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Abstract

We present a framework for video modeling based on denoising diffusion prob-
abilistic models that produces long-duration video completions in a variety of
realistic environments. We introduce a generative model that can at test-time sam-
ple any arbitrary subset of video frames conditioned on any other subset and present
an architecture adapted for this purpose. Doing so allows us to efficiently compare
and optimize a variety of schedules for the order in which frames in a long video
are sampled and use selective sparse and long-range conditioning on previously
sampled frames. We demonstrate improved video modeling over prior work on
a number of datasets and sample temporally coherent videos over 25 minutes in
length. We additionally release a new video modeling dataset and semantically
meaningful metrics based on videos generated in the CARLA autonomous driving
simulator.

1 Introduction

Generative modeling of photo-realistic videos is at the frontier of what is possible with deep learning
on currently-available hardware. Although related work has demonstrated modeling of short photo-
realistic videos (e.g. 30 frames [36], 48 frames [6] or 64 frames [16]), generating longer videos
that are both coherent and photo-realistic remains an open challenge. A major difficulty is scaling:
photorealistic image generative models [4, 8] are already close to the memory and processing limits
of modern hardware. A long video is at very least a concatenation of many photorealistic frames,
implying resource requirements, long-range coherence notwithstanding, that scale with frame count.

Attempting to model such long-range coherence makes the problem harder still, especially because in
general every frame can have statistical dependencies on other frames arbitrarily far back in the video.
Unfortunately fixed-lag autoregressive models impose unrealistic conditional independence assump-
tions (the next frame being independent of frames further back in time than the autoregressive lag is
problematic for generating videos with long-range coherence). And while deep generative models
based on recurrent neural networks (RNN) theoretically impose no such conditional independence
assumptions, in practice they must be trained over short sequences [12, 26] or with truncated gradi-
ents [31]. Despite this, some RNN-based video generative models have demonstrated longer-range
coherence, albeit without yet achieving convincing photorealistic video generation [26, 3, 7, 20, 2].

In this work we embrace the fact that finite architectures will always impose conditional indepen-
dences. The question we ask is: given an explicit limit K on the number of video frames we can
jointly model, how can we best allocate these frames to generate a video of length N > K? One
option is to use the previously-described autoregressive model but, if K = N/4, we could instead
follow Ho et al. [16] by training two models: one which first samples every 4th frame in the video,
and another which (in multiple stages) infills the remaining frames conditioned on those. To enable
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Figure 1: A long video (25 minutes, or approximately 15 000 frames) generated by FDM for each
of CARLA Town01 and MineRL, conditioned on 500 and 250 prior frames respectively. We show
blocks of frames from three points within each video, starting from the final observed frame on the
left. Blocks are marked with the time elapsed since the last observation and frames within them are
one second apart. We observe no degradation in sample quality even after > 15 000 frames.

efficient exploration of the space of such sampling schemes, we propose a flexible architecture based
on the denoising diffusion probabilistic model (DDPM) framework. This can sample any subset of
video frames conditioned on observed values of any other subset of video frames. It therefore lets
us explore a wide variety of previously untested sampling schemes while being easily repurposed
for different generation tasks such as unconditional generation, video completion, and generation of
videos of different lengths. Since our model can be flexibly applied to sample any frames given any
others we call it a Flexible Diffusion Model, or FDM.

Contributions (1) At the highest level, we claim to have concurrently developed one of the first
denoising diffusion probabilistic model (DDPM)-based video generative models [16, 40]. To do so we
augment a previously-used DDPM image architecture [15, 22] with a temporal attention mechanism
including a novel relative (frame) position encoding network. (2) The principal contribution of this
paper, regardless, is a “meta-learning” training objective that encourages learning of a video generative
model that can (a) be flexibly conditioned on any number of frames (up to computational resource
constraints) at any time in the past and future and (b) be flexibly marginalized (to achieve this within
computational resource constraints). (3) We demonstrate that our model can be used to efficiently
explore the space of resource constrained video generation schemes, leading to improvements over
prior work on several long-range video modeling tasks. (4) Finally, we release a new autonomous
driving video dataset along with a new video generative model performance metric that captures
semantics more directly than the visual quality and comparison metrics currently in widespread use.

