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Abstract

In computer-aided drug discovery (CADD), virtual screening (VS) is used for
identifying the drug candidates that are most likely to bind to a molecular target
in a large library of compounds. Most VS methods to date have focused on using
canonical compound representations (e.g., SMILES strings, Morgan fingerprints)
or generating alternative fingerprints of the compounds by training progressively
more complex variational autoencoders (VAEs) and graph neural networks (GNNs).
Although VAEs and GNNs led to significant improvements in VS performance,
these methods suffer from reduced performance when scaling to large virtual com-
pound datasets. The performance of these methods has shown only incremental
improvements in the past few years. To address this problem, we developed a novel
method using multiparameter persistence (MP) homology that produces topological
fingerprints of the compounds as multidimensional vectors. Our primary contri-
bution is framing the VS process as a new topology-based graph ranking problem
by partitioning a compound into chemical substructures informed by the periodic
properties of its atoms and extracting their persistent homology features at multiple
resolution levels. We show that the margin loss fine-tuning of pretrained Triplet
networks attains highly competitive results in differentiating between compounds
in the embedding space and ranking their likelihood of becoming effective drug
candidates. We further establish theoretical guarantees for the stability properties
of our proposed MP signatures, and demonstrate that our models, enhanced by the
MP signatures, outperform state-of-the-art methods on benchmark datasets by a
wide and highly statistically significant margin (e.g., 93% gain for Cleves-Jain and
54% gain for DUD-E Diverse dataset).

1 Introduction

Drug discovery is the early phase of the pharmaceutical R&D pipeline where machine learning (ML)
is making a paradigm-shifting impact [31, 91]. Traditionally, early phases of biomedical research
involve the identification of targets for a disease of interest, followed by high-throughput screening
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Loading [MathJax]/extensions/MathMenu.jsFigure 1: Comparison of virtual screening performance. Each bubble’s diameter is proportional to its EF score. ToDD offers significant
gain regardless of the choice of classification model such as random forests (RF), vision transformer (ViT) or a modernized ResNet architecture
ConvNeXt. The standard performance metricEFα% is defined as 100

α , and therefore the maximum attainable value is 50 forEF2%, and 100
forEF1%

.

(HTS) experiments to determine hits within the synthesized compound library, i.e., compounds with
high potential. Then, these compounds are optimized to increase potency and other desired target
properties. In the final phases of the R&D pipeline, drug candidates have to pass a series of rigorous
controlled tests in clinical trials to be considered for regulatory approval. On average, this process
takes 10-15 years end-to-end and costs in excess of ∼ 2 billion US dollars [10]. HTS is highly time
and cost-intensive. Therefore, it is critical to find good potential compounds effectively for the HTS
step for novel compound discovery, but also to speed up the pipeline and make it more cost-effective.
To address this need, ML augmented virtual screening (VS) has emerged as a powerful computational
approach to screen ultra large libraries of compounds to find the ones with desired properties and
prioritize them for experimentation [65, 40].

In this paper, we develop novel approaches for virtual screening by successfully integrating topological
data analysis (TDA) methods with ML and deep learning (DL) tools. We first produce topological
fingerprints of compounds as 2D or 3D vectors by using TDA tools, i.e., multidimensional persistent
homology. Then, we show that Triplet networks, (where state-of-the-art pretrained transformer-based
models and modernized convolutional neural network architectures serve as the backbone and distinct
topological features allow to represent support and query compounds), successfully identify the
compounds with the desired properties. We also demonstrate that the applicability of topological
feature maps can be successfully generalized to traditional ML algorithms such as random forests.

The distinct advantage of TDA tools, in particular persistent homology (PH), is that it enables effective
integration of the domain information such as atomic mass, partial charge, bond type (single, double,
triple, aromatic ring), ionization energy or electron affinity, which carry vital information regarding the
chemical properties of a compound at multiple resolution levels during the graph filtration step. While
common PH theory allows only one such domain function to be used in this process, with our novel
multipersistence approach, we show it is possible to use more than one domain function. Topological
fingerprints can effectively carry much finer chemical information of the compound structure informed
by the multiple domain functions embedded in the process. Specifically, multiparameter persistence
homology decomposes a 2D graph structure of a compound into a series of subgraphs using domain
functions and generates hierarchical topological representations in multiple resolution levels. At each
resolution stage, our algorithm sequentially generates finer topological fingerprints of the chemical
substructures. We feed these topological fingerprints to suitable ML/DL methods, and our ToDD
models achieve state-of-the-art in all benchmark datasets across all targets (See Table 1 and 2).

