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Abstract

Deformable shapes provide important and complex geometric features of objects
presented in images. However, such information is oftentimes missing or under-
utilized as implicit knowledge in many image analysis tasks. This paper presents
Geo-SIC, the first deep learning model to learn deformable shapes in a deformation
space for an improved performance of image classification. We introduce a newly
designed framework that (i) simultaneously derives features from both image and
latent shape spaces with large intra-class variations; and (ii) gains increased model
interpretability by allowing direct access to the underlying geometric features of
image data. In particular, we develop a boosted classification network, equipped
with an unsupervised learning of geometric shape representations characterized by
diffeomorphic transformations within each class. In contrast to previous approaches
using pre-extracted shapes, our model provides a more fundamental approach by
naturally learning the most relevant shape features jointly with an image classifier.
We demonstrate the effectiveness of our method on both simulated 2D images
and real 3D brain magnetic resonance (MR) images. Experimental results show
that our model substantially improves the image classification accuracy with an
additional benefit of increased model interpretability. Our code is publicly available
at https://github.com/jw4hv/Geo-SIC

1 Introduction

Deformable shapes have been identified to aid image classification for decades, as they capture
geometric features that describe changes and variability of objects with complex structures from
images (5; 18; 26). Bountiful literature demonstrates that the robustness of shapes to variations
in image intensity and texture (e.g., noisy or corrupted data) makes it a reliable cue for image
analysis tasks (31; 26; 43). For example, abnormal shape changes of anatomical structures are strong
predictors of serious diseases and health problems, e.g., brain shrinkage caused by neurodegenerative
disorders (16; 49), irregular heart motions caused by cardiac arrhythmia (3; 8), and pulmonary edema
caused by infectious lung diseases (42; 44). Existing methods have studied various representations of
geometric shapes, including landmarks (7; 9; 14), point clouds (1), binary segmentations (10; 38),
and medial axes (32). A very recent research area in geometric deep learning (11; 33) has investigated
mathematical representations of shapes in the form of analytic graphs or points and then uses them
to synthesize shapes. These aforementioned techniques often ignore objects’ interior structures;
hence do not capture the intricacies of complex objects in images. In contrast, deformation-based
shape representations (based on elastic deformations or fluid flows) focus on highly detailed shape
information from images (13; 35). With the underlying assumption that objects in many generic
classes can be described as deformed versions of an ideal template, descriptors in this class arise
naturally by matching the template to an input image. This procedure is also known as atlas
building (22; 40; 48). The resulting transformation is then considered a shape that reflects geometric
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changes. In this paper, we will feature deformation-based shape representations that offer more
flexibility in describing shape changes and variability of complex structures. However, our developed
framework can be easily adapted to other types of representations, including those characterized by
landmarks, binary segmentations, curves, and surfaces.

Inspired by the advantages of incorporating shape information in image analysis tasks, current deep
learning-based classification networks have been mostly successful in using pre-extracted shapes
from images (45; 29; 7). However, these methods require preprocessed shape data and oftentimes
achieve a suboptimal solution in identifying shape features that are most representative to differentiate
different classes of images. An explicit learning of deformable shapes in deep image classifiers
has been missing. This limits the power of classification models where quantifying and analyzing
geometric shapes is critical.

In this paper, we introduce a novel deep learning image classification model, named as Geo-SIC,
that jointly learns deformable shapes in a multi-template deformation space. More specifically,
Geo-SIC provides an unsupervised learning of deformation-based shape representations via a newly
designed sub-network of atlas building. Different from previous deep learning based atlas building
approaches (15; 20), we employ an efficient parameterization of deformations in a low-dimensional
Fourier space (46) to speed up the training inference. The major contribution of Geo-SIC is three
folds:

(i) In contrast to previous approaches treating shapes as preprocessed objects from images,
Geo-SIC provides a more fundamental approach by merging shape features naturally in the
learning process of classification. To the best of our knowledge, Geo-SIC was the first to
learn deformation-based shape descriptors within an image classifier. It provides an image
distance function of both intensity and geometric changes that are most relevant to classify
different groups.

