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Abstract

In this paper we study the problem of testing of constrained samplers over high-
dimensional distributions with (ε, η, δ) guarantees. Samplers are increasingly used
in a wide range of safety-critical ML applications, and hence the testing problem
has gained importance. For n-dimensional distributions, the existing state-of-the-art
algorithm, Barbarik2, has a worst case query complexity of exponential in n and
hence is not ideal for use in practice. Our primary contribution is an exponentially
faster algorithm that has a query complexity linear in n and hence can easily scale
to larger instances. We demonstrate our claim by implementing our algorithm and
then comparing it against Barbarik2. Our experiments on the samplers wUnigen3
and wSTS, find that Barbarik3 requires 10× fewer samples for wUnigen3 and
450× fewer samples for wSTS as compared to Barbarik2.

1 Introduction

The constrained sampling problem is to draw samples from high-dimensional distributions over
constrained spaces. A constrained sampler Q(ϕ, w) takes in a set of constraints ϕ : {0, 1}n → {0, 1}
and a weight function w : {0, 1}n → R>0, and returns a sample σ ∈ ϕ−1(1) with probability propor-
tional to w(σ). Constrained sampling is a core primitive of many statistical inference methods used
in ML, such as Sequential Monte Carlo[29], Markov Chain Monte Carlo(MCMC)[3, 9], Simulated
Annealing [4], and Variational Inference [24]. Sampling from real-world distributions is often compu-
tationally intractable, and hence, in practice, samplers are heuristical and lack theoretical guarantees.
For such samplers, it is an important problem to determine whether the sampled distribution is close
to the desired distribution, and this problem is known as testing of samplers. The problem was
formalised in [14, 27] as follows: Given access to a target distribution P , a sampler Q(ϕ, w), and
three parameters (ε, η, δ), with probability at least 1− δ, return (1) Accept if d∞(P,Q(ϕ, w)) < ε,
or (2) Reject if dTV (P,Q(ϕ, w)) > η. Here dTV is the total variation distance, d∞ the multiplicative
distance, and ε, η, and δ are parameters for closeness, farness and confidence respectively. Access
to distribution P is via the DUAL oracle, and access to Q is via the PCOND and SAMP oracles
(defined in Section 2.1)

There is substantial interest in the testing problem due to the increasing use of ML systems in
real-world applications where safety is essential, such as medicine [2], transportation [8, 25], and
warfare [28]. For the ML systems that incorporate samplers, the typical testing approach has been
to show the convergence of the sampler with the target distribution via empirical tests that rely on
heuristics and do not provide any guarantees [19, 22, 31, 34]. In a recent work [27], a novel framework,
called Barbarik2, was proposed that could test a given sampler while providing (ε, η, δ) guarantees,
using Õ

(
tilt(P)2
η(η−3ε)3

)
queries, where tilt(P) := max

σ1,σ2∈{0,1}n
P(σ1)
P(σ2)

for P(σ2) > 0. Since the tilt(P)
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can take arbitrary values, we observe that the query complexity can be prohibitively large3. On the

other hand, the best known lower bound for the problem, derived from [30], is Ω̃

(√
n/ log(n)

η2

)
. In

this work, we take a step towards bridging this gap with our algorithm, Barbarik3, that has a query
complexity of Õ

( √
n logn

(η−11.6ε)η3 + n
η2

)
, representing an exponential improvement over the state of the

art.

To be of any real value, testing tools must be able to scale to larger instances. In the case of constrained
samplers, the only existing testing tool, Barbarik2, is not scalable owing to its query complexity. The
lack of scalability is illustrated by the following fact: product distributions are the simplest possible
constrained distributions, and given a union of two n-dimensional product distributions, Barbarik2
requires more than 108 queries for n > 30. On the other hand, the query complexity of Barbarik3
scales linearly with n, the number of dimensions, thus making it more appropriate for practical use.