The key contributions of this paper are:

• We develop a transformative approach to generate molecular fingerprints. Using multiper-
sistence, we produce highly expressive and unique topological fingerprints for compounds
independent of scale and complexity. This offers a new way to describe and search chemical
space relevant to both drug discovery and development.

• We bring a new perspective to multiparameter persistence in TDA and produce a com-
putationally efficient multidimensional fingerprint of chemical data that can successfully
incorporate more than one domain function to the PH process. These MP fingerprints
harness the computational strength of linear representations and are suitable to be integrated
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into a broad range of ML, DL, and statistical methods; and open a path for computationally
efficient extraction of latent topological information.

• We prove that our multidimensional persistence fingerprints have the same important sta-
bility guarantees as the ones exhibited by the most currently existing summaries for single
persistence.

• We perform extensive numerical experiments in VS, showing that our ToDD models outper-
form all state-of-the-art methods by a wide margin (See Figure 1).

2 Related Work

2.1 Virtual Screening

A key step in the early stages of the drug discovery process is to find active compounds that will
be further optimized into potential drug candidates. One prevalent computational method that is
widely used for compound prioritization with desired properties is virtual screening (VS). There
are two major categories, i.e., structure-based virtual screening (SBVS) and ligand-based virtual
screening (LBVS) [20]. SBVS uses the 3D structural information of both ligand (compound) and
target protein as a complex [12, 52, 86]. SBVS methods generally require a good understanding of
3D-structure of the target protein to explore the different poses of a compound in a binding pocket of
the target. This makes the process computationally expensive. On the other hand, LBVS methods
compare structural similarities of a library of compounds with a known active ligand [79, 69] with
an underlying assumption that similar compounds are prone to exhibit similar biological activity.
Unlike SBVS, LBVS only uses ligand information. The main idea is to produce effective fingerprints
of the compounds and use ML tools to find similarities. Therefore, computationally less expensive
LBVS methods can be more efficient with larger chemical datasets especially when the structure of
the target receptor is not known [56].

In the last 3 decades, various LBVS methods have been developed with different approaches and
these can be categorized into 3 classes depending on the fingerprint they produce: SMILES [81] and
SMARTS [29] are examples of 1D-methods which produce 1D-fingerprints, compressing compound
information to a vector. RASCAL [78], MOLPRINT2D [9], ECFP [80], CDK-graph [97],CDK-
hybridization [85],SWISS [103], Klekota-Roth [53], MACSS [29], E-state [36] and SIMCOMP [37]
are among 2D methods which uses 2D-structure fingerprint and graph matching. Finally, examples
of 3D-methods are ROCS [38], USR [8], PatchSurfer [42] which use the 3D-structure of compounds
and their conformations (3D-position of the compound) [84]. On the other hand, while ML methods
have been actively used in the field for the last two decades, new deep learning methods made a huge
impact in drug discovery process in the last 5 years [88, 52, 82]. Further discussion of state-of-the-art
ML/DL methods are given in Section 6 where we compare our models and benchmark against them.

2.2 Topological Data Analysis

TDA and tools of persistent homology (PH) have recently emerged as powerful approaches for
ML, allowing us to extract complementary information on the observed objects, especially, from
graph-structured data. In particular, PH has become popular for various ML tasks such as clustering,
classification, and anomaly detection, with a wide range of applications including material science [68,
43], insurance [99, 46], finance [55], and cryptocurrency analytics [33, 4, 73]. (For more details see
surveys [6, 22] and TDA applications library [34]) Furthermore, it has become a highly active research
area to integrate PH methods into geometric deep learning (GDL) in recent years [41, 100, 19, 23].
Most recently, the emerging concepts of multipersistence (MP) are proposed to advance the success
of single parameter persistence (SP) by allowing the use of more than one domain function in the
process to produce more granular topological descriptors of the data. However, the MP theory is not
sufficiently mature as it suffers from the nonexistence of the barcode decomposition relating to the
partially ordered structure of the index set {(αi, βj)} [57, 89]. The existing approaches remedy this
issue via slicing technique by studying one-dimensional fibers of the multiparameter domain [18],
but choosing these directions suitably and computing restricted SP vectorizations are computationally
costly which makes the approach inefficient in real life applications. There are several promising
recent studies in this direction [11, 93, 24], but these approaches fail to provide a practical topological
summary such as “multipersistence diagram”, and an effective MP vectorization to be used in real
life applications.
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2.3 TDA in Virtual Screening

