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Abstract

In this paper, we propose a neural network-based approach for learning to represent
the behavior of plastic solid materials ranging from rubber and metal to sand and
snow. Unlike elastic forces such as spring forces, these plastic forces do not result
from the positional gradient of any potential energy, imposing great challenges on
the stability and flexibility of their simulation. Our method effectively resolves this
issue by learning a generalizable plastic energy whose derivative closely matches
the analytical behavior of plastic forces. Our method, for the first time, enables
the simulation of a wide range of arbitrary elasticity-plasticity combinations using
time step-independent, unconditionally stable optimization-based time integrators.
We demonstrate the efficacy of our method by learning and producing challenging
2D and 3D effects of metal, sand, and snow with complex dynamics.

1 Introduction

Combining machine learning with physical simulations has recently attracted a lot of attention. A vast
amount of existing research adopts an end-to-end approach, where the specific underlying computa-
tional physics system is treated as a black box [46, 41]. Harnessing the power of neural networks, this
research has been successfully applied in computer animation [10], multibody systems [3, 6, 59, 12],
human musculature simulation [20], computational fluid dynamics [4, 13], and non-linear contin-
uum mechanics [5]. An alternative direction is represented by physics-informed neural networks
(PINN) [44, 21], where in its original form, the residual of a partial differential equation is directly
used as the loss function so that the network training is a physics-aware learning process. PINN
becomes powerful when the design space of the input to the network can be parameterized, which
accelerates both the roll-out and the inverse optimization process [51]. Another noteworthy category
is learning the physical modeling where the machine can either help increase the model resolution in
a coarser grid [24], inject nonlinearity to a linear model [37], or apply a learnable model reduction to
reduce the system degrees-of-freedom (DOF) for acceleration [47, 48].
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Despite its great success, training a neural network to replace a traditional simulator is not always
the preferred choice. This is partially due to the challenges in the trained model’s generality and
portability. For example, a trained model on a particle-based deformable body solver (such as the
Material Point Method (MPM [19]) cannot be directly applied to the mesh-based Finite Element
Method (FEM) [49], while in traditional continuum mechanics, the constitutive model that describes
the relationship between force and deformation is an independent module from the underlying
geometric description or simulation scheme. Indeed, by simply switching the constitutive model and
applying minor changes to the existing and general simulation pipeline, a wide range of materials
can be simulated in the same framework, ranging from sand [42, 9, 23, 52] and metal [39], to snow
[15, 57, 35] and glacier [58].

Many elastic materials, including those represented by mass-spring systems [2] and common hypere-
lastic solids [50], are usually governed by analytical elastic potential energy functions in terms of the
deformation. These models are well fitted to experiments and proven to be simple, accurate, and pre-
dictive. Although most of these energy functions are highly nonlinear and non-convex, reformulating
the dynamic simulation process as a numerical optimization problem and solving it using projected
Newton and line search can guarantee global convergence to a solution [28]. Beyond hyperelasticity,
plasticity is much more challenging. The mechanical response of plastic materials imposes extra
difficulties in the implementation as it is path-dependant and non-smooth. One common handling
of plasticity is the return mapping algorithm, which applies the effects of plastic deformation to the
elastic forces. However, this leads to asymmetrical force derivatives, which eliminate the possibility
of integrating the plasticity into the energy function in a single optimization and complicates the
pipeline. In the recent work of Energetic Consistent Inelasticity (ECI) [34], the plasticity is analyt-
ically modeled as an energy functional, and the simulation can be formulated as an optimization
problem just like simulating pure elastic materials. However, their analytical derivation only works
for St.Venant-Kirchhoff (StVK) elasticity with the von-Mises plasticity.

In this work, we propose PlasticityNet, a neural network-based approach for learning an energy-
based force that locally approximates elastic forces with plasticity models and is compatible with
optimization time integrators. PlasticityNet framework supports any combinations of elastic models
and plastic models and works with both MPM and FEM discretizations. With optimization time
integrators, we demonstrate that our framework can simulate vast types of plasticities, such as metal,
sand, and snow, with large time step sizes.

