motion blur and occlusion
of the markers when the drone is inverted. We used the manual mode to generate other motions
such as translation or yaw rotation, so the resulting trajectories display some further user-generated
complexity beyond pure translation or rotation.

3.3.3 Fly trajectories

To capture the even more complex motion dynamics of a fly, we used flight trajectories that had
been reconstructed previously for Calliphora filmed flying inside a 1 m diameter spherical arena
[35]. These trajectories involve flight at speeds up to 1.5 m s-1, and describe the coupled rotation
and translation of the fly’s body, as measured using video photogrammetry [35]. They neglect the
rotation of the fly’s head with respect to its body, and therefore ignore the effect of gaze stabilization.
Flies stabilize their gaze by rotating their head around their body’s longitudinal axis in order to
compensate body roll during flight [39]. Including head compensation would therefore remove
rotational optical flow components that, even if minimized by the fly, are detected in the fly’s final
layers of its visual system [19]. Whilst removal of the rotational components of the optical flow field
may be important in simplifying detection of its translational components, this couples the dynamics
of flight with the dynamics of gaze stabilization. We therefore decided to use the body’s pose to
define the camera’s pose, but leave open the possibility of adding head stabilization at a later date.
We sub-selected 36 of the 257 flight trajectories that had been collected previously for Calliphora
[35], covering a diverse range of flight maneuvers (Figure 9). The trajectories were converted from
the Earth-fixed reference frame in which they were reported (with orientation expressed by a set of
intrinsic Euler angles) to Blender’s reference frame, using a quaternion to describe body orientation.
The fly trajectory data were sampled at a rate of 100 datapoints per wingbeat, which is nearly two
orders of magnitude higher than the flicker fusion frequency of the fly [38]. Although the dataset
therefore contains temporal frequencies higher than the fly can sense, we chose to render the images
at the same sampling frequency to avoid any loss of data, and to allow subsequent temporal filtering
of the luminance signal to model the dynamical response of the insect’s photoreceptors if so desired.

4 Results

In this section, we provide a brief overview of our FlyView dataset (Section 4.1), before comparing
this to the existing datasets (Section 4.2) described in Table 1. Further quantitative data analysis can
be found in Section 4.3 and in the Supplementary Materials.

4.1 Overview of dataset

FlyView is a large and diverse dataset containing 42,475 frames rendered for each of three cameras
defined to provide a 340◦ panoramic view of the environment (see Section 3.2). These frames
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(a) Forest (b) Wine shop (c) Corridor

(d) Lakescape (e) Lakescape depth map (f) Forward motion flow

Figure 3: Examples of data contained within FlyView. (a-d) Examples of scenes used for data generation; for
details of authorship see the Supplementary Materials (Section D). (e) Depth map associated with the visual
image in (d). (f) Motion flow during forward translation through (d).

record only static scenes, avoiding any flight direction ambiguity [25] and permitting analysis of
visual navigation in the absence of noise. We provide RGB images in a lossless 16-bits PNG format
permitting the common 8-bits compression used by numerous computer vision algorithms, and the
analysis of the RAW luminance signal captured by the sensor. The corresponding depth map and
motion flow field is provided in a 32-bits format, offering a fine description of the environment.
We provide the intrinsic and extrinsic parameters of the camera system for all frames and views,
including the Cartesian position and quaternion orientation of each camera as required for assessing
self-motion and structure-from-motion tasks. In addition, we provide a set of calibration images
containing checkerboards, allowing the user to recalibrate the intrinsic parameters using a different
camera model to the equirectangular model that we used.