In [16, 15, 14], the authors obtained successful results by integrating single persistent homology
outputs with various ML models. Furthermore, in [50], the authors used multipersistence homology
with fibered barcode approach in the 3D setting and obtained promising results. In the past few
years, TDA tools were also successfully combined with various deep learning models for SBVS and
property prediction [71, 72]. In [66, 45, 61, 95, 62], the authors successfully used TDA methods to
generate powerful molecular descriptors. Then, by using these descriptors, they highly boosted the
performance of various ML/DL models and outperformed the existing models in several benchmark
datasets. For a discussion and comparison of TDA techniques with other approaches in virtual
screening and property prediction, see the review article [70]. In this paper, we follow a different
approach and propose a framework by adapting multipersistence homology to VS process which
produces fine topological fingerprints which are highly suitable for ML/DL methods.

3 Background

We first provide the necessary TDA background for our machinery. While our techniques are
applicable to various forms of data, e.g., point clouds and images (for details, see Section B.2), here
we focus on the graph setup in detail with the idea of mapping the atoms and bonds that make up a
compound into a set of nodes and edges that represent an undirected graph.

3.1 Persistent Homology

Persistent homology (PH) is a key approach in TDA, allowing us to extract the evolution of subtler
patterns in the data shape dynamics at multiple resolution scales which are not accessible with more
conventional, non-topological methods [17]. In this part, we go over the basics of PH machinery on
graph-structured data. For further background on PH, see Appendix A.1 and [27, 30].

For a given graph G, consider a nested sequence of subgraphs G1 ⊆ . . . ⊆ GN = G. For each
Gi, define an abstract simplicial complex Ĝi, 1 ≤ i ≤ N , yielding a filtration, a nested sequence
of simplicial complexes Ĝ1 ⊆ . . . ⊆ ĜN . This step is crucial in the process as one can inject
domain information to the machinery exactly at this step by using a filtering function from domain,
e.g., atomic mass, partial charge, bond type, electron affinity, ionization energy (See Appendix
A.1). After getting a filtration, one can systematically keep track of the evolution of topological
patterns in the sequence of simplicial complexes {Ĝi}Ni=1. A k-dimensional topological feature
(or k-hole) may represent connected components (0-dimension), loops (1-dimension) and cavities
(2-dimension). For each k-dimensional topological feature σ, PH records its first appearance in
the filtration sequence, say Ĝbσ , and first disappearence in later complexes, Ĝdσ with a unique pair
(bσ, dσ), where 1 ≤ bσ < dσ ≤ N . We call bσ the birth time of σ and dσ the death time of σ. We call
dσ−bσ the life span (or persistence) of σ. PH records all these birth and death times of the topological
features in persistence diagrams. Let 0 ≤ k ≤ D where D is the highest dimension in the simplicial
complex ĜN . Then kth persistence diagram PDk(G) = {(bσ, dσ) | σ ∈ Hk(Ĝi) for bσ ≤ i < dσ}.
Here, Hk(Ĝi) represents the kth homology group of Ĝi which keeps the information of the k-holes in
the simplicial complex Ĝi. Most common dimensions used in practice are 0 and 1, i.e., PD0(G) and
PD1(G). For sake of notations, further we skip the dimension (subscript k). With the intuition that
the topological features with long life spans (persistent features) describe the hidden shape patterns in
the data, these persistence diagrams provide a unique topological fingerprint of G. We give the further
details of the PH machinery and how to integrate domain information into the process in Appendix
A.1.