(ii) Geo-SIC performs a simultaneous feature extraction from both image and learned shape
spaces. With these integrated features, Geo-SIC achieves an improved accuracy and ro-
bustness of image classification. An additional benefit of Geo-SIC is increased model
interpretability because of its access to the underlying geometric features of image data.

(iii) Geo-SIC provides an efficient geometric learning network via atlas building in a compact
and low-dimensional shape space. This reduces the computational complexity of model
training in atlas building, especially for high-dimensional image data (i.e., 3D brain MRIs).

We demonstrate the effectiveness of Geo-SIC on both synthetic 2D images and real 3D brain MR
images. Experimental results show that our model substantially improves the classification accuracy
compared to a wide variety of models without jointly learned geometric features. We then visualize
the class activation maps by using gradient-weighted class activation mapping (Grad-CAM) (36).
The highlighted regions show that Geo-SIC attracts more attention to geometric shape features that
positively contribute to the accuracy of classifiers.

2 Background: Deformation-based Shape Representations via Atlas Building

This section briefly reviews the concept of atlas building (22), which is commonly used to derive
deformation-based shape representations from images. With the underlying assumption that the
geometric information in the deformations conveys a shape, descriptors in this class arise naturally
by matching a template to an input image with smoothness constraints on the deformation field.

Given a number of N images {I1, · · · , IN}, the problem of atlas building is to find a mean or
template image I and deformation fields ϕ1, · · · , ϕN that minimize the energy function

E(I, ϕn) =

N∑
n=1

1

σ2
Dist[I ◦ ϕ−1

n , In] + Reg(ϕn), (1)

where σ2 is a noise variance and ◦ denotes an interpolation operator that deforms image I with an
estimated transformation ϕn. The Dist(·, ·) is a distance function that measures the dissimilarity
between images, i.e., sum-of-squared differences (6), normalized cross correlation (4), and mutual
information (41). The Reg(·) is a regularization that guarantees the smoothness of transformations.
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2.1 Shape Representations In The Tangent Space Of Diffeomorphisms

In many applications, it is natural to require the deformation field to be a diffeomorphism, i.e., a
differentiable, bijective mapping with a differentiable inverse. Shape representations in the space of
diffeomorphic transformations highlight a set of desirable features: (i) they capture large geometric
variations within image groups; (ii) the topology of objects in the image remains intact; and (iii) no
non-differentiable artifacts, such as creases or sharp corners, are introduced. Moreover, a theoretical
framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM) defines a metric in the
space of diffeomorphic transformations that in turn induces a distance metric on the shape space (6).

Given an open and bounded d-dimensional domain Ω ⊂ Rd, we use Diff(Ω) to denote a space of
diffeomorphisms (i.e., a one-to-one smooth and invertible smooth transformation) and its tangent
space V = TDiff(Ω). The LDDMM algorithm (6) provides a distance metric in the deformation-
based shape space, which is used as a regularization of atlas building in Eq. 1. Such a distance metric
is formulated as an integral of the Sobolev norm of the time-dependent velocity field vn(t) ∈ V (t ∈
[0, 1]) in the tangent space, i.e.,

Reg(ϕn) =

∫ 1

0

(Lvn(t), vn(t)) dt, with
dϕ−1

n (t)

dt
= −Dϕ−1

n (t) · vn(t), (2)

where L : V → V ∗ is a symmetric, positive-definite differential operator that maps a tangent vector
v(t) ∈ V into its dual space as a momentum vector m(t) ∈ V ∗. We typically write m(t) = Lv(t),
or v(t) = Km(t), with K being an inverse operator of L. In this paper, we adopt a commonly used
Laplacian operator L = (−α∆+ Id)3, where α is a weighting parameter that controls the smoothness
of transformation fields and Id is an identity matrix. The (·, ·) is a dual pairing, which is similar to
an inner product between vectors. The operator D denotes a Jacobian matrix and · represents an
element-wise matrix multiplication.