2 Sampling long videos

Our goal in this paper is to sample coherent photo-realistic videos v with thousands of frames (see
Fig. 1). To sample an arbitrarily long video with a generative model that can sample or condition on
only a small number of frames at once, we must use a sequential procedure. The simplest example of
this is an autoregressive scheme, an example of which is shown in Fig. 2a for a video completion task.
In this example it takes seven stages to sample a complete video, in that we must run the generative
model’s sampling procedure seven times. At each stage three frames are sampled conditioned on
the immediately preceding four frames. This scheme is appealing for its simplicity but imposes a
strong assumption that, given the set of four frames that are conditioned on at a particular stage,
all frames that come afterwards are conditionally independent of all frames that came before. This
restriction can be partially ameliorated with the sampling scheme shown in Fig. 2b where, in the first
three stages, every second frame is sampled and then, in the remaining four stages, the remaining
frames are infilled. One way to implement this would be to train two different models operating at
the two different temporal resolutions. In the language of Ho et al. [16], who use a similar approach,
sampling would be carried out in the first three stages by a “frameskip-2” model and, in the remaining
stages, by a “frameskip-1” model. Both this approach and the autoregressive approach are examples
of what we call sampling schemes. More generally, we characterize a sampling scheme as a sequence
of tuples [(Xs,Ys)]

S
s=1, each containing a vector Xs of indices of frames to sample and a vector Ys

of indices of frames to condition on for stages s = 1, . . . , S.

2



Algorithm 1 Sample a video v given a sampling scheme [(Xs,Ys)]
S
s=1. For unconditional generation,

the input v can be a tensor of zeros. For conditional generation, the observed input frames should
contain their observed values.
1: procedure SAMPLEVIDEO(v; θ)
2: for s← 1, . . . , S do
3: y← v[Ys] ▷ Gather frames indexed by Ys.
4: x ∼ DDPM(·;y,Xs,Ys, θ) ▷ Sample x from the conditional DDPM.
5: v[Xs]← x ▷ Modify frames indexed by Xs with their sampled values.
6: return v

(a) Autoregressive. (b) Two temporal res. (c) Long-range (ours). (d) Hierarchy-2 (ours).

Figure 2: Sampling schemes to complete a video of length N = 30 conditioned on the first 10 frames,
with access to at most K = 7 frames at a time. Each stage s of the sampling procedure is represented
by one row in the figure, going from top to bottom. Within each subfigure, one column represents
one frame of the video, from frame one on the left to frame 30 on the right. At each stage, the values
of frames marked in blue are sampled conditioned on the (observed or previously sampled) values of
frames marked in red; frames marked in gray are ignored; and frames marked in white are yet to be
sampled. For every sampling scheme, all video frames have been sampled after the final row.

Algorithm 1 lays out how such a sampling scheme is used to sample a video. If the underlying
generative model is trained specifically to model sequences of consecutive frames, or sequences of
regularly-spaced frames, then the design space for sampling schemes compatible with these models
is severely constrained. In this paper we take a different approach. We design and train a generative
model to sample any arbitrarily-chosen subset of video frames conditioned on any other subset and
train it using an entirely novel distribution of such tasks. In short, our model is trained to generate
frames for any choice of X and Y . The only constraint we impose on our sampling schemes is
therefore a computational consideration that |Xs|+ |Ys| ≤ K for all s but, to generate meaningful
videos, any valid sampling scheme must also satisfy two more constraints: (1) all frames are sampled
at at least one stage and (2) frames are never conditioned upon before they are sampled.

Such a flexible generative model allows us to explore and use sampling schemes like those in Fig. 2c
and Fig. 2d. We find in our experiments that the best video sampling scheme is dataset dependent.
Accordingly, we have developed methodology to optimize such sampling schemes in a dataset
dependent way, leading to improved video quality as measured by the Fréchet Video Distance [33]
among other metrics. We now review conditional DDPMs (Section 3), before discussing the FDM’s
architecture, the specific task distribution used to train it, and the choice and optimization of sampling
schemes in Section 4.