3.2 Multidimensional Persistence

MultiPersistence (MP) significantly boosts the performance of the single parameter persistence
technique described in Appendix A.1. The reason for the term “single” is that we are filtering the
data in only one direction G1 ⊂ · · · ⊂ GN = G. As explained in Appendix A.1, the construction of
the filtration is the key step to inject domain information to process and to find the hidden patterns of
the data. If one uses a function f : V → R which has valuable domain information, then this induces
a single parameter filtration as above. However, various data have more than one domain function
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to analyze the data, and using them simultaneously would give a much better understanding of the
hidden patterns. For example, if we have two functions f, g : V → R (e.g., atomic mass and partial
charge) with valuable complementary information of the network (compound), MP idea is presumed
to produce a unique topological fingerprint combining the information from both functions. These
pair of functions f, g induces a multivariate filtering function F : V → R2 with F (v) = (f(v), g(v)).
Again, one can define a set of nondecreasing thresholds {αi}m1 and {βj}n1 for f and g respectively.
Let Vij = {vr ∈ V | f(vr) ≤ αi, g(vr) ≤ βj}, i.e., Vij = F (vr) ⪯ (αi, βj). Define Gij to be the
induced subgraph of G by Vij , i.e., the smallest subgraph of G generated by Vij . Then, instead of a
single filtration of complexes {Ĝi}, we get a bifiltration of complexes {Ĝij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
which is a m× n rectangular grid of simplicial complexes. Again, the MP idea is to keep track of the
k-dimensional topological features in this grid {Ĝij} by using the corresponding homology groups
{Hk(Ĝij)} (MP module).

As noted in Section 2, because of the technical problems related to partially ordered structure of the
MP module, the MP theory has no sound definition yet (e.g., birth/death time of a topological feature
in MP grid), and there is no effective way to facilitate this promising idea in real life applications. In
the following, we overcome this problem by producing highly effective fingerprints by utilizing the
slicing idea in the MP grid in a structured way.

4 New Topological Fingerprints of the Compounds with Multipersistence

ToDD framework produces fingerprints of compounds as multidimensional vectors by expanding
single persistence (SP) fingerprints (Appendix A.1). While our construction is applicable and
suitable for various forms of data, here we focus on graphs, and in particular, compounds for virtual
screening. We obtain a 2D matrix (or 3D array) for each compound as its fingerprint employing 2 or
3 functions/weights (e.g., atomic mass, partial charge, bond type, electron affinity, ionization energy)
to perform graph filtration. We explain how to generalize our framework to other types of data in
Appendix B.2. In Appendix B.4, we construct the explicit examples of MP Fingerprints for most
popular SP Vectorizations, e.g., Betti, Silhouette, Landscapes.

Our framework basically expands a given SP vectorization to a multidimensional vector by utilizing
MP approach. In technical terms, by using the existing SP vectorizations, we produce multidi-
mensional vectors by effectively using one of the filtering direction as slicing direction in the
multipersistence module. We explain our process in three steps.

Step 1 - Bifiltrations: This step basically corresponds to obtaining relevant substructures from the
given compound in an organized way. Here, we give the computationally most feasible method,
called sublevel bifiltration with 2 functions. Depending on the task and dataset, the other filtration
types or more functions/weights can be more useful. In Section B.5, we give details for other filtration
methods we use in our experiments. i.e., Vietoris-Rips (distance) and weight filtration.

Let f, g : V → R be two filtering functions with threshold sets {αi}mi=1 and {βj}nj=1 respectively
(e.g., f is atomic mass, and g is partial charge). Let Vi = {vr ∈ V | f(vr) ≤ αi} and let Gi be
the induced subgraph of G by Vi, i.e. add any edge in G whose endpoints are in Vi. Similarly, let
Vij = {vr ∈ V | f(vr) ≤ αi and g(vr) ≤ βj} ⊂ Vi. Let Gij be the induced subgraph of Gi by
Vij . Then, define Ĝij as the clique complex of Gij (See Section A.1). In particular, by using the first
function (f ), we filter G in one (say vertical) direction {Gi}. Then, by using the second function
(g), we filter each Gi in horizontal direction and obtain a bifiltration {Gij}. These subgraphs {Gij}
represent the induced substructures of the compound G by using the filtering functions f and g.

In Figure 2 and 3, we give an example of sublevel bifiltration of the compound cytosine by atomic
number and partial charge functions. In Figure 2, atom types are coded by their color. Atomic
numbers are given in the parenthesis. White=Hydrogen (1), Gray=Carbon (6), Blue=Nitrogen (7),
and Red=Oxygen (8). The decimal numbers next to atoms represent their partial charges.

Step 2 - Persistence Diagrams: After constructing the bifiltration Ĝij , the second step is to obtain
persistence diagrams for each row. By restricting the bifiltration to a single row, for each 1 ≤ i0 ≤ m,
one obtains a single filtration Ĝi01 ⊆ Ĝi02 . . . ⊆ Ĝi0n in horizontal direction. This is called a
horizontal slice in the bipersistence module. Each such single filtration induces a persistence diagram
PD(Gi) = {(bj , dj) | 0 ≤ bj < dj ≤ n}. This produces m persistence diagrams {PD(Gi)}. Notice
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that one can consider PD(Gi) as the single persistence diagram of the "substructure" Gi filtered by
the second function g (See Section A.1).