According to a well known geodesic shooting algorithm (39), the minimum of Eq. (2) is uniquely
determined by solving a Euler-Poincaré differential equation (EPDiff) (2; 25) with a given initial
condition. This nicely proves that the deformation-based shape descriptor ϕn can be fully character-
ized by an initial velocity field vn(0), which lies in the tangent space of diffeomorphisms. A recent
research further identifies an equivalent but more efficient way to reparameterize these initial velocity
fields in a low-dimensional bandlimited space (46; 47).

Let D̃iff(Ω) and Ṽ denote the bandlimited space of diffeomorphisms and velocity fields respectively.
The EPDiff is reformulated in a complex-valued Fourier space with much lower dimensions, i.e.,

∂ṽn(t)

∂t
= −K̃

[
(D̃ṽn(t))

T ⋆ L̃ṽn(t) + ∇̃ · (L̃ṽn(t)⊗ ṽn(t))
]
, (3)

where ⋆ is the truncated matrix-vector field auto-correlation. Here K̃ is an inverse operator of L̃,
which is the Fourier transform of a Laplacian operator L. The operator D̃ represents the Fourier
frequencies of a Jacobian matrix with central difference approximation, and ∗ is a circular convolution
with zero padding to avoid aliasing 1. The operator ∇̃· is the discrete divergence of a vector field, and
⊗ represents a tensor product between Fourier frequencies.

We are now ready to optimize the problem of atlas building (Eq. (1)) with reduced computational
complexity in a low-dimensional bandlimited space as

E(I, ϕn) =

N∑
n=1

1

σ2
Dist[I ◦ ϕ−1

n , In] + (Lṽn(0), ṽn(0)), s.t. Eq. (2)& (3). (4)

The deformation ϕ−1
n corresponds to ϕ̃−1

n in Fourier space via the Fourier transform F(ϕ−1
n ) = ϕ̃−1

n ,
or its inverse ϕ−1

n = F−1(ϕ̃−1
n ). Note that we will drop the time index t, i.e., ṽn(0)

∆
= ṽn, for

simplified notations in next sections.

1To prevent the domain from growing infinity, we truncate the output of the convolution in each dimension to
a suitable finite set.
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3 Our Method: Geo-SIC

In this section, we present a novel deep image classifier (Geo-SIC) that explicitly learns geometric
shape representations for an improved performance of accuracy, as well as increased model inter-
pretability. Geo-SIC consists of two modules: an unsupervised learning of geometric shapes via an
atlas building network, and a boosted classification network that integrates features from both images
and learned shape spaces. Details of our network architecture are introduced as follows.

Geometric shape learning based on an atlas building network. Let (θEg , θ
D
g ) be the parameters

of an encoder-decoder in our geometric learning network. Consider a number of J image classes,
there exists a number of Nj , j ∈ {1, . . . , J} images in each class. Our atlas building network will
learn the shape representations, also known as initial velocity fields ṽn(θEg , θ

D
g ), n ∈ {1, · · · , Nj},

with an updated atlas Ij . We adopt the architecture of UNet (34) in this work, however, other network
structures such as UNet++ (50) and TransUNet (12) can be easily applied.

Boosted image classification network. Let θEc be the parameters of an encoder that extracts
features from image spaces. We develop a feature fusion module that integrates geometric shape and
image features in a latent space parameterized by θgc(θ

E
g , θ

E
c ). This boosted classification network

will predict a class label ynj(θgc) for each input image.

Network loss. The loss function of Geo-SIC includes the loss from both geometric learning and
classification network. Given a set of image class labels ŷnj , we define Θ = (θEg , θ

D
g , θ

E
c , θgc) for all

network parameters and formulate the total loss of Geo-SIC as

l(Θ) =

Nj∑
n=1

J∑
j=1

[
1

σ2
j

∥Ij ◦ ϕ−1
nj

(
ṽnj(θ

E
g , θ

D
g )

)
− Inj∥2 + (L̃j ṽnj(θ

E
g , θ

D
g ), ṽnj(θ

E
g , θ

D
g ))

− λŷnj · log ynj(θgc)] + reg(Θ), s.t. Eq. (2)& (3), (5)

where reg(·) is a regularity term on the network parameters.