2 Related work

Classic Plasticity Models The classic plastic models utilized the geometry information of the plas-
ticity and are available for many applications. In the computer graphics community, researchers have
followed mechanical literature on the Drucker-Prager elastoplasticity model [42, 9], and developed
particle-based simulations of dry [23] and wet [52] sand. Extending a similar Cam-Clay plasticity
model, snow avalanches [15, 35], glacier calving [58] and food fracturing [57] are also captured
with high visual plausibility as well as physical accuracy. For metals and dough-like materials,
the von-Mises plasticity model [39] is usually adopted, while [56, 18] presented its anisotropic
extensions. Still, the implementation of these models in modern, optimization-based simulators is
cumbersome due to the non-integrable forces. Recently, [34] proposed an elastoplastic energy of
von-Mises plasticity under StVK elasticity for optimization time integrator, which can be viewed
as a special-case analytical solution to our framework under the same combination of elasticity and
plasticity. But our framework works for arbitrary combinations.

Data-Driven Plasticity Models The machine learning approach has been used to find new plastic
models using large sets of measurements and parameters, outperforming many long-standing hand-
crafted models. The macro-level constitutive relationship is learned from the results of the micro-level
simulations [40, 45]. A similar approach is applied in [53] to learn anisotropic hyperelasticity, where
additional geometrical information is included in the input. PINN can also be applied in plastic model
finding from experimental measurements [1, 54, 25], where the loss includes the stress and Hessian,
to infer stress with more accuracy in the implicit simulators. However, there does not exist any prior
work, to the best of the author’s knowledge, that tried to find variational form for arbitrary plasticity
model.
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Optimization Time Integration The optimization time integrators have advantages in terms
of stability under large deformations and large time step sizes. Many of the nonlinear systems
of equations that arise from implicit simulation can be integrated to get equivalent optimization
problems, which allow robust optimization techniques to be applied. The MPM simulator in this
work is based on [14], which formulated the backward Euler time integration with hyperelastic
materials as a minimization problem. [30] and [55] also explored domain decompositions and
hiearachical preconditioners to improve robustness and ef�ciency. The FEM simulator in this work is
based on Incremental Potential Contact (IPC) [29], which proposed a variational form for frictional
contacts. Their optimization-based frictional contact framework was also extended to codimensional
objects [31], rigid bodies [11, 26], articulated multibodies [7], reduced elastic solids [27], embedded
interfaces [60], and FEM-MPM coupled domains [33].

3 Background

3.1 Optimization Time Integration

In this section, we brie�y introduce the optimization time integration for elastodynamics simulations
with the Material Point Method (MPM) and the Finite Element Method (FEM). We refer the readers
to [28] and [14] for more details.

FEM discretizes the simulation domain as unstructured meshes (e.g., triangle meshes in 2D), while in
MPM, a point cloud composed of material particles is used to discretize the domain. While FEM
directly uses the mesh nodes as the simulation degrees-of-freedom (DOF), MPM transfers its particle
state to a uniform background grid, whose nodes are used as the DOFs for the integration of forces
[19]. Robust simulation of elastodynamics can be achieved via implicit time integration, which
updates the nodal positions (x) or velocities (v) step by step based on the previous physical states. To
step fromtn to tn +1 = tn + � t with time step size� t, with implicit Euler time integration rule, one
needs to solve a nonlinear system of equations

M(vn +1 � (vn + g� t)) = � tfn +1 : (1)
Herev is the velocity DOF formed by concatenating all nodal velocity vectors, similarly concatenated,
M is the mass matrix,g is the gravitational acceleration vector, andf is the internal force vector.
Without plasticity, the internal force on a nodei can be calculated as

fn +1
i = �

X

q

V 0
q P(Fn +1

q )r wiq ; (2)

whereq iterates the surrounding elements/particles of nodei in FEM/MPM, V 0
q is the initial volume

of the element/particle,F = ( I + � tr v)Fn (MPM) or F = r xn + � tr v (FEM) is the deformation
gradient, which measures deformation from the undeformed state to the deformed state, andP is the
�rst-Piola Kirchhoff stress, which describes the internal force per unit area within a material.r wiq
is the gradient of the weight function on nodei evaluated on an element/particle center. The weight
function is for transferring physical quantities between the elements/particles and the mesh/grid
nodes. Unlike FEM, the last time step is used in MPM as the reference con�guration, and sor wiq is
calculated asFn >

q r wn
iq .