Step 3 - Vectorization: The final step is to use a vectorization on these m persistence diagrams. Let
φ be a single persistence vectorization, e.g., Betti, Silhouette, Entropy, Persistence Landscape or
Persistence Image. Specifically, we use Betti to ease computational complexity. By applying the
chosen SP vectorization φ to each PD, we obtain a function φi = φ(PD(Gi)) where in most cases
it is a single variable function on the threshold domain [0, n], i.e., φi : [1, n] → R. The number
of thresholds m,n are important as it determines the size of our topological fingerprint. As most
such vectorizations are induced from a discrete set of points PD(G), it is common to express them
as vector in the form φ⃗ = [φ(1) φ(2) . . . φ(n)]. In the examples in Section B.4, we explain this
conversion explicitly for different vectorizations. Hence, we obtain a vector φ⃗i of size 1× n for each
row 1 ≤ i ≤ m.
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Figure 2: Cytosine. Atom types are coded
by their color: White=Hydrogen, Gray=Carbon,
Blue=Nitrogen, and Red=Oxygen. The decimal
numbers next to atoms represent their partial
charges.

Now, we can define our topological fingerprint Mφ which is a
2D-vector (a matrix)

Mi
φ = φ⃗i for 1 ≤ i ≤ m,

where Mi
φ is the ith-row of Mφ. Hence, Mφ is a 2D-vector of

sizem×n. Each row Mi
φ is the vectorization of the persistence

diagram PD(Gi) via the SP vectorization method φ. We use
the first filtering function f to get a finer look at the graph as
it defines the subgraphs G1 ⊆ . . . ⊆ Gm = G. Then, by using
the second function g on each Gi, we record the evolution of
topological features in each Gi as PD(Gi). While this construc-
tion gives our 2D (matrix) fingerprints Mφ, one can also use
3 functions/weights for filtration and obtain a finer 3D (array)
topological fingerprint (Section B.3).

In a way, we look at G with a 2D resolution (functions f and g
as lenses) and keep track of the evolution of topological features
in the induced substructures {Gij}. The main advantage of this
technique is that the outputs are fixed size multidimensional
vectors for each dataset which are suitable for various ML/DL
models.
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Figure 3: Sublevel bifiltration of cytosine is induced by filtering functions atomic charge f and atomic number g. In the horizontal
direction, thresholds α = −0.5,−0.1,+0.3,+0.7 filters the compound into substructures f(v) ≤ α with respect to their partial charge. In
the vertical direction, thresholds β = 1, 6, 7, 8 filters the compound in the substructures g(v) ≤ β with respect to atomic numbers. Each box
∆α,β indexed by their upper right coordinates (α, β) representing the substructure Γα,β = {f(v) ≤ α, g(v) ≤ β}. Whenever two nodes
(atoms) are in the substructure, if there is an edge (bond) between them in the original compound, we include the edge in the substructure.
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4.1 Stability of the MP Fingerprints

We further show that when the source single parameter vectorization φ is stable, then so is its induced
MP Fingerprint Mφ. (We give the details of stability notion in persistence theory and proof of the
following theorem in Section B.1.)

Theorem: Let φ be a stable SP vectorization. Then, the induced MP Fingerprint Mφ is also stable,
i.e., with the notation introduced in Section B.1, there exists Ĉφ > 0 such that for any pair of graphs
G+ and G−, we have the following inequality.

D(Mφ(G+),Mφ(G−)) ≤ Ĉφ ·Dpφ({PD(G+)}, {PD(G−)})

5 Datasets

Cleves-Jain: This is a relatively small dataset [26] that has 1149 compounds.* There are 22 different
drug targets, and for each one of them the dataset provides only 2-3 template active compounds
dedicated for model training, which presents a few-shot learning task. All targets {q} are associated
with 4 to 30 active compounds {Lq} dedicated for model testing. Additionally, the dataset contains
850 decoy compounds (D). The aim is for each target q, by using the templates, to find the actives
Lq among the pool combined with decoys Lq ∪D, i.e., same decoy set D is used for all targets.

DUD-E Diverse: DUD-E (Directory of Useful Decoys, Enhanced) dataset [67] is a comprehensive
ligand dataset with 102 targets and approximately 1.5 million compounds.* The targets are categorized
into 7 classes with respect to their protein type. The "Diverse subset" of DUD-E contains targets
from each category to give a balanced benchmark dataset for VS methods. Diverse subset contains
116,105 compounds from 8 target and 8 decoy sets. One decoy set is used per target.