An overview of our proposed Geo-SIC network is shown in Fig. 1.

Network loss

�  vn j(θE
g , θD

g )

Geometric shape learning via atlas building network

�yn j(θgc)

Boosted classifier 

Atlas �Ij
Velocity  

fileds

Feature fusion

Class labelInput data

Figure 1: An overview of our proposed Geo-SIC network.

3.1 Alternating Optimization For Network Training

We develop an alternating optimization scheme (30) to minimize the network loss defined in Eq. (5).
All parameters are optimized jointly by alternating between the training of geometric shape learning
and image classification networks.
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Training of geometric shape learning via atlas building. In contrast to current approaches that
parameterize deformation-based shapes in a high-dimensional image space (20; 15), our model
employs an efficient reparameterization in a low-dimensional bandlimited space (46). This makes the
computation of geodesic constraints (Eq. (2) and Eq. (3)) required in the loss function substantially
faster in each forward/backward propagation during the training process. The loss of training in the
sub-module of atlas building network is

lGeo(θ
E
g , θ

D
g , Ij) =

Nj∑
n=1

J∑
j=1

[
1

σ2
j

∥Ij ◦ ϕ−1
nj

(
ṽnj(θ

E
g , θ

D
g )

)
− Inj∥2 + (L̃j ṽnj(θ

E
g , θ

D
g ), ṽnj(θ

E
g , θ

D
g ))

+ reg(θEg , θ
D
g ), s.t. Eq. (2)& (3), (6)

Similar to (20; 15), we treat atlas Ij as a network parameter and update it accordingly. To guarantee
the network optimization stays in the tangent space of diffeomorphisms, we pull back the network
gradient with regard to initial velocity fields by backward integrating adjoint jacobi fields (46) each
time after the forward pass. More details are included in the supplementary materials.

Training of boosted image classifier. As highlighted in the red box in Fig. 1, Geo-SIC extracts
both images and geometric features and then integrates them into a feature fusion block. This boosted
classifier is optimized over the loss defined as

lSIC(θgc) = −λ

Nj∑
n=1

J∑
j=1

ŷnj · log ynj
(
θgc(θ

E
g , θ

E
c )

)
+ reg

(
θgc(θ

E
g , θ

E
c )

)
. (7)

A summary of our joint learning of Geo-SIC through an alternating optimization is in Alg. 1.

Algorithm 1: Joint learning of Geo-SIC.
Input :A set of images {Inj} with class labels {ŷnj} and a number of iterations r.
Output :Predicted class label, atlas, and initial velocity fields.

1 for i = 1 to r do
/* Train geometric learning network */

2 Minimize the atlas building loss in Eq. (6);
3 Output the atlases {Ij} and predicted initial velocity fields {vnj} for all image classes;

/* Train the boosted image classifier */
4 With learned shape features, Minimizing the boosted classification loss in Eq. (7);
5 Output the predicted class labels {ŷnj};
6 end
7 Until convergence

4 Experimental Evaluation

4.1 Data

2D data set. We choose 50000 images (including five classes, circle, cloud, envelope, square, and
triangle are shown in Fig 3) of Google Quickdraw dataset (21), a collection of categorized drawings
contributed by online players in a drawing game. We run affine transformation within each class as
prepossessing and upsample each image from 28× 28 to 100× 100.