When training a deep network, one of the main challenges is in dealing with over-fitting, which occurs
when the model specializes on a specific dataset, but cannot accurately infer the results on data with a
different distribution. In other words, the model fails to generalize its task. Whilst over-fitting can be
avoided with specific deep learning methods, it can also be addressed at an earlier stage by designing
the dataset appropriately, as we have done here. The different types of motion that we model result
in different image views and different motion flow fields that will help avoid over-fitting. Another
way of avoiding overfitting is to vary the environment. Most existing datasets (Section 4.2) therefore
make use of numerous environments to increase their size and diversity. In the same way, our dataset
is composed of 9 different scenes that provide a wide distribution of visual images (Figures 5). Our
scenes span from small to large 3D environments, both indoor and outdoor. They contain different
illumination effects under natural and artificial lighting, including light reflection on water and the
effects of fog. The 3D scenes also contain dark and light areas, creating challenging environments for
visual navigation. Finally, we suggest a suitable split of the data into training, validation, and test sets
aimed at maximizing the exploitation and distribution of features in the scenes such as outdoor/indoor
locations, bright/dark scenes, and small/large displacements. This dataset split is detailed in the
Supplementary Materials (Section C.4).

4.2 Dataset comparison

Table 1 compares our FlyView dataset to existing optical flow truth datasets across a range of metrics.
FlyView is distinguished by the high resolution of its images, by its wide field of view, and by its large
number of frames. Because of its biological inspiration, FlyView falls into its a category of its own, but
was designed to be compatible with existing computer vision approaches. In particular, the data were
generated using virtual cameras that output dense rectangular matrices of visual images and ground
truth, in a similar fashion to other datasets feeding computer vision algorithms. FlyView is therefore a
prime candidate for evaluation and benchmarking of the performance of different algorithms, as well
as providing an excellent complementary set for training machine learning models. Most notably,
its bio-informed design is specifically adapted to drive innovation around visual navigation systems
based on large field of view cameras.
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Table 2: Comparison of performance in motion flow estimation (mean ± s.d. of angular and magnitude
errors) of the pre-trained RAFT-large network on test data from FlyingChairs and FlyingChairs3D
versus various subsets of FlyView (see Supplementary Materials, Section C.3).

FlyingChairs FlyingThings3D FlyView S1 FlyView S2’ FlyView S3 FlyView S5 FlyView S8
angular error (◦) 6.42 ±7.09 4.11 ±3.77 6.90 ±6.10 18.83 ±4.79 13.13 ±8.36 18.62 ±8.87 18.43 ±9.61

magnitude error (px) 1.26 ±1.37 4.23 ±6.28 6.72 ±5.69 0.69 ±0.68 4.67 ±5.62 3.06 ±3.66 0.93 ±0.77

One of the most important distinguishing features of FlyView is its large field of view, which results
in almost complete motion flow maps describing both small and large apparent motions. The wide
range of motion flow that can be present within a scene is highlighted in Figure 3f for one of the
outdoor scenes. In this case, self-motion can be estimated most reliably using ventral optical flow,
given that the sky produces little dorsal optical flow. This is a prior that is known to be built in to
the neuronal weightings of the fly’s visual system [33], and is therefore worthwhile to capture in
a dataset aimed at training deep networks for self-motion estimation. Additionally, many standard
datasets lack well-defined validation and test sets. Some provide visual images without motion flow
ground truth (e.g. MPI Sintel), others do not provide any defined test set (e.g. Monkaa and Driving),
or any defined validation set (e.g. FlyingThings3D, FlyingChairs). In contrast, FlyView has been
designed to include both a validation and a test set with accurate ground truth. Appendix C provides
a detailed description of our recommended split.