More detailed information about each dataset can be found in Appendix C.1.

6 Experiments

6.1 Setup

Macro Design We construct different ToDD (Topological Drug Discovery) models, namely ToDD-
ViT, ToDD-ConvNeXt and ToDD-RF to test the generalizability and scalability of topological features
while employing different ML models and training datasets of various sizes. Many neural network
architectural choices and ML models can be incorporated in our ToDD method. ToDD-ViT and
ToDD-ConvNeXt are Triplet network architectures with Vision Transformer (ViT_b_16) [28] and
ConvNeXt_tiny models [63], pretrained on ILSVRC-2012 ImageNet, serving as the backbone of the
Triplet network. MP signatures of compounds are applied nearest neighbour interpolation to increase
their resolutions to 2242, followed by normalization. We only use GaussianBlur with kernel size
52 and standard deviation 0.05 as a data augmentation technique. Transfer learning via fine-tuning
ViT_b_16 and ConvNeXt_tiny models using Adam optimizer with a learning rate of 5e-4, no warmup
or layerwise learning rate decay, cosine annealing schedule for 5 epochs, stochastic weight averaging
for 5 epochs, weight decay of 1e-4, and a batch size of 64 for 10 epochs in total led to significantly
better performance in Enrichment Factor and ROC-AUC scores compared to training from scratch.
The performance of all models was assessed by 5-fold cross-validation (CV).

Due to structural isomerism, molecules with identical molecular formulae can have the same bonds,
but the relative positions of the atoms differ [76]. ViT has much less inductive bias than CNNs,
because locality and translation equivariance are embedded into each layer throughout the entire
network in CNNs, whereas in ViT self-attention layers are global and only MLP layers are translation-
ally equivariant and local [28]. Hence, ViT is more robust to distinct arrangements of atoms in space,
also referred to as molecular conformation. On a small-scale dataset like Cleves-Jain, ViT exhibits
impressive performance. However, the memory and computational costs of dot-product attention
blocks of ViT grow quadratically with respect to the size of input, which limits its application on
large-scale datasets [60, 83]. Another major caveat is that the number of triplets grows cubically with

*Cleves-Jain dataset: https://www.jainlab.org/Public/SF-Test-Data-DrugSpace-2006.zip
*DUD-E Diverse dataset: http://dude.docking.org/subsets/diverse
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Both ToDD-ViT and ToDD-ConvNeXt can encode the pair of distances between a positive query and a negative query against an anchor sample
from the support set.

the size of the dataset. Since ConvNeXt depends on a fully-convolutional paradigm, its inherently
efficient design is viable on large-scale datasets like DUD-E Diverse. As depicted in Figure 4,
ToDD-ViT and ToDD-ConvNeXt project semantically similar MP signatures of compounds from data
manifold onto metrically close embeddings using triplet margin loss with margin α = 1.0 and norm
p = 2 as provided in Equation 1. Analogously, semantically different MP signatures are projected
onto metrically distant embeddings.

L(x, x+, x−) = max(0, α+ ∥f(x)− f(x+)∥p − ∥f(x)− f(x−)∥p) (1)

Sampling Strategy Learning metric embeddings via triplet margin loss on large-scale datasets poses
a special challenge in sampling all distinct triplets (x, x+, x−), and collecting them into a single
database causes excessive overhead in computation time and memory. Let P be a set of compounds,
xi denotes a compound that inhibits the drug target i, and dij = d(xi, xj) ∈ R denotes a pairwise
distance measure which estimates how strongly xi ∈ P is similar to xj ∈ P . The distance metric can
be chosen as Euclidean distance, cosine similarity or dot-product between embedding vectors. We
use pairwise Euclidean distance computed by the pretrained networks in the implementation. Since
triplets (x, x+, x−) with d(x, x−) > d(x, x+) + α have already negative queries sufficiently distant
to the anchor compounds from the support set in the embedding space, they are not sampled to create
the training dataset. We only sample triplets that satisfy d(x, x−) < d(x, x+) (where negative query
is closer to the anchor than the positive) and d(x, x+) < d(x, x−) < d(x, x+) + α (where negative
query is more distant to the anchor than the positive, but the distance is less than the margin).