We implement Barbarik3 and compare it against Barbarik2 to determine their relative performance.
In our experiments, we consider two sets of problems, (1) constrained sampling benchmarks, (2)
scalable benchmarks and two constrained samplers wSTS and wUnigen3. We found that to complete
the test Barbarik3 required at least 450× fewer samples from wSTS and 10× fewer samples from
wUnigen3 as compared to Barbarik2. Moreover, Barbarik3 terminates with a result on at least 3×
more benchmarks than Barbarik2 in each experiment.

Our contributions can be summarized as follows:

1. For the problem of testing of samplers, we provide an exponential improvement in query
complexity over the current state of the art test Barbarik2. Our test, Barbarik3, makes a total
of Õ

( √
n logn

(η−11.6ε)η3 + n
η2

)
queries, where Õ hides polylog factors of ε, η and δ.

2. We present an extensive empirical evaluation of Barbarik3 and contrast it with Barbarik2.
The results indicate that Barbarik3 requires far fewer samples and terminates on more
benchmarks when compared to Barbarik2.

We define the notation and discuss related work in Section 2. We then present the main contribution
of the paper, the test Barbarik3, and its proof of correctness in Section 3. We present our experimental
findings in Section 4 and then we conclude the paper and discuss some open problems in Section 5.
Due to space constraints, we defer some proofs and the full experimental results to the supplementary
Section A and B respectively.

2 Notation and preliminaries

Probability distributions In this paper we deal with samplers that sample from discrete probability
distributions over high-dimensional spaces. We consider the sample space to be the n-dimensional
Boolean hypercube {0, 1}n. A constrained sampler Q takes in a set of constraints ϕ : {0, 1}n →
{0, 1} and a weight function w : {0, 1}n → R>0, and samples from the distributionQ(ϕ, w) defined as

Q(ϕ, w)(σ) =

{
w(σ)/w(ϕ) σ ∈ ϕ−1(1)

0 σ ∈ ϕ−1(0)
, where w(ϕ) =

∑
σ∈ϕ−1(1) w(σ). To improve readability,

we use Q to refer to the distribution Q(ϕ, w). For an element i, D(i) denotes it’s probability in
distribution D and i ∼ D represents that i is sampled from D. For any non-empty set S ⊆ {0, 1}n,
DS is the distribution D conditioned on set S, and D(S) is the probability of S in D i.e., D(S) =∑
i∈S D(i).

The total variation (TV) distance of two probability distributions D1 and D2 is defined as:
dTV (D1,D2) = 1

2

∑
i∈{0,1}n |D1(i) − D2(i)|. For S ⊆ {0, 1}n, we define dTV (S)(D1,D2) =

1
2

∑
i∈S |D1(i)−D2(i)|. The multiplicative distance of D2 from D1 is defined as: d∞(D1,D2) =

maxi∈{0,1}n |D2(i)/D1(i) − 1|. The two notions of distance obey the identity: 2dTV (D1,D2) ≤
d∞(D1,D2).

In the rest of the paper, E[v] represents the expectation of random variable v and [k] represents the
set {1, 2 . . . , k}.

3A simple modification reveals that in terms of n, η, ε, the bound is Õ
(

4n

η(η−3ε)3

)
2



Tools used in the analysis

Proposition 1 (Hoeffding). For independent 0-1 random variables Xi, X =
∑k
i=1Xi, and t ≥ 0,

Pr(X − EX > t) ≤ exp
(
−2t2k

)
and Pr(EX −X > t) ≤ exp

(
−2t2k

)
Proposition 2 (Chebyshev). Given bounded r.v. X , we have Pr(|X − E[X]| < E[X]) > E[X]2

E[X2]

Proposition 3. Given distributions D1 and D2 supported on {0, 1}n, and a set S ⊆ {0, 1}n,∑
i∈S
D1(i)D2(i) >

(D1(S) +D2(S)− 2dTV (S)(D1,D2))2

4|S|

The proof can be found in the Appendix A.1

If we are given samples {s1, s2, . . . , sn} from a distributionD over [k], then the empirical distribution

D̂ is defined to be D̂(i) = 1
n

k∑
j=1

1{sj=i}.