3D brain MRI. For brain data, we include 373 public T1-weighted brain MRI scans from Open
Access Series of Imaging Studies (OASIS) (17). All 150 subjects are aged from 60 to 96 with
Alzheimer’s disease diagnosis (79 cases for dementia and 71 cases for non-demented). All MRIs
were all pre-processed as 256× 256× 256, 1.25mm3 isotropic voxels, and underwent skull-stripped,
intensity normalized, bias field corrected, and pre-aligned with affine transformation.
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4.2 Experiments

Classification evaluation. We demonstrate the effectiveness of our model on both 2D synthetic data
and 3D brain MRI scans. We select four classification backbones (AlexNet (23), a five-block 3D CNN,
ResNet18 (19), and VGG19 (37)) as baseline methods. For CNN, we use a 3D convolutional layer
with a 5× 5× 5 convolutional kernel size, a batch normalization (BN) layer with activation functions
(PReLU or ReLU), and a 2× 2× 2 3D max-pooling in each CNN block. For a fair comparison, we
show the results of Geo-SIC by replacing the backbone in our model with all baselines (named as
Geo-SIC:Alex, Geo-SIC:CNN, Geo-SIC:Res, and Geo-SIC:VGG).

To further investigate the advantages of our joint learning, we compare with two-step approaches
(Two-step Alex, Two-step CNN, Two-step Res, and Two-step VGG), where the geometric learning
network is treated as a preprocessing step for geometric feature extraction. We report the average
accuracy, F1-score, AUC, sensitivity, and specificity for all methods. We also show the receiver
operating characteristic (ROC) curves by plotting the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings.

Robustness and interpretability. We demonstrate the robustness of Geo-SIC to variations in image
intensity by adding different scales of universal adversarial noises (28; 27) in both 2D and 3D images.
We adopt an iterative algorithm (27) that computes the universal perturbations to send perturbed
images outside of the decision boundary of the classifier while fooling most images without visibly
changing image data. We then compare the image classification accuracy for the baseline (selected
from the best performance in backbones) and our model.

To better understand the model interpretability in terms of network attention of all models, we
visualize the Grad-CAM (36) of the last neural network layer.

Atlas evaluation. We also evaluate the performance of our newly designed atlas building network,
which serves as a core part of Geo-SIC. We compare the estimated atlas of Geo-SIC that achieves the
highest AUC with three atlas-building methods: a diffeomorphic autoencoder (20) (LagoMorph), a
deep learning based conditional template estimation method (15) (Con-Temp) and a Bayesian atlas
building framework with hyper priors (40) (Hier-Baye).

We report the total computational time and memory consumption on 3D real brain images. To measure
the sharpness of estimated atlas I , we adopt a metric of normalized standard deviation computed
from randomly selected 4000 image patches (24). Given M(i), a patch around a voxel i of an atlas I ,
the local measure of the sharpness at voxel i is defined as sharpness(I(i)) = sdM(i)(I)/avgM(i)(I),
where sd and avg denote the standard deviation and the mean of Mi.

Parameter Setting. We set an optimal dimension of the low-dimensional shape representation as
162 for 2D dataset and 323 for 3D dataset. We set parameter α = 3 for the operator L̃, the number of
time steps for Euler integration in EPDiff (Eq. (3)) as 10. We set the noise variance σ = 0.02. We set
the batch size as 16 and use the cosine annealing learning rate schedule that starts from a learning rate
η = 1e− 3 for network training. We run 1000 epochs with the Adam optimizer and save networks
with the best validation performance for all models. All networks are trained with an i7, 9700K CPU
with 32 GB internal memory. The training and prediction procedure of all learning-based methods
are performed on four Nvidia GTX 2080Ti GPUs. For both 2D and 3D datasets, we split the images
by using 70% as training images, 15% as validation images, and 15% as testing images.

4.3 Results

4.3.1 Classification on 2D synthetic images

Table. 1 reports the classification performance across all methods over model accuracy and five micro-
averaged evaluation metrics. Our method achieves the highest model accuracy with comparable
micro-averaged AUC, F-1 score, precision, sensitivity, and specificity. Compare to all baselines
including two-step approaches, Geo-SIC achieves the best classification performance.

Fig. 2 visualizes the micro-averages ROC curve for baselines and our proposed Geo-SIC. For four
sets of comparisons, all curves produced by our classifiers are with a larger AUC and are closer to the
top-left corner, which indicates a better classification performance.
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Table 1: Classification performance comparison on 2D synthetic data over six metrics (micro-average).