Enrichment Factor (EF) is the most common performance evaluation metric for VS methods [90].
VS method φ ranks compounds in the database by their similarity scores. We measure the similarity
score using the inverse of Euclidean distance between the embeddings of an anchor and drug candidate.
Let N be the total number of ligands in the dataset, Aφ be the number of true positives (i.e., correctly
predicted active ligands) ranked among the top α% of all ligands (Nα = N · α%) and Nactives be the
number of active ligands in the whole dataset. Then, EFα% = Aφ/Nactives

α/100 . In other words, EFα%
interprets as how much VS method φ enrich the possibility of finding active ligand in the first α%
of all ligands with respect to the random guess. This method is also known as precision at k in the
literature. With this definition, the max score for EFα% is 100

α , i.e., 100 for EF1% and 20 for EF5% .
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6.2 Experimental Results

We compare our methods against the 23 state-of-the-art baselines (see Appendix C.2).

Table 1: Comparison of EF 2%, 5%, 10% and ROC-AUC values between ToDD and other virtual screening
methods on the Cleves-Jain dataset.

Model EF 2% (max. 50) EF 5% (max. 20) EF 10% (max. 10) ROC-AUC

USR [8] 10.0 6.2 4.1 0.76
GZD [92] 13.4 8.0 5.3 0.81
PS [42] 10.7 6.6 4.9 0.78
ROCS [38] 20.1 10.7 6.2 0.83
USR + GZD [84] 13.7 7.7 4.7 0.81
USR + PS [84] 13.1 7.9 5.0 0.80
USR + ROCS [84] 17.1 9.1 5.4 0.83
GZD + PS [84] 16.0 9.1 5.9 0.82
PH_VS [50] 18.6 NA NA NA
GZD + ROCS [84] 20.3 10.8 5.3 0.83
PS + ROCS [84] 20.5 10.7 6.4 0.83

ToDD-RF 35.2±2.3 15.6±1.0 8.1±0.4 0.94±0.02
ToDD-ViT 39.6±1.4 18.6±0.4 9.9±0.1 0.90±0.01

Relative gains 92.9% 83.7% 54.1% 13.3%

Table 2: Comparison of EF 1% (max. 100) between ToDD and other virtual screening methods on 8 targets of
the DUD-E Diverse subset.

Model AMPC CXCR4 KIF11 CP3A4 GCR AKT1 HIVRT HIVPR Avg.

Findsite [101] 0.0 0.0 0.9 21.7 34.2 39.0 1.2 34.7 16.5
Fragsite [102] 4.2 42.5 0.0 32.9 29.1 47.1 2.4 48.7 25.9
Gnina [87] 2.1 15.0 38.0 1.2 39.0 4.1 11.0 28.0 17.3
GOLD-EATL [96] 25.8 20.0 33.5 17.9 34.6 29.2 28.7 23.4 26.6
Glide-EATL [96] 35.5 20.8 30.5 15.1 24.0 31.6 29.0 22.0 26.1
CompM [96] 32.3 25.0 35.5 33.6 37.1 44.2 30.2 25.0 32.9
CompScore [75] 39.6 51.6 51.3 14.0 27.1 37.6 21.8 18.2 32.7

CNN [77] 2.1 5.0 11.2 28.7 12.8 84.6 12.2 9.9 20.8
DenseFS [44] 14.6 5.0 4.3 44.3 20.9 89.4 12.8 8.4 25.0
SIEVE-Score [98] 30.7 61.1 53.4 6.7 33.3 42.1 39.8 38.3 38.2
DeepScore [94] 28.1 56.8 54.3 37.1 40.9 59.0 43.8 62.8 47.9
RF-Score-VSv3 [98] 32.3 60.9 4.5 25.9 32.5 41.9 39.8 65.7 37.9

ToDD-RF 42.9±4.5 92.3±3.2 75.0±5.0 67.6±3.4 78.9±4.0 90.7±1.3 64.1±2.3 92.1±1.5 73.7
ToDD-ConvNeXt 46.2±3.6 84.6±2.8 72.5±3.6 28.8±2.8 46.0±2.0 81.2±2.5 37.5±3.6 74.6±1.0 58.9

Relative gains 16.7% 51.1% 38.1% 52.6% 92.9% 1.5% 46.3% 40.2% 53.9%

Relative gains are relative to the next best performing model. Based on the results (mean and standard
deviation of EF scores evaluated by CV) reported in Table 1 and 2, we observe the following:

• ToDD models consistently achieve the best performance on both Cleves-Jain and DUD-E
Diverse datasets across all targets and EFα% levels.