Proposition 4 (See [11] for a simple proof). SupposeD is a distribution over [k], and D̂ is constructed

using max
(
k
η2 ,

2 ln(2/δ)
η2

)
samples from D. Then dTV (D, D̂) ≤ η with probability at least 1− δ.

2.1 Testing with the help of oracles

In distribution testing, we are given samples from an unknown distribution P over a large support
{0, 1}n, and the task is to test whether P satisfies some property of interest. One of the important
properties we care about is whether P is close to another distributionQ, and this subfield of testing is
known as closeness testing. It was shown by Valiant and Batu et al. that the ability to draw samples
from P and Q is not powerful enough, as at least Ω(22n/3) samples are required to provide any sort
of probabilistic guarantee for closeness testing. Since n is usually large, it was desirable to find tests
that could solve the closeness testing problem using polynomially many samples in n.

Motivated by the above requirement, Canonne et al. and Chakraborty et al. introduced the conditional
sampling oracle (COND), that is a more powerful way to access distributions. A COND oracle for
distribution D over {0, 1}n takes as input a set S ⊆ {0, 1}n with D(S) > 0, and returns a sample
i ∈ S with probability D(i)/D(S). It has been shown that the use of the COND oracle, and its
variants, drastically reduces the sample complexity of many tasks in distribution testing [1, 21, 12, 15,
6, 26, 7, 17, 13, 30] (see [10] for an extensive survey). In this paper, we consider the pair-conditioning
(PCOND) oracle, which is a special case of the COND oracle with the restriction that |S| = 2 i.e.,
the size of the conditioning set has to be two. To engineer practical PCOND oracle access into
constrained samplers, we use the chain formula construction introduced in [14].

With the same goal of designing tests with polynomial sample complexity, a different kind of oracle,
known as the DUAL oracle, was proposed by Canonne et al.. The DUAL oracle allows one to sample
from a given distribution and also query the distribution for the probability of arbitrary elements of the
support. Tractable DUAL oracle access is supported by a number of distribution representations, such
as the fragments of probabilistic circuits (PC) that support the EVI query [18]. In our experimental
evaluation, we use distributions from one such fragment: weighted d-DNNFs. Weighted d-DNNFs
are a class of arithmetic circuits with properties that enable DUAL oracle access in time linear in the
size of the circuit [16, 23].

3 Barbarik3: an algorithm for testing samplers

We start by providing a brief overview of our testing algorithm before providing the full analysis.

3.1 Algorithm outline

The pseudocode of Barbarik3 is given in Algorithm 1. We adapt the definition of bucketing of
distributions from [30] for use in our analysis.
Definition 1. For a given k ∈ N>0, the bucketing of {0, 1}n with respect to P is defined as follows:
For 1 ≤ i ≤ k, let Si = {b : 2−i < P(b) ≤ 2−i+1} and let S0 = {0, 1}n \

⋃
i∈[k] Si. Given
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Algorithm 1 Barbarik3(P,Q, η, ε, δ)
1: k ← n+ dlog2(100/η)e
2: for i = 1 to k do
3: Si = {b : 2−i < P(b) ≤ 2−i+1}
4: S0 = {0, 1}n \

⋃
i∈[k] Si

5: BP is the distribution over [k] ∪ {0} where we sample i ∼ BP if we sample j ∼ P and j ∈ Si
6: BQ is the distribution over [k] ∪ {0} where we sample i ∼ BQ if we sample j ∼ Q and j ∈ Si
7: θ ← η/20

8: d̂← OutBucket(BP , BQ, k, θ, δ/2)

9: if d̂ > ε/2 + θ then
10: Return Reject

11: ε2 ← d̂+ θ
12: Return InBucket(P,Q, k, ε, ε2, η, δ/2)

any distribution D over {0, 1}n, we define a distribution BD over [k] ∪ {0} as: for 0 ≤ i ≤ k,
BD(i) = D(Si). We call BD the bucket distribution of D and Si the ith bucket.