4.3 Quantitative and qualitative analysis

We evaluated the performance of a state-of-the-art RAFT network [20] on a diverse range of subsets
of FlyView, having pre-trained the network on FlyingChairs, FlyingThings3D, HD1K, MPI-SIntel,
and KittiFlow. We compared its performance on FlyView to test sets from FlyingChairs and Fly-
ingThings3D, for both the large and small versions of the RAFT network defined in [20]. Table 2
shows that even the RAFT-large network fails to accurately and homogeneously compute the motion
flow map on FlyView, with an unacceptably high mean angular error in some scenarios. The small
magnitude error in FlyView sets S2′ and S8, defined as the error on the norm of the vector field, can
be explained by the small displacement of the camera in these sets. Qualitatively speaking, RAFT has
difficulties in estimating the magnitude of the motion flow vector close to the edges of the images,
where the distortion is important. This is because the pixel angular density of the image is much
higher in these regions, leading to more significant apparent motions for a slight displacement of the
camera. As described in Section 4.2, ventral optical flow is of utmost importance for self-motion
estimation in flight over the ground, so RAFT’s failure to estimate the motion flow accurately in this
part of a wide field of view image presents a significant barrier to accurate self-motion estimation.

Similarly, RAFT has difficulties in correctly estimating the motion flow of objects close to the
camera, for which the apparent motion is fast, and for which the effects of image distortion are
large. Additionally, RAFT fails to estimate the motion flow vector’s angle accurately when the
apparent motion is small. As the angular density of the pixels is smallest in the central part of the
image, apparent motion can be very small in this region, causing RAFT to fail dramatically in this
specific scenario. The smaller version of the network, RAFT-small, is very sensitive to the noise
introduced by ray-tracing during rendering (see Figure ??). This makes estimation of the angle of the
motion flow vector noisy, particularly in respect of large flat surfaces such as walls and ceilings. As
a result, because the RAFT network was pre-trained on data largely without distortions, and with
a reasonably homogeneous pixel angular density in the entire image, it fails in the more general
scenarios encountered throughout the FlyView dataset, highlighting the need for optics-specific
datasets for training. Optionally, modifications to existing network architectures can be achieved to
allow a more accurate estimate of optical flow on omnidirectional images [40, 41].

5 Conclusion

In this paper, we designed and collected the first bio-informed dataset for motion flow and self-motion
estimation. This dataset is one of the largest motion flow datasets available publicly online, and one of
only a few to offer large sensor resolution. To the best of our knowledge, FlyView is the largest motion
flow dataset with meaningful and varied dynamics, and the first dataset to focus on translational and

9



(a) (b)

(c) (d)

(e)

Figure 4: Error in motion flow estimation by the pre-trained RAFT networks tested on FlyView. (a) Heatmap of
the angular error (◦) of the RAFT-large network, where red denotes errors > 25◦; (b) Heatmap of the magnitude
error (px) of the RAFT-large network, where red denotes errors > 10 px; (c) Noisy motion flow estimation by
the RAFT-small network; (d) Motion flow truth data for (c). For further examples, see Supplementary Materials.
(e) Definition of the flow

rotational motions independently and in combination. The FlyView dataset relies on a camera setup
based on measurements on flies, and therefore offers an almost complete panoramic field of view for
its visual images, motion flow, and depth maps. This camera setup, mimicking the visual field of an
insect, brings new challenges and opportunities to biology and computer vision. It is designed to be
compatible with existing computer vision approaches, whilst also permitting future biological studies
simulating the input to the fly’s hexagonal imaging array using the image processing mask provided.
The FlyView dataset is fully accurate thanks to its synthetic generation of motion flow ground truth,
and offers a wide range of photo-realistic visual images in indoor and outdoor environments that
require different feature extraction strategies for self-motion estimation. Future work will use these
data to train novel bio-informed computer vision algorithms, and to provide a new benchmark for
existing state-of-the-art algorithms. A detailed documentation can be found in the GitHub repository
of this project.
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the classical stereo vision approach and the bio-informed stereo view. The baseline
is limited to reproduce biological measurements but does not bring information on
disparity. Depth estimation is recommended through structure-from-motion rather than
disparity estimation. (See Section 3.2). In addition, our work focuses on a simple
scenario composed of static scenes solely. (See Section 4.1)
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them? [Yes] We read the ethics review guidelines and ensured the paper conforms to
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We do not include existing assets. However we created a sample 3D environment that
can be downloaded from the Github repository.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
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