3 A review of conditional denoising diffusion probabilistic models

Denoising diffusion probabilistic models, or DDPMs [28, 15, 22, 30], are a class of generative model
for data x, which throughout this paper will take the form of a 4-dimensional tensor representing
multiple video frames. We will describe the conditional extension [32], in which the modeled x is
conditioned on observations y. DDPMs simulate a diffusion process which transforms x to noise,
and generate data by learning the probabilistic inverse of the diffusion process. The diffusion process
happens over timesteps 0, . . . , T such that x0 = x is data without noise, x1 has a very small amount
of noise added, and so on until xT is almost independent of x0 and approximates a random sample
from a unit Gaussian. In the diffusion process we consider, the distribution over xt depends only on
xt−1:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I). (1)

Hyperparameters α1, . . . , αT are chosen to all be close to but slightly less than 1 so that the amount
of noise added at each step is small. The combination of this diffusion process and a data distribution
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Figure 3: Left: Our DDPM iteratively transforms Gaussian noise xT to video frames x0 (shown
with blue borders), conditioning on observed frames y (red borders) at every step. Right: The
U-net architecture used within each DDPM step. It computes ϵθ(xt,y, t), with which the Gaussian
transition pθ(xt−1|xt) is parameterized.

q(x0,y) (recalling that x0 = x) defines the joint distribution

q(x0:T ,y) = q(x0,y)

T∏
t=1

q(xt|xt−1). (2)

DDPMs work by “inverting” the diffusion process: given values of xt and y a neural network is
used to parameterize pθ(xt−1|xt,y), an approximation of q(xt−1|xt,y). This neural network lets
us draw samples of x0 by first sampling xT from a unit Gaussian (recall that the diffusion process
was chosen so that q(xT ) is well approximated by a unit Gaussian), and then iteratively sampling
xt−1 ∼ pθ(·|xt,y) for t = T, T − 1, . . . , 1. The joint distribution of sampled x0:T given y is

pθ(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt,y) (3)

where p(xT ) is a unit Gaussian that does not depend on θ. Training the conditional DDPM therefore
involves fitting pθ(xt−1|xt,y) to approximate q(xt−1|xt,y) for all choices of t, xt, and y.

Several observations have been made in recent years which simplify the learning of pθ(xt−1|xt,y).
Sohl-Dickstein et al. [28] showed that when αt is close to 1, pθ(xt−1|xt) is approximately Gaus-
sian [28]. Furthermore, Ho et al. [15] showed that this Gaussian’s variance can be modeled well with
a non-learned function of t, and that a good estimate of the Gaussian’s mean can be obtained from
a “denoising model” as follows. Given data x0 and unit Gaussian noise ϵ, the denoising model (in
the form of a neural network) is fed “noisy” data xt :=

√
α̃tx0 +

√
1− α̃tϵ and trained to recover ϵ

via a mean squared error loss. The parameters α̃t :=
∏t

i=1 αi are chosen to ensure that the marginal
distribution of xt given x0 is q(xt|x0) as derived from Eq. (1). Given a weighting function λ(t), the
denoising loss is

L(θ) = Eq(x0,y,ϵ)

[
T∑

t=1

λ(t)∥ϵ− ϵθ(xt,y, t)∥22

]
with xt =

√
α̃tx0 +

√
1− α̃tϵ. (4)

The mean of pθ(xt−1|xt,y) is obtained from the denoising model’s output ϵθ(xt,y, t) as
1
αt
xt − 1−αt√

1−α̃t
ϵθ(xt,y, t). If the weighting function λ(t) is chosen appropriately, optimising Eq. (4)

is equivalent to optimising a lower-bound on the data likelihood under pθ. In practice, simply setting
λ(t) := 1 for all t can produce more visually compelling results in the image domain [15].

In our proposed method, as in Tashiro et al. [32], the shapes of x0 and y sampled from q(·) vary. This
is because we want to train a model which can flexibly adapt to e.g. varying numbers of observed
frames. To map Eq. (4) to this scenario, note that both x0 and y implicitly contain information about
which frames in the video they represent (via the index vectors X and Y introduced in the previous
section). This information is used inside the neural network ϵθ(xt,y, t) so that interactions between
frames can be conditioned on the distance between them (as described in the following section) and
also to ensure that the sampled noise vector ϵ has the same shape as x0.
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Algorithm 2 Sampling training tasks X ,Y ∼ u(·) given N,K.