Models Accuracy AUC F-1 score Precision Sensitivity Specificity
AlexNet 0.880 0.931 0.876 0.914 0.880 0.920

Two-step AlexNet 0.891 0.955 0.891 0.906 0.891 0.905
Geo-SIC: Alex 0.928 0.977 0.927 0.950 0.928 0.952

CNN 0.861 0.928 0.857 0.874 0.861 0.881
Two-step CNN 0.869 0.931 0.866 0.914 0.869 0.918
Geo-SIC: CNN 0.897 0.954 0.898 0.911 0.897 0.910

ResNet18 0.875 0.941 0.877 0.885 0.875 0.883
Two-step Res 0.911 0.972 0.912 0.935 0.911 0.883
Geo-SIC: Res 0.935 0.983 0.928 0.948 0.935 0.956

VGG19 0.883 0.946 0.882 0.904 0.883 0.905
Two-step VGG 0.895 0.951 0.888 0.909 0.895 0.919
Geo-SIC: VGG 0.927 0.980 0.924 0.957 0.927 0.960
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Figure 2: ROC curves of multi-class classification comparison between baselines and the proposed
method.

Fig. 3 (left) displays the heat maps overlaid with 2D QuickDraw data for all methods. Geo-SIC
produces more explainable heat maps that are geometrically aligned with the original shapes. It
indicates that the latent shape space attracts more attention to geometric features that positively
contribute to the performance of classifiers. Fig. 3 (right) visualizes a comparison of atlases generated
by baselines and Geo-SIC. It shows that Geo-SIC produces image atlases with the best visual quality,
e.g., clearer circle/cloud edges, and sharper triangle/square corners.

AlexNet Geo-SIC: 
Alex

CNN VGG19 ResNet18Geo-SIC: 
CNN

Geo-SIC: 
VGG

Geo-SIC: 
Res Hier-BayeCon-tempLagoMorph Geo-SIC

Figure 3: Left: visualization of Grad-CAMs on mutil-atlas building task of five different geometric
shapes.; Right: atlas comparison between state-of-the-arts and Geo-SIC.

4.3.2 Classification on 3D real brain MRIs

Table. 2 reports the model performance for brain images. Our method Geo-SIC outperforms all
baselines with comparable accuracy, AUC, F1-score, precision, sensitivity, and specificity. It shows
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that Geo-SIC substantially improves the classification performance with a reduced misclassification
rate.

Table 2: Classification performance comparison on 3D brain images over six metrics.

Models Accuracy AUC F-1 score Precision Sensitivity Specificity
AlexNet 0.791 0.861 0.796 0.787 0.806 0.775

Two-step AlexNet 0.800 0.887 0.809 0.822 0.796 0.804
Geo-SIC: Alex 0.835 0.917 0.827 0.823 0.831 0.839

CNN 0.779 0.860 0.773 0.804 0.744 0.814
Two-step CNN 0.788 0.883 0.791 0.794 0.787 0.789
Geo-SIC: CNN 0.824 0.902 0.828 0.833 0.822 0.825

ResNet18 0.805 0.887 0.811 0.813 0.809 0.800
Two-step Res 0.833 0.917 0.836 0.804 0.870 0.797
Geo-SIC: Res 0.873 0.933 0.874 0.874 0.874 0.872

VGG19 0.805 0.871 0.813 0.807 0.818 0.790
Two-step VGG 0.865 0.880 0.838 0.822 0.854 0.826
Geo-SIC: VGG 0.852 0.930 0.850 0.820 0.881 0.825

Fig. 4 visualizes the ROC curves for all algorithms. For four sets of comparisons, our boosted
classifiers offer curves closer to the top-left corner with higher AUC values. It shows that Geo-SIC
has better performance in distinguishing between healthy control and Alzheimer’s disease groups.
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Figure 4: ROC curves of binary classification comparison for baselines, two-step approaches, and
Geo-SIC.

