Supplementary Materials for Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers

Jian WangMiaomiao ZhangComputer ScienceComputer Science & Electrical Computer EngineeringUniversity of VirginiaUniversity of Virginiajw4hv@virginia.edumz8rr@virginia.edu

This section will cover (i) the derivations of pulling back the network gradient into the space of initial velocity fields \tilde{v}_{nj} each time after forward propagation, and (ii) a complexity analysis of our unsupervised atlas building network using the low-dimensional parameterizations.

1 Derivations of the gradient for the atlas building network

We recall that the loss of the geometric shape learning based on atlas building network is

$$\begin{split} l_{\text{Geo}}(\theta_{g}^{E}, \theta_{g}^{D}, I_{j}) = & \sum_{n=1}^{N_{j}} \sum_{j=1}^{J} [\frac{1}{\sigma_{j}^{2}} \| I_{j} \circ \phi_{nj}^{-1} \left(\tilde{v}_{nj}(\theta_{g}^{E}, \theta_{g}^{D}) \right) - I_{nj} \|^{2} + (\tilde{\mathcal{L}}_{j} \tilde{v}_{nj}(\theta_{g}^{E}, \theta_{g}^{D}), \tilde{v}_{nj}(\theta_{g}^{E}, \theta_{g}^{D})) \\ & + \operatorname{reg}(\theta_{g}^{E}, \theta_{g}^{D}), \quad s.t. \quad \text{Eq.}(2)\&(3). \end{split}$$

We set the network output $\tilde{v}_{nj}(\theta_g^E, \theta_g^D)$ as the initial condition of geodesic shooting, and adopt a forward-backward shooting approach (2; 3) that employs adjoint Jacobi fields in Fourier space. With a simplified math notation $\Theta_g = (\theta_g^E, \theta_g^D)$, we derive the gradient of the loss function with respect to the predicted initial velocity fields \tilde{v}_{nj} before back-propagation as follows

- (i) Forward integrating the geodesic shooting equation (a.k.a. EPDiff) in Eq.(2) to compute $\tilde{v}_{nj}(\Theta_g)_{t=1}$ at time point t = 1 after obtaining the predicted initial velocity fields \tilde{v}_{nj} from network forward-propagation;
- (ii) Compute the gradient of the loss function $l_{\text{Geo}}(\Theta_q, I_j)$ with respect to $\tilde{v}_{nj}(\Theta_q)_{t=1}$,

$$\nabla_{\tilde{v}_{nj}(\Theta_g)_{t=1}} l_{\text{Geo}} = \tilde{\mathcal{K}} \left(\frac{1}{\sigma_j^2} (I_j \circ \phi_n^{-1} [\tilde{v}_{nj}(\Theta_g)_{t=1}] - I_{nj}) \cdot \nabla (I_j \circ \phi_{nj} [\tilde{v}_{nj}(\Theta_g)_{t=1}]) \right);$$

(iii) Bring the gradient in (ii) back to the space of initial velocity fields defined at the time point t = 0 by integrating adjoint Jacobi fields backward in time obtain $\nabla_{\tilde{v}_{ni}(\Theta_x)} l_{\text{Geo}}$,

$$\frac{d\hat{v}}{dt} = -\mathrm{ad}_{\tilde{v}}^{\dagger}\hat{u}, \quad \frac{d\hat{u}}{dt} = -\hat{v} - \mathrm{ad}_{\tilde{v}}\hat{u} + \mathrm{ad}_{\hat{u}}^{\dagger}\tilde{v},$$

where $\hat{v} \in V$ are introduced adjoint variables with an initial condition $\hat{u} = 0, \hat{v} = \nabla_{\tilde{v}_n(\Theta_g)_1} l_{\text{Geo}}$ at t = 1. Here $\operatorname{ad}^{\dagger}$ is an adjoint operator to the negative Lie bracket of vector fields, $\operatorname{ad}_{\tilde{v}} \tilde{w} = -[\tilde{v}, \tilde{w}] = \tilde{\mathcal{D}} \tilde{v} * \tilde{w} - \tilde{\mathcal{D}} \tilde{w} * \tilde{v}$.

2 Computational complexity analysis

In our framework, optimizing the loss of atlas building network with a low-dimensional geodesic constraint Eq. (3) is significantly faster than solving Eq. (1) in high-dimensional image space. We list

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

out the details of computational complexity for geodesic shooting of Geo-SIC and compare it with Lagomorph (1) (a deep atlas learning approach using LDDMM in the spatial domain) in Table. 1.

Table 1: Computational complexity of batchwise geodesic shooting of Geo-SIC and Lagomorpch (T: number of integration time steps; d: image dimension; q: number of low frequencies along each dimension; Q: number of image voxels along each dimension; B: batch size.)

	Complexity		Memory	
	Geo-SIC	Lagomorph	Geo-SIC	Lagomorph
(i). Forward shooting	$\mathcal{O}(BTq^d \log q)$	$\mathcal{O}(BTQ^d \log Q)$	$\mathcal{O}(BTq^d)$	$\mathcal{O}(BTQ^d)$
(ii). Compute gradient at $t = 1$	$\mathcal{O}(BQ^d \log Q)$	$\mathcal{O}(BQ^d)$	$\mathcal{O}(BQ^d)$	$\mathcal{O}(BQ^d)$
(iii). Backward shooting	$\mathcal{O}(BTq^d \log q)$	$\mathcal{O}(BTQ^d \log Q)$	$\mathcal{O}(BTq^d)$	$\mathcal{O}(BTQ^d)$

For steps (i) and (iii), the complexity of the existing methods for computing diffeomorphisms in the high-dimensional image space is $\mathcal{O}(BTQ^d \log Q)$; in contrast, it has been shown that the complexity of Geo-SIC is $\mathcal{O}(BTq^d \log q)$. For step (ii), we convert the transformation into the spatial domain via FFT ($\mathcal{O}(BQ^d \log Q)$). We consider steps (i) and (iii) computationally dominant along with the integration of time-dependent transformation fields, and step (ii) is a one-time computation at the fixed time point t = 1.

Our algorithm reduces the overall complexity from $\mathcal{O}(BTQ^d \log Q)$ to $\mathcal{O}(BTq^d \log q)$ and memory consumption from $\mathcal{O}(BTq^d)$ to $\mathcal{O}(BTQ^d)$, where $q \ll Q$ and Q lies in a high-dimensional imaging domain (e.g., a brain MRI with 256³ volxes). Please refer to our experimental section for a comparison of the run time and memory consumption between Geo-SIC and Lagomorph.

References

- [1] Hinkle, J., Womble, D., Yoon, H.J.: Diffeomorphic autoencoders for lddmm atlas building (2018)
- [2] Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. International Journal of Computer Vision 97(2), 229–241 (2012)
- [3] Zhang, M., Liao, R., Dalca, A.V., Turk, E.A., Luo, J., Grant, P.E., Golland, P.: Frequency diffeomorphisms for efficient image registration. In: International conference on information processing in medical imaging. pp. 559–570. Springer (2017)