1: X := {}; Y := {}
2: while True do
3: ngroup ∼ UniformDiscrete(1,K)
4: sgroup ∼ LogUniform(1, (N − 1)/ngroup)
5: xgroup ∼ Uniform(0, N − (ngroup − 1) · sgroup)
6: ogroup ∼ Bernoulli(0.5)
7: G := {⌊xgroup + sgroup · i⌋|i ∈ {0, . . . , ngroup − 1}} \ X \ Y
8: if |X |+ |Y|+ |G| > K then
9: return set2vector(X ), set2vector(Y)

10: else if |X | = 0 or ogroup = 0 then
11: X := X ∪ G
12: else
13: Y := Y ∪ G

Figure 4: Left: Samples from u(X ,Y) with video length N = 30 and limit K = 10 on the number
of sampled indices. Each row shows one sample and columns map to frames, with frame 1 on the left
and frame N on the right. Blue and red denote latent and observed frames respectively. All other
frames are ignored and shown as white. Right: Pseudocode for drawing these samples. The while
loop iterates over a series of regularly-spaced groups of latent variables. Each group is parameterized
by: the number of indices in it, ngroup; the spacing between indices in it, sgroup; the position of the
first frame in it, xgroup, and an indicator variable for whether this group is observed, ogroup (which
is ignored on line 10 if X is empty to ensure that the returned value of X is never empty). These
quantities are sampled in a continuous space and then discretized to make a set of integer coordinates
on line 7. The process repeats until a group is sampled which, if added to X or Y , will cause the
number of frames to exceed K. That group is then discarded and X and Y are returned as vectors.
The FDM’s training objective forces it to work well for any (X ,Y) pair from this broad distribution.

4 Training procedure and architecture

Training task distribution Different choices of latent and observed indices X and Y can be
regarded as defining different conditional generation tasks. In this sense, we aim to learn a model
which can work well on any task (i.e. any choice of X and Y) and so we randomly sample these
vectors of indices during training. We do so with the distribution u(X ,Y) described in Fig. 4.
This provides a broad distribution covering many plausible test-time use cases while still providing
sufficient structure to improve learning (see ablation in Section 6 and more details in Appendix C).
To cope with constrained computational resources, the distribution is designed such that |X |+ |Y| is
upper-bounded by some pre-specified K. Sampling from q(x0,y) in Eq. (4) is then accomplished
by randomly selecting both a full training video v and indices X ,Y ∼ u(·, ·). We then extract the
specified frames x = v[X ] and y = v[Y] (where we use v[X ] to denote the concatenation of all
frames in v with indices in X and and v[Y] similarly).

Architecture DDPM image models [15, 22] typically use a U-net architecture [24]. Its distinguish-
ing feature is a series of spatial downsampling layers followed by a series of upsampling layers, and
these are interspersed with convolutional res-net blocks [14] and spatial attention layers. Since we
require an architecture which operates on 4-D video tensors rather than 3-D image tensors we add
an extra frame dimension to its input, output and hidden state, resulting in the architecture shown
on the right of Fig. 3. We create the input to this architecture as a concatenation xt ⊕ y, adding
an extra input channel which is all ones for observed frames and all zeros for latent frames. For
RGB video, the input shape is therefore (K, image height, image width, 4). Since the output should
have the same shape as xt we only return outputs corresponding to the latent frames, giving output
shape (|X |, image height, image width, 3). We run all layers from the original model (including
convolution, resizing, group normalization, and spatial attention) independently for each of the K
frames. To allow communication between the frames, we add a temporal attention layer after each
spatial attention layer, described in more detail in the appendix. The spatial attention layer allows
each spatial location to attend to all other spatial locations within the same frame, while the temporal
attention layer allows each spatial location to attend to the same spatial location across all other
frames. This combination of a temporal attention layer with a spatial attention layer is sometimes
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referred to as factorized attention [32, 16]. We found that, when using this architecture in conjunction
with our meta-learning approach, performance could be improved by using a novel form of relative
position encoding [27, 38]. This is included in our released source code but we leave its exposition to
the supplementary material.