4.3.3 Robustness and interpretability

Fig. 5 shows that Geo-SIC consistently achieves better classification accuracy (∼ 10% higher in
average ) than baseline algorithms (i.e., VGG19) across different levels of adversarial attacks (i.e.,
ϵ = 5e− 3, 5e− 2, 5e− 1) on image intensity. This indicates that our model is able to improve the
classification model robustness by providing jointly learned geometric features.
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Figure 5: Classification accuracy comparison between baseline and Geo-SIC under different scales
of adversarial noise attack for 2D and 3D image classification.
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Fig. 6 displays the heat maps (produced by Grad-CAM) overlaid with brain MRIs. Our generated
heat maps are fairly aligned with brain structures (e.g., ventricle), which are critical to Alzheimer’s
disease diagnosis. It profiles the fact that the latent geometric features guide the neural networks to
capture the most anatomically meaningful brain regions for distinguishing healthy vs. disease groups.
For both dementia and non-dementia cases, the heat maps of Geo-SIC are more explainable. This
shows that our model has great clinical potential for better analysis of Alzheimer’s disease.
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AlexNet
Geo-SIC: 

Alex CNN VGG19 ResNet18
Geo-SIC: 

CNN
Geo-SIC: 

VGG
Geo-SIC: 

Res

Figure 6: Visualization of Grad-CAMs on single-atlas building of dementia and non-dementia.
Left to right: Grad-CAM heatmaps generated by AlexNet, Geo-SIC:Alex, CNN, Geo-SIC:CNN,
ResNet18, Geo-SIC:Res, VGG19 and Geo-SIC:VGG.

4.3.4 Atlas of 3D images

Fig. 7 (top) visualizes a comparison of the atlas on real brain MRI scans. With the benefits of
reparameterizing the deformation fields in a low-dimensional bandlimited space (46), our model
obtains better quality of the atlas with sharper details. More specifically, Geo-SIC offers a better brain
atlas with clearer anatomical structures, e.g., ventricle, grey and white matter. Fig. 7 (bottom left)
quantitatively reports the sharpness metric of all methods. Fig. 7 (bottom right) shows the comparison
of computational time and memory consumption across all methods. Although Con-Temp is slightly
faster than Geo-SCI due to a very different parameterization of velocity fields (stationary velocity
rather than the time-dependent velocity in other methods), it achieves a less sharp atlas and still
requires larger memory consumption than our model. Compared with the other methods (Lagomorph
and Hier-Baye) that employ time-dependent velocity fields, Geo-SIC substantially reduces time
consumption and memory consumption.

5 Conclusions & Discussion

This paper presents a novel deep learning model, named as Geo-SIC, that for the first time incorporates
deformable geometric shape learning into deep image classifiers. We jointly learn a boosted classifier
with an unsupervised shape learning network via atlas building. To achieve this goal, we define a new
joint loss function with an alternating optimization scheme. An additional benefit is that Geo-SIC
provides efficient shape representations in a low-dimensional bandlimited space. Experimental
results on both 2D synthetic data and 3D brain MRI scans show that our model gains an improved
classification performance while producing a sharper atlas with better visual quality. In addition,
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Figure 7: Top: atlas comparison between state-of-the-arts and Geo-SIC. Bottom left: sharpness
metric evaluation of atlas (the higher the better).The mean values of the sharpness metric of three
baselines and Geo-SIC are, 0.259, 0.235, 0.218, and 0.2867; bottom left: average time and memory
consumption comparison for atlas building.

compared with the state-of-the-arts, our model is more explainable in terms of interpreting the
network attention on geometric features. The theoretical tools developed in this paper are generic to a
wide variety of combinations of shape representations and classification backbones. Geo-SIC not only
has a great potential to impact clinically diagnostic routines, such as Alzheimer’s disease detection,
or post-treatment for patient care, but also bridges the gap between the developed deformable shape
learning theories and classification-based applications. Future work to extend our Geo-SIC can be (i)
modeling multiple templates within each class to capture multimodal image distributions, and (ii)
incorporating images with missing data values that are caused by occlusions, or appearance changes
such as tumor growth.
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