Barbarik3 takes as input two distributions P and Q defined over the support {0, 1}n, along with the
parameters for closeness(ε), farness(η), and confidence(δ). On Line 1, Barbarik3 computes the value
of k using η and the number of dimensions n. Then, using DUAL access to P , and SAMP access to
Q, Barbarik3 creates bucket distributions BP and BQ as in Defn. 1, in the following way: To sample
from BP , Barbarik3 first draws a sample j ∼ P , then using the DUAL oracle, determines the value
of P(j). Then, if j lies in the ith bucket i.e., 2−i < P(j) ≤ 2−i+1, the algorithm takes sample i as
the sample from BP . Similarly, to draw a sample from BQ, Barbarik3 draws a sample j ∼ Q and
then, using the DUAL oracle to find P(j), finds i such that j lies in the ith bucket, and then uses i as
the sample.

Barbarik3 then calls two subroutines, OutBucket (Section 3.4) and InBucket (Section 3.3). The
OutBucket subroutine returns an θ-multiplicative estimate of the TV distance between BP and BQ,
the two bucket distributions of P and Q, with an error of at most δ/2. If it is found on Line 9 that
the estimate d̂ is greater than ε/2 + θ, we know that dTV (P,Q) > ε/2 and also that d∞(P,Q) > ε,
and hence the algorithm returns Reject. Otherwise, the algorithm calls the InBucket subroutine.

Now suppose that dTV (P,Q) ≥ η. Then, for ε2 (Line 11), it is either the case that dTV (BP , BQ) >
ε2 or else dTV (BP , BQ) ≤ ε2. In the former case, the algorithm returns Reject on Line 10, and in
the latter case the InBucket subroutine returns Reject. In both cases, the failure probability is at most
δ/2. Thus Barbarik3 returns Reject on given η-far input distributions with probability at least 1− δ.

We will now prove the following theorem:

Theorem 1. Barbarik3(P,Q, η, ε, δ) takes in distributions P and Q defined over {0, 1}n, and
parameters η ∈ (0, 1], ε ∈ [0, η/11.6) and δ ∈ (0, 1/2]. Barbarik3 has DUAL access to P , and
PCOND+SAMP access to Q. With probability at least 1− δ, Barbarik3 returns

• Accept if d∞(P,Q) ≤ ε
• Reject if dTV (P,Q) > η

Barbarik3 has query complexity Õ
( √

n log(n)
η3(η−11.6ε) + n

η2

)
, where Õ hides polylog factors of ε, η and δ.

3.2 Lower bound

The lower bound comes from the paper of Narayanan [30], where it appears in Theorem 1.6. Phrased
in the jargon of our paper, the lower bound states that distinguishing between dTV (P,Q) > η and
d∞(P,Q) = 0 requires Ω̃(

√
n/ log(n)/η2) samples. Note that the lower bound is shown on a special

case (ε = 0) of our problem. Hence the lower bound applies to our problem as well. Furthermore, the
lower bound is shown for the case where distribution P provides full access, i.e., the algorithm can
make arbitrary queries to P . This is a stronger access model than DUAL. Since the lower bound is
for a stronger access model, it extends to our problem as well.
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3.3 The InBucket subroutine

In this section, we present the InBucket subroutine, whose behavior is stated in the following lemma.

Lemma 1. InBucket(P,Q, k, ε, ε2, η, δ) takes as input two distributions P,Q, an integer k and
parameters ε, ε2, η, δ. If d∞(P,Q) ≤ ε, InBucket returns Accept. If dTV (P,Q) ≥ η and
dTV (BP , BQ) < ε2, then InBucket returns Reject. InBucket errs with probability at most δ .