When there exists an energy density function	 such thatP(F) = @	
@F , solving Equation 1 is equivalent

to solving the following optimization problem

vn +1 = argmin v
1
2

kv � (vn + g� t)k2
M +

X

q

V 0
q 	( Fq): (3)

This formulation is more favored because with line search methods, convergence to a local minimum
of Equation 3 can be guaranteed even when simulating challenging cases with stiff materials or large
time step sizes. After solving for the velocityvn +1 , FEM directly updates mesh nodal positions
asxn +1 = xn + � tvn +1 , while for MPM, the velocity on the grid node is interpolated to particle
locations for particle advection. The background grid is reset at the beginning of each time step,
which allows MPM to bene�t from the conveniences of a regular grid and a mesh-free formulation at
the cost of some accuracy loss due to the transfers between the grid and particles.

3.2 Return Mapping for Plasticity

3



Figure 1: An illustration
of a return mapping.

With plasticity, objects can undergo both plastic and elastic deformations,
and the deformation gradient at the current time step can be decomposed
as

Fn +1 = FE;n +1 FP;n +1 (4)

based on the �nite strain theory. HereFP;n +1 encodes the permanent
plastic deformation of the rest shape, andFE;n +1 is the elastic defor-
mation that results in effective elastic forces. In theory,FE;n +1 is con-
strained within certain elastic regions. Computation-wise, an elastic
predictorFE;tr = Fn +1 (FP;n ) � 1 can be computed �rst by assuming
FP;n +1 = FP;n . If FE;tr is outside the elastic region, it will be projected
back onto the boundary of the region to obtainFE;n +1 = Z (FE;tr ) (Fig-
ure 1). This projectionZ is called areturn mapping. Within this framework, the implicit elastoplastic
nodal force can be computed as [34]

fn +1
i = �

X

q

V 0
q � (Z (FE;tr

q ))FE;tr
q

�>
FP;n �>

r wiq (5)

where� (F) = P(F)F> is the Kirchoff stress. The above forces are integrable only if� (Z (F))F�>

can be represented as the gradient of some energy function:

@	
@F

= � (Z (F))F�> : (6)

Most combinations of elastic constitutive models and plastic return mappings do not satisfy this
integrability condition because the Jacobian �eld of the right-hand side is asymmetrical. Note that
directly feedingZ (F) into an elastic potential does not form a potential energy for the elastoplastic
forces de�ned in Equation 5. [34] only found one speci�c combination such that an elastoplastic
potential energy exists. Thus, it remains challenging to simulate versatile plastic behaviors with
optimization time integrators and achieve robust performance.

4 PlasticityNet

We propose PlasticityNet, a neural network-based elastoplastic model that �nds a family of local
potential energies whose negative gradients can approximate the elastoplastic forces within a small
neighborhood so that plasticity can be conveniently simulated using optimization time integrators.
The model architecture is illustrate in Figure 2. Speci�cally, instead of �nding a global energy
function	( F), we search for an energy	( F; F0), parameterized byF0, such that

@	
@F

(F; F0)jF= F0 = � (Z (F0))F�>
0 ; and

@	
@F

(F; F0) � � (Z (F))F�> : (7)

To exactly enforce the �rst equality, we propose the following linear correction:

	 � (F; F0) = N N � (F; F0) � (r FN N � (F0; F0) � � (Z (F0))F�>
0 ) � F: (8)

Here A � B = A ij B ij = tr(A> B) is the matrix inner product. It can be veri�ed that
@	 �
@F (F; F0)jF= F0 = � (Z (F0))F�>

0 :

Then we only need to focus on the approximation part in Equation 7. We design the training loss
function for our neural network as

L (� ) = EF0 EF










@	 �

@F
(F; F0) � � (Z (F))F�>










2

F
: (9)

During training,F is only sampled nearF0. Please refer to Section 5.1 for details.
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4.1 Hardening of Plasticity

Figure 2: An overview of
PlasticityNet. It is a map
from R2d2 +1 to R.

Hardening effects are widely observed in metals and snow. With harden-
ing, the elastic region will expand by a certain amount wheneverFE;tr

falls in the plastic region. To account for hardening, the return mapping
Z (F; h) and the energy	 � (F; F0; h) will depend on an extra hardening
stateh, which controls the shape of the elastic region. This hardening
state is a function ofF. However, to maintain integrability with respect to
F, we approximately updateh based onF0, which is assumed to be close
to F.