Training batch padding Although the size |X ⊕ Y| of index vectors sampled from our training
distribution is bounded above by K, it can vary. To fit examples with various sizes of index vectors
into the same batch, one option would be to pad them all to length K with zeros and use masks
so that the zeros cannot affect the loss. This, however, would waste computation on processing
tensors of zeros. We instead use this computation to obtain a lower-variance loss estimate by
processing additional data with “training batch padding”. This means that, for training examples
where |X ⊕ Y| < K, we concatenate frames uniformly sampled from a second video to increase the
length along the frame-dimension to K. Masks are applied to the temporal attention mechanisms so
that frames from different videos cannot attend to eachother and the output for each is the same as
that achieved by processing the videos in different batches.

Sampling schemes Before describing the sampling schemes we explore experimentally, we empha-
size that the relative performance of each is dataset-dependent and there is no single best choice. A
central benefit of FDM is that it can be used at test-time with different sampling schemes without
retraining. Our simplest sampling scheme, Autoreg, samples ten consecutives frames at each stage
conditioned on the previous ten frames. Long-range is similar to Autoreg but conditions on only
the five most recent frames as well as five of the original 36 observed frames. Hierarchy-2 uses a
multi-level sampling procedure. In the first level, ten evenly spaced frames spanning the non-observed
portion of the video are sampled (conditioned on ten observed frames). In the second level, groups of
consecutive frames are sampled conditioned on the closest past and future frames until all frames
have been sampled. Hierarchy-3 adds an intermediate stage where several groups of variables with
an intermediate spacing between them are sampled. We include adaptive hierarchy-2, abbreviated
Ad. hierarchy-2, as a demonstration of a sampling scheme only possible with a model like FDM.
It samples the same frames at each stage as Hierarchy-2 but selects which frames to condition on
adaptively at test-time with a heuristic aimed at collecting the maximally diverse set of frames, as
measured by the pairwise LPIPS distance [41] between them.

Optimizing sampling schemes An appealing alternative to the heuristic sampling schemes de-
scribed in the previous paragraph would be to find a sampling scheme that is, in some sense, optimal
for a given model and video generation/completion task. While it is unclear how to tractably choose
which frames should be sampled at each stage, we suggest that the frames to condition on at each
stage can be chosen by greedily optimizing the diffusion model loss which, as mentioned in Section 3,
is closely related to the data log-likelihood. Given a fixed sequence of frames to sample at each stage
[Xs]

S
s=1 we select Ys for each s to minimize Eq. (4). This is estimated using a set of 100 training

videos and by iterating over 10 evenly-spaced values of t (which reduced variance relative to random
sampling of t). See the appendix for further details. We create two optimized sampling schemes: one
with the same latent indices as Autoreg, and one with the same latent indices as Hierarchy-2. We call
the corresponding optimized schemes Opt. autoreg and Opt. hierarchy-2.

5 CARLA Town01 Dataset

In addition to our methodological contributions, we propose a new video-modeling dataset and
benchmark which provides an interpretable measure of video completion quality. The dataset consists
of videos of a car driving with a first-person view, produced using the CARLA autonomous driving
simulator [9]. All 408 training and 100 test videos (of length 1000 frames and resolution 128× 128)
are produced within a single small town, CARLA’s Town01. As such, when a sufficiently expressive
video model is trained on this dataset it memorizes the layout of the town and videos sampled from
the model will be recognisable as corresponding to routes travelled within the town. We train a
regression model in the form of a neural network which maps with high accuracy from any single
rendered frame to (x, y) coordinates representing the car’s position. Doing so allows us to plot the
routes corresponding to sampled videos (see left of Fig. 5) and compute semantically-meaningful yet
quantitative measures of the validity of these routes. Specifically, we compute histograms of speeds,
where each speed is estimated by measuring the distance between the regressed locations for frames
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Figure 5: Left: Map of the town featured in the CARLA Town01 dataset. We visualize two video
completions by FDM by showing coordinates output by our regressor (discussed in Section 5) for
each frame. Those corresponding to the initial 36 observed frames are shown in red and those for the
964 sampled frames are shown in blue. Right: For each completion, we show one of the initially
observed frames followed by four of the sampled frames (at positions chosen to show the progression
with respect to visible landmarks and marked by black dots on the map). The town’s landmarks
are usually sampled with high-fidelity, which is key to allowing the regressor to produce a coherent
trajectory on the left. However there are sometimes failures: a blue square near the top-right of the
map shows where the video model “jumped” to a wrong location for a single frame.