• ToDD learns hierarchical topological representations of compounds using their atoms’ peri-
odic properties, and captures the complex chemical properties essential for high-throughput
VS. These strong hierarchical topological representations enable ToDD to become a model-
agnostic method that is extensible to state-of-the-art neural networks as well as ensemble
methods like random forests (RF).

• For small-scale datasets such as Cleves-Jain, RF is less accurate than ViT despite regular-
ization by bootstrapping and using pruned, shallow trees, because small variations in the
data may generate significantly different decision trees. For large-scale datasets such as
DUD-E Diverse, ToDD-RF and ToDD-ConvNeXt exhibit comparable performances except
for: CP3A4, GCR and HIVRT. We conclude that transformer-based models are more robust
than convolutional models and RF classifiers despite increased computation time.

6.3 Computational Complexity

Computational complexity (CC) of MP Fingerprint Md
ψ depends on the vectorization ψ used and the

number d of the filtering functions one uses. CC for a single persistence diagram PDk is O(N 3) [74],
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where N is the number of k-simplices. If r is the resolution size of the multipersistence grid, then
CC(Md

ψ) = O(rd · N 3 · Cψ(m)) where Cψ(m) is CC for ψ and m is the number of barcodes in
PDk, e.g., if ψ is Persistence Landscape, then Cψ(m) = m2 [13] and hence CC for MP Landscape
with three filtering functions (d = 3) is O(r3 · N 3 ·m2). On the other hand, for MP Betti summaries,
one does not need to compute persistence diagrams, but the rank of homology groups in the MP
module. Hence, for MP Betti summary, the computational complexity is indeed much lower by
using minimal representations [58, 51]. To expedite the execution time, the feature extraction task is
distributed across the 8 cores of an Intel Core i7 CPU (100GB RAM) running in a multiprocessing
process. See Appendix C.4 for an additional analysis of computation time to extract MP fingerprints
from the datasets. Furthermore, all ToDD models require substantially fewer computational resources
during training compared to current graph-based models that encode a compound through mining
common molecular fragments, a.k.a., motifs [47]. Training time of ToDD-ViT and ToDD-ConvNeXt
for each individual drug target takes less than 1 hour on a single GPU (NVIDIA RTX 2080 Ti).

6.4 Ablation Study

We tested a number of ablations of our model to analyze the effect of its individual components and
to further investigate the effectiveness of our topological fingerprints.

Multimodal Learning We first address the question of how adding different domain information
improves the model performance. In Appendix C.3, we demonstrate one-by-one the importance of
each modality (atomic mass, partial charge and bond type) used for graph filtration to the classification
of each target. We find that their importance varies across targets in a unimodal setting, but the
orthogonality of these information sources offers significant gain in EF scores when the MP signatures
learned from each modality are integrated into a joined multimodal representation. Tables 5, 6, 7
and 8 provide detailed results for the performance of each modality across all drug targets.

Morgan Fingerprints We quantitatively analyze the explainability of our models’ success by
replacing topological fingerprints computed via multiparameter persistence with the most popular
fingerprinting method: Morgan fingerprints. Our results in Appendix C.5 show that ToDD engineers
features that represent the underlying attributes of compounds significantly better than the Morgan
algorithm to identify the active compounds across all drug targets. We provide detailed tabulated
results of our benchmarking study across all drug targets in Tables 10 and 11.

Network Architecture We investigated ways to leverage deep metric learning by architecting i)
a Siamese network trained with contrastive loss, ii) a Triplet network trained with triplet margin
loss, and iii) a Triplet network trained with circle loss. Based on our preliminary experiments, the
embeddings learned by i and iii provide sub-par results for compound classification, hence we use ii.

7 Conclusion

We have proposed a new idea of the topological fingerprints in VS, allowing for deeper insights
into structural organization of chemical compounds. We have evaluated the predictive performance
of our ToDD methodology for computer aided drug discovery on benchmark datasets. Moreover,
we have demonstrated that our topological descriptors are model-agnostic and have proven to be
exceedingly competitive, yielding state-of-the-art results unequivocally over all baselines. A future
research direction is to enrich ToDD with different VS modalities, and use it on ultra-large virtual
compound libraries. It is important to note that this new way of capturing the chemical information
of compounds provides a transformative perspective to every level of the pharmaceutical pipeline
from the very early phases of drug discovery to the final stages of formulation in development.
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