4.2 Optimization Time Integration with PlasticityNet

Fixed-Point Iteration The gradient of our learned elastoplastic potential energy	 � (F; F0) only
approximates the effective stresses locally nearF0. To approach the accurate solution of Equation 1
with elastoplastic forces, we apply a �xed-point iteration onF0 to let it converge toFn +1 . Speci�cally,
we solve a sequence of optimization problems

vn +1 ;j +1 = argmin v
1
2

kv � (vn + g� t)kM +
X

q

V 0
q 	 � (Fq; Fj

0;q ; hj
q); for j = 0 ; 1; 2; :::; (10)

treating the concatenated deformation gradientsFj
0 and hardening statesh as constants, which are

only updated before each optimization asFj
0 = F(vn +1 ;j ) andh = h(F0). At convergence, we will

obtain the true solution of Equation 1. In practice, a few number of �xed-point iterations can already
generate high-quality results.

Stability Regularizer We augment our learned potential with an extra quadratic regularizer to
stabilize the simulation especially when the material is stiff or the time step size is large:

	 � (F; F0) = N N � (F; F0) � (r FN N � (F0; F0) � � (Z (F0))F�>
0 ) � F +

1
2

� kF � F0k2
F : (11)

Here� is the shear modulus of the material that	 � is learning. Note that this extra term is added
after the model is trained instead of during the training. This extra term does not change the gradient
atF0, so it will not change the �xed point of Procedure 10. Please see Section 5.3 for a comparison
between simulations with and without this regularizer.

4.3 Learning Volume-Preserving Return Mapping

Figure 3: Volume-preserving
projection.

The return mappingZ required by PlasticityNet can be either given
analytically or learned. Note that with different combinations of
many practical elasticity and plasticity models, the return mapping
may not have a closed-form solution, and the projection can only be
performed by solving a nonlinear system of equations.

Here we provide a simple approach to learn a volume-preserving
return mapping, which ensures thatdet(Z (F)) = det( F). For
isotropic materials, the projection can be performed in the diag-
onal space, i.e., withF = U Diag(� )V> being the singular value
decomposition ofF; the projection is only needed for� . In the
diagonal space, a volume-preserving path is a straight line in the
Hencky strain (de�ned as� = log( � )) space, which is perpen-
dicular to the diagonal line. The direction of the projection path
is �̂ = � � sum(� )1. The volume-preserving projection in the Hencky strain can be uni�ed by
H = � � �
 �̂

k �̂ k for some�
 , with Z � (� ) = exp( H) andZ (F) = U Diag(Z � )V> . An illustration
is shown in Figure 3.

The elastic region is usually represented by an implicit functiony(� ) � 0. We can use a neural
network to predict�
 , where the training leverages the differentiability of the implicit representation
for the elastic region boundary. The volume-preserving path usually has two intersections with the
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Figure 4: Training losses of our 2D models.

elastic region boundary. To eliminate this ambiguity, we clamp the output of the neural network with
a maximumk�̂ k. We de�ne our neural-network-based return mapping on the diagonal space as:

�
 � (� ) = min fN N � (�) ; k�̂ kg; Z �
� (� ) =

(
exp(� � �
 �

�̂
k �̂ k ); y(� ) > 0;

� ; y(� ) � 0:
(12)

The training loss function for a single� is de�ned as

L (� ; � ) =
�

y(Z �
� (� ))2 + max f �
 � (� ) � k �̂ k; 0g; y(� ) > 0

0; y(� ) � 0
(13)

Here, the �rst term is to pull the points outside the elastic region back onto the boundary. The second
term is to avoid these points to be always projected onto the diagonal due to the clamping in�
 � . To
account for hardening, we only need to let the�
 network accept an extra hardening state variableh:
�
 � (� ; h) = min fN N � (� ; h); k�̂ kg: The learned return mapping is then ready to be used by our
PlasticityNet.

5 Experiments

We show examples to demonstrate the capability of our PlasticityNet in learning versatile plasticity
models. Our physical simulators are implemented using C++, and we applied PyTorch to learn the
potential energies, which are then loaded into our simulators with TorchScript. All our potential
energies are trained as multilayer