Algorithm 2 InBucket(P,Q, k, ε, ε2, η, δ)
1: ε1 ← (0.99η − 3.25ε2 − 2ε/(1− ε))/1.05 + 2ε/(1− ε)
2: m← d

√
k/(0.99η − 3.25ε2 − ε1)e

3: α← (ε1 + 2ε/(1− ε))/2
4: t←

⌈
ln(4/δ)

ln(10/(10−ε1+α))

⌉
5: for t iterations do
6: ΓP ←m samples from P
7: ∀i∈[k]ΓiP ← ΓP ∩ Si . Si is defined in Defn. 1
8: ΓQ ←m samples from Q
9: ∀i∈[k]ΓiQ ← ΓQ ∩ Si

10: for all j ∈ [k] s.t. |ΓjP |, |Γ
j
Q| > 0 do

11: p← ΓjP . p is an arbitrary sample from the set ΓjP
12: q ← ΓjQ . q is an arbitrary sample from the set ΓjQ
13: h← P(p)

P(p)+P(q)(1+ 2ε
1−ε )

14: `← P(p)
P(p)+P(q)(1+α)

15: r ←
⌈
2 ln(4mt/δ)

(h−`)2

⌉
16: ĉ← Bias(Q, p, q, r)
17: if ĉ ≤ (h+ `)/2 then
18: Return Reject

19: Return Accept

Algorithm 3 Bias(Q, p, q, r)
1: if p and q are identical then
2: Return 0.5
3: ΓQ{p,q} ← r samples from Q{p,q}
4: Return # of times p appears in ΓQ{p,q}

InBucket makes extensive use of the PCOND oracle access to Q via the Bias subroutine, which we
describe in the following subsection.

The Bias subroutine The Bias subroutine takes in distribution Q, two elements p, q and a positive
integer r. Then, using the PCOND oracle, Bias draws r samples from the conditional distribution
Q{p,q} and returns the number of times it sees p in the r samples. It can be seen that the returned
value is an empirical estimate of Q(p)

Q(p)+Q(q) . Let the estimate be ĉpq . We use the Hoeffding bound in
Prop. 1, and the value of r from Line 15 of Alg. (2) to show that:

Pr

[
Q(p)

Q(p) +Q(q)
− ĉpq ≥

h− `
2

]
≤ δ

4mt
Pr

[
ĉpq −

Q(p)

Q(p) +Q(q)
≥ h− `

2

]
≤ δ

4mt

Here t represents the number of iterations of the outer loop (Line 4), and m is the number of samples
drawn from BP and BQ. Together, there are at most mt pairs of samples that are passed to the
Bias oracle. Since in each invocation of Bias, the probability of error is δ/4mt, using the union
bound we find that the probability that all mt Bias calls return correctly is at least 1− δ/4 and thus
with probability at least 1− δ/4, the empirical estimate ĉpq is closer than (h− `)/4 to Q(p)

Q(p)+Q(q) .
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Henceforth we assume: ∣∣∣∣ĉpq − Q(p)

Q(p) +Q(q)

∣∣∣∣ ≤ h− `
2

(1)

3.3.1 The Accept case

In this section we will provide an analysis of the case when d∞(P,Q) < ε. We will now state a
proposition required for the remaining proofs, the proof of which we relegate to Appendix A.4.

Proposition 5. Let P,Q be distributions and let p ∼ P and q ∼ Q. Then,

1. If d∞(P,Q) < ε then

Q(p)

Q(p) +Q(q)
≥ P(p)

P(p) + (1 + 2ε
1−ε )P(q)

2. If dTV (P,Q) > ε1, then for 0 ≤ α < ε1, with probability at least (dTV (P,Q)− α)/2,

Q(p)

Q(p) +Q(q)
<

P(p)

P(p) + (1 + α)P(q)

From our assumption (1), we know that for all invocations of Bias, with probability at least 1− δ/4,∣∣∣ĉpq − Q(p)
Q(p)+Q(q)

∣∣∣ ≤ (h− `)/2. Using Prop. 5, and using the value of h given on Line 13, we can

see that Q(p)
Q(p)+Q(q) > h. From this we can observe that for all invocations of Bias, ĉpq > (h+ `)/2

and the test does not return Reject in any iteration, hence eventually returning Accept. Thus, in the
case that d∞(P,Q) < ε, the InBucket subroutine returns Accept with probability at least 1− δ/4.

3.3.2 The Reject case

In this section we analyse the case when dTV (P,Q) ≥ η and dTV (BP , BQ) ≤ ε2 and we will show
that the algorithm returns Reject with probability at least 1− δ. For the purpose of the proof we will
define a set of bad buckets Bad ⊆ [k]. Note that bucket {0} is not in Bad.