spaced ten apart (1 second at the dataset’s frame rate). Sampled videos occasionally “jump” between
disparate locations in the town, resulting in unrealistically large estimated speeds. To measure the
frequency of these events for each method, we compute the percentage of our point-speed estimates
that exceed a threshold of 10m/s (the dataset was generated with a maximum simulated speed of
3m/s). We report this metric as the outlier percentage (OP). After filtering out these outliers, we
compute the Wasserstein distance (WD) between the resulting empirical distribution and that of the
original dataset, giving a measure of how well generated videos match the speed of videos in the
dataset. We release the CARLA Town 01 dataset along with code and our trained regression model to
allow future comparisons.2

6 Experiments

We perform our main comparisons on the video completion task. In keeping with Saxena et al. [26],
we condition on the first 36 frames of each video and sample the remainder. We present results on
three datasets: GQN-Mazes [10], in which videos are 300 frames long; MineRL Navigate [13, 26]
(which we will from now on refer to as simply MineRL), in which videos are 500 frames long; and
the CARLA Town01 dataset we release, for which videos are 1000 frames long. We train FDM in all
cases with the maximum number of represented frames K = 20. We host non-cherry-picked video
samples (both conditional and unconditional) from FDM and all baselines online3.
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Ad. Hierarchy-2

Ground Truth
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Figure 6: Speed distributions measured from
sampled and ground-truth dataset videos.

Comparison of sampling schemes The relative per-
formance of different sampling schemes varies sig-
nificantly between datasets as shown in Table 1. We
report Fréchet Video Distances (FVDs) [33], a mea-
sure of how similar sampled completions are to the
test set, on all datasets. In addition on GQN-Mazes we
we report the accuracy metric [26], which classifies
videos based on which rooms are visited and measures
how often a completion is given the same class as the
corresponding test video. For CARLA Town01 we re-
port the previously described percentage outliers (PO)
and Wasserstein distance (WD) metrics.

We can broadly consider the aforementioned sampling
schemes as either being in the “autoregressive” fam-
ily (Autoreg and Long-range) or in the “hierarchical”

2https://github.com/plai-group/flexible-video-diffusion-modeling
3https://www.cs.ubc.ca/~wsgh/fdm

7

https://github.com/plai-group/flexible-video-diffusion-modeling
https://www.cs.ubc.ca/~wsgh/fdm


Table 1: Evaluation on video completion with various modes of our method along with several
baselines from the literature. Error bars denote the standard error computed with 5 random seeds.
Higher is better for the accuracy metric [26] and lower is better for all other metrics shown.

GQN-Mazes MineRL CARLA Town01

Model Sampling scheme FVD Accuracy FVD FVD WD OP

CWVAE [26] CWVAE 837± 8 82.6± 0.5 1573± 5 1161 0.666 44.4

TATS [11] TATS 163± 2.6 77.0± 0.8 807± 14 329 1.648 42.4

VDM [16] VDM 66.7± 1.5 77.8± 0.5 271± 8.8 169 0.501 16.9

FDM (ours)

Autoreg 86.4± 5.2 69.6± 1.3 281± 10 222 0.579 0.51
Long-range 64.5± 1.9 77.0± 1.4 267± 4.0 213 0.653 0.47
Hierarchy-2 53.1± 1.1 82.8± 0.7 275± 7.7 120 0.318 3.28
Hierarchy-3 53.7± 1.9 83.8± 1.1 311± 6.8 149 0.363 4.53
Ad. hierarchy-2 55.0± 1.4 83.2± 1.3 316± 8.9 117 0.311 3.44