Definition 2. Bad = {i ∈ [k] : dTV (PSi ,QSi) > ε1 ∧BP(i)/BQ(i) ∈ [5−1, 2]}

Suppose we have an indicator variable Xr,s constructed as follows: draw m samples from P and Q,
and if the rth sample from P and the sth sample from Q both belong to some bucket b ∈ Bad, then
Xr,s = 1 else Xr,s = 0. Then,

E[Xr,s] =
∑
b∈Bad

BP(b)BQ(b) >
(BP(Bad) +BQ(Bad)− 2dTV (Bad)(BP , BQ))2

4K

The inequality is by the application of Prop. 3.

We analyse the expression for the expectation in the following lemma, the proof of which we relegate
to Appendix A.2

Lemma 2.

BQ(Bad) +BP(Bad)− 2dTV (Bad)(BQ, BP) > 2

(
0.99η − 13

4
ε2 − ε1

)

Using Lemma 2 we immediately derive the fact that E[Xr,s] >
(
0.99η − 13

4 ε2 − ε1
)2
/K. Let

X =
∑
r,s∈[m]Xr,s. Given m samples from P and Q, Pr(X ≥ 1) is the probability that there is at

least one bucket in Bad that is sampled at least once each in both sets of samples.

Lemma 3. Pr(X ≥ 1) > 1/5

The proof can be found in Appendix A.3.
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Henceforth we will condition on the the event that X ≥ 1. In such a case, we know that for some
k ∈ Bad, there is a sample p ∼ PSk

and a sample q ∼ QSk
. Then for such a pair of samples (p, q),

and some α, Prop. 5 tells us that with probability at least (dTV (P,Q)− α)/2 we have

Q(p)

Q(p) +Q(q)
<

P(p)

P(p) + (1 + α)P(q)

Using the assumption made in (1), we immediately have that ĉpq ≤ Q(p)
Q(p)+Q(q) + h−`

2 . But from

Prop. 5 we have that Q(p)
Q(p)+Q(q) < ` and hence ĉpq < (h+ `)/2. Since dTV (P,Q) ≥ ε1, we see that

if X ≥ 1, then with probability at least (ε1 − α)/2, the iteration returns Reject.

Then, using Lemma 3 we see that in every iteration, with probability at least (ε1 − α)/10, InBucket
returns Reject. There are t iterations, where t (line 4) is chosen such that the overall probability of
the test returning Reject is at least 1− δ/2.

3.4 The OutBucket subroutine

The OutBucket subroutine takes as input two distributions D1,D2 over k + 1 elements and two
parameters θ and δ. Then with probability at least 1− δ, InBucket returns a θ-multiplicative estimate
for dTV (D1,D2).

The OutBucket starts by drawing max
(

4(k+1)
θ2 , 8 ln(4/δ)

θ2

)
samples from the two distributions D1

and D2, and constructs the empirical distributions D̂1 and D̂2. Then from Prop. 4, we know that with
probability at least 1− δ, both dTV (D1, D̂1) ≤ θ/2 and dTV (D2, D̂2) ≤ θ/2.

From the triangle inequality we have that,

dTV (D̂1, D̂2) ≤ dTV (D1, D̂1) + dTV (D2, D̂2) + dTV (D1,D2) < θ + dTV (D1,D2)

and also that,

dTV (D1,D2) ≤ dTV (D1, D̂1) + dTV (D2, D̂2) + dTV (D̂1, D̂2) < θ + dTV (D̂1, D̂2)

Thus with probability at least 1− δ, the returned estimate dTV (D̂1, D̂2) satisfies |dTV (D̂1, D̂2)−
dTV (D1,D2)| < θ.

Query and runtime complexity The number of queries made by OutBucket to P and Q is
given by Õ

(
n
η2

)
, where Õ hides polylog factors of ε, η and δ. The number of queries required

by InBucket is given by mtr. Bounding the terms individually, we see that m = Õ
( √

n
η−11.6ε

)
,

t = Õ
(

1
η

)
and r = Õ

(
logn
η2

)
. Thus mtr = Õ

( √
n logn

(η−11.6ε)η3

)
and hence the total query complexity

is Õ
( √

n logn
(η−11.6ε)η3 + n

η2

)
.

4 Evaluation

To evaluate the performance of Barbarik3 and test the quality of publicly available samplers, we
implemented Barbarik3 in Python. Our evaluation took inspiration from the experiments presented
in previous work [14, 27], and we used the same framework to evaluate our proposed algorithm.
The role of target distribution P was played by WAPS4 [23]. WAPS compiles the input Boolean
formula into a representation that allows exact sampling and exact probability computation, thereby
implementing the SAMP and EVAL oracles needed for our test.

For the role of sampler Q(ϕ, w), we used the state-of-the-art samplers wSTS and wUnigen3.
wUnigen3 [32] is a hashing-based sampler that provides (ε, δ) guarantees on the quality of the
samples. wSTS [20] is a sampler designed for sampling over challenging domains such as energy
barriers and highly asymmetric spaces. wSTS generates samples much faster than wUnigen3, albeit

4https://github.com/meelgroup/WAPS
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without any guarantees on the quality of the samples. To implement PCOND access, we use the
Kernel construction from [14]. Kernel takes in ϕ and two assignments σ1, σ2, and returns a function
ϕ̂ on m variables, such that: (1) m > n, (2) ϕ and ϕ̂ are similar in structure, and (3) for σ ∈ ϕ̂−1(1),
it holds that σ↓supp(ϕ) ∈ {σ1, σ2}. Here σ↓supp(ϕ) denotes the projection of σ on the variables of ϕ.

For the closeness(ε), farness(η), and confidence(δ) parameters, we choose the values 0.05, 0.9 and
0.2. This setting implies that for a given distribution P , and for a given sampler Q(ϕ, w), Barbarik3
returns (1) Accept if d∞(P,Q(ϕ, w)) < 0.05, and (2) Reject if dTV (P,Q(ϕ, w)) > 0.9, with
probability at least 0.8. Our empirical evaluation sought to answer the question: How does the
performance of Barbarik3 compare with the state-of-the-art tester Barbarik2?

Our experiments were conducted on a high-performance compute cluster with Intel Xeon(R) E5-
2690v3@2.60GHz CPU cores. We use a single core with 4GB memory with a timeout of 16 hours
for each benchmark. We set a sample limit of 108 samples for our experiments due to our limited
computational resources. The complete experimental data along with the running time of instances, is
presented in the Appendix B.

4.1 Setting A - scalable benchmarks

Dataset Our dataset consists of the union of two n-dimensional product distributions, for n ∈
{4, 7, 10, . . . , 118}. We have 39 problems in the dataset. We represent the union of two product
distributions as the constraint: ϕ(σ) =

∧2k
i=1(σ3k+1 ∨ σi) ∧

∧3k
i=2k+1(¬σ3k+1 ∨ σi), and the weight

function: w(σ) =
∏3k
i=2k+1 3σi , where σi is the value of σ at position i.

Results We observe that in the case of wSTS, Barbarik2 can handle only 12 instances within the
sample limit of 108. On the other hand, Barbarik3 can handle all 39 instances using at the most
106 samples. In the case of wUnigen3, Barbarik2 solves 5 instances, and Barbarik3 can handle 17
instances.

Figure 1 shows a cactus plot comparing the sample requirement of Barbarik3 and Barbarik2. The
x-axis represents the number of benchmarks and y-axis represents the number of samples, a point
(x, y) implies that the relevant tester took less than y number of samples to distinguish between
dTV (P,Q(ϕ, w)) > η and d∞(P,Q(ϕ, w)) < ε, for x many benchmarks. We display the set of
benchmarks for which at least one of the two tools terminated within the sample limit of 108. We want
to highlight that the y-axis is in log-scale, thus showing the sample efficiency of Barbarik3 compared
to Barbarik2. For every benchmark, we compute the ratio of the number of samples required by
Barbarik2 to test a sampler and the number of samples required by Barbarik3. The geometric mean
of these ratios indicates the mean speedup. We find that the Barbarik3’s speedup on wSTS is 451×
and on wUnigen3 is 10×.