family (the remainder). Those in the hierarchical family achieve significantly better FVDs [33] on
GQN-Mazes. Our samples in the appendix suggest that this is related to the autoregressive methods
“forgetting” the colors of walls after looking away from them for a short time. In contrast, for MineRL
the autoregressive methods tend to achieve the best FVDs. This may relate to the fact that trajectories
in MineRL tend to travel in straight lines through procedurally-generated “worlds”[13, 26], limiting
the number of long-range dependencies. Finally on CARLA Town01 we notice qualitatively different
behaviours from our autoregressive and hierarchical sampling schemes. The hierarchical sampling
schemes have a tendency to occasionally lose coherence and “jump” to different locations in the town.
This is reflected by higher outlier percentages (OP) in Table 1. On the other hand the autoregressive
schemes often stay stationary for unrealistically long times at traffic lights. This is reflected in the
histogram of speeds in Fig. 6, which has a larger peak around zero than the ground truth. The high
variance of the sampling scheme’s relative performance over different datasets points to a strength of
our method, which need only be trained once and then used to explore a variety of sampling schemes.
Furthermore, we point out that the best FVDs in Table 1 on all datasets were obtained using sampling
schemes that could not be implemented using models trained in prior work, or over evenly spaced
frames.

Comparison with baselines The related work most relevant to ours is the concurrent work of
Ho et al. [16], who model 64-frame videos using two trained DDPMs. The first is a “frameskip-4”
model trained to generate every fourth frame and the second is a “frameskip-1” model trained on
sequences of nine consecutive frames and used to “fill in” the gaps between frames generated in the
first stage. To compare against this approach, which we denote VDM, we train both a “frameskip-4”
and a “frameskip-1” model with architectures identical to our own.4 Since VDM requires two trained
DDPMs, we train it for more GPU-hours than FDM despite the fact that FDM is meta-learning
over a far broader task distribution. We also compare against TATS [11], which embeds videos
into a discrete latent space before modelling them with a transformers, and the clockwork VAE
(CWVAE) [26], a VAE-based model specifically designed to maintain long-range dependencies
within video.

Both the diffusion-based methods, FDM and VDM, achieve significantly higher FVD scores than
TATS and CWVAE. This may point toward the utility of diffusion models in general for modeling
images and video. Table 1 also makes clear the main benefit of FDM over VDM: although there is no
sampling scheme for FDM which always outperforms VDM, there is at least one sampling scheme
that outperforms it on each dataset. This speaks to the utility of learning a flexible model like FDM
that allows different sampling schemes to be experimented with after training.

Optimized sampling schemes As mentioned in Section 4, another advantage of FDM is that it
makes possible a model- and dataset-specific optimization procedure to determine on which frames

4The VDM is concurrent work and, at the time of writing, without a code-release. Since we intend this
primarily as a comparison against the VDM sampling scheme we do not reimplement their exact architecture
and note that there are other differences including their approach to imputation.
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Table 2: FVD scores for our sampling schemes with observed indices optimized offline as described
in Section 4. We mark with an asterisk (∗) the eight numbers which improve on the corresponding
non-optimized sampling schemes and highlight in bold those that are better than any in Table 1.

GQN-Mazes MineRL CARLA Town01

Sampling scheme FVD Accuracy FVD FVD WD OP

Opt. autoreg 53.6± 1.2∗ 80.2± 1.2∗ 257± 6.8∗ 146∗ 0.452∗ 0.65
Opt. hierarchy-2 51.1± 1.3∗ 84.6± 0.7∗ 320± 7.0 124 0.349 4.11∗

to condition. Table 2 shows the results when this procedure is used to create sampling schemes for
different datasets. In the first row we show results where the latent frames are fixed to be those of
the Autoreg sampling scheme, and in the second row the latent frames are fixed to match those of
Hierarchy-2. On two of the three datasets the best results in Table 1 are improved upon, showing the
utility of this optimization procedure.

Comparison with training on a single task Training a network with our distribution over training
tasks could be expected to lead to worse performance on a single task than training specifically for
that task. To test whether this is the case, we train an ablation of FDM with training tasks exclusively
of the type used in our Autoreg sampling scheme, i.e. “predict ten consecutive frames given the
previous ten.” Tested with the Autoreg sampling scheme, it obtained an FVD of 82.0 on GQN-Mazes
and 234 on MineRL. As expected given the specialization to a single task, this is better than when
FDM is run with the Autoreg sampling scheme (obtaining FVDs of 86.4 and 281 respectively).