4.2 Setting B - real-life benchmarks

Dataset We experiment on 87 constraints drawn from a collection of publicly available benchmarks
arising from sampling and counting tasks5. We use distributions from the log-linear family. In a log-
linear distribution, the probability of an element σ ∈ ϕ−1(1) is given as: Pr[σ] ∝ exp (

∑n
i=1 σiθi),

where θi ∈ Rn>0. We found that wUnigen3 was not able to sample from most of the benchmarks in
the dataset within the given time limit, and hence we present the results only for wSTS.

Results We find that Barbarik3 terminated with a result on all 87 instances from the set of real-life
benchmarks, while Barbarik2 could only terminate on 16. We present the results of our experiments
in Table 1. The first column indicates the benchmark’s name, and the second column has the number
of dimensions of the space the distribution is defined on. The third and fifth columns indicate the
number of samples required by Barbarik2 and Barbarik3. The fourth and sixth columns report the
output of Barbarik2 and Barbarik3.

5https://zenodo.org/record/3793090
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Figure 1: Cactus plot: Barbarik3 vs. Barbarik2. We set the sample limit to be 108, and our dataset
consists of 39 benchmarks. The plot shows all the instances where at least one of the two tools
terminated within the time limit of 16 hours and sample limit of 108.

Table 1: Runtime performance of Barbarik3. We experiment with 87 benchmarks, and out of the 87
benchmarks we display 15 in the table and we display the full data in Appendix B . In the table ‘A’
represents Accept, ‘R’ represents Reject and ‘TO’ represents that the tester either asked for more
than 108 samples or did not terminate in the given time limit of 16 hours.

Barbarik2 Barbarik3

Benchmark Dimensions Result # of samples Result # of samples

SetTest.sk_9_21 21 R 2817 R 58000
Pollard.sk_1_10 10 R 7606 R 36000
s444_3_2 24 R 848148 R 64000
s526a_3_2 24 R 848148 R 64000
s510_15_7 25 R 12708989 R 66000
s27_new_7_4 7 A 23997012 R 30000
s298_15_7 17 R 38126967 R 50000
s420_3_2 34 TO - R 83000
s382_3_2 24 TO - R 64000
s641_3_2 54 TO - R 123000
111.sk_2_36 36 TO - R 87000
7.sk_4_50 50 TO - R 115000
56.sk_6_38 38 TO - R 91000
s820a_15_7 23 TO - R 62000
ProjectService3.sk_12_55 55 TO - R 125000

9



5 Conclusion

In this paper, we studied the problem of testing constrained samplers over high-dimensional distribu-
tions with (ε, η, δ) guarantees. For n-dimensional distributions, the existing state-of-the-art testing
algorithm, Barbarik2, has a worst-case query complexity that is exponential in n and hence is not
ideal for use in practice. We provided an exponentially faster algorithm, Barbarik3, that has a query
complexity linear in n and hence can easily scale to larger instances. We implemented Barbarik3
and tested the samplers wSTS and wUnigen3 to determine their sample complexity in practice. The
results demonstrate that Barbarik3 is significantly more sample efficient than Barbarik2, requiring
450× fewer samples when it tested wSTS and 10× fewer samples when it tested wUnigen3. Since
there is a

√
n gap between the upper bound provided by our work and the lower bound shown in [30],

the problem of designing a more sample efficient algorithm or finding a stronger lower bound, remains
open.

Limitations For a given farness parameter η, Barbarik3 requires the value of the closeness parame-
ter ε to lie in the interval [0, η/11.6). In the case of Barbarik2, the previous state-of-the-art test, the
permissible values of ε for a given η lie in the interval [0, η/3). Thus, Barbarik3 supports testing with
only a subset of parameter values that Barbarik2 support.
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