Ablation on training task distribution To test how important our proposed structured training
distribution is to FDM’s performance, we perform an ablation with a different task distribution that
samples X and Y from uniform distributions instead of our proposed structured task distribution We
provide full details in the appendix, but report here that switching away form our structured training
distribution made the FVD scores worse on all five tested sampling schemes on both GQN-Mazes
and MineRL. The reduction in the average FVD was 31% on GQN-Mazes and 52% on MineRL. This
implies that our structured training distribution has a significant positive effect.

7 Related work

Some related work creates conditional models by adapting the sampling procedure of an unconditional
DDPM [30, 18, 21, 16]. These approaches require approximations and the more direct approach
that we use (explcitly training a conditional DDPM) was shown to have benefits by Tashiro et al.
[32]. We consider further comparison of these competing approaches to be outside the focus of
this work, which is on modeling a small portion of video frames at a time, essentially performing
marginalization in addition to conditioning.

There are a number of approaches in the literature which use VAEs rather than DDPMs for video mod-
elling. Babaeizadeh et al. [2] use a VAE model which predicts frames autoregressively conditioned
on a global time-invariant latent variable. A related approach by Denton and Fergus [7] also uses a
VAE with convolutional LSTM architectures in both the encoder and decoder. Unlike Babaeizadeh
et al. [2] the prior is learned and a different latent variable is sampled for each frame. Babaeizadeh
et al. [3] use a VAE with one set of latent variables per frame and inter-frame dependencies tracked
by a two-layer LSTM. Their architecture intentionally overfits to the training data, which when
coupled with image augmentations techniques achieves SOTA on various video prediction tasks. Kim
et al. [20] use a variational RNN [5] with a hierarchical latent space that includes binary indicator
variables which specify how the video is divided into a series of subsequences. Both Villegas et al.
[35] and Wichers et al. [37] target long-term video prediction using a hierarchical variational LSTM
architecture, wherein high-level features such as landmarks are predicted first, then decoded into
low-level pixel space. The two approaches differ in that Villegas et al. [35] requires ground truth
landmark labels, while [37] removes this dependence using an unsupervised adversarial approach.
Fully GAN-based video models have also been proposed [1, 6] but generally suffer from “low quality
frames or low number of frames or both” [1].
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8 Discussion

We have defined and empirically explored a new method for generating photorealistic videos with
long-range coherence that respects and efficiently uses fixed, finite computational resources. Our
approach outperforms prior work on long-duration video modeling as measured by quantitative and
semantically meaningful metrics and opens up several avenues for future research. For one, similar
to using DDPMs for image generation, our method is slow to sample from (it takes approximately 16
minutes to generate a 300 frame video on a GPU). Ideas for making sampling faster by decreasing
the number of integration steps [25, 29, 39] could be applied to our video model.

On a different note, consider the datasets on which our artifact was trained. In each there was a policy
for generating the sequences of actions that causally led to the frame-to-frame changes in camera
pose. In MineRL the video was generated by agents that were trained to explore novel Minecraft
worlds to find a goal block approximately 64 meters away [13]. The CARLA data was produced
by a camera attached to an agent driven by a low level proportional–integral–derivative controller
following waypoints laid down by a high level planner that was given new, random location goals to
drive to intermittently. In both cases our video model had no access to either the policy or the specific
actions taken by these agents and, so, in a formal sense, our models integrate or marginalize over
actions drawn from the stochastic policy used to generate the videos in the first place. Near-term
future work could involve adding other modalities (e.g. audio) to FDM as well as explicitly adding
actions and rewards, transforming our video generative model into a vision-based world model in
the reinforcement learning sense [17, 19]. Furthermore, we point out that FDM trained on CARLA
Town01 is in theory capable of creating 100-second videos conditioned on both the first and final
frame. Doing so can be interpreted as running a “visual” controller which proposes a path between a
current state and a specified goal. Preliminary attempts to run in FDM in this way yielded inconsistent
results but we believe that this could be a fruitful direction for further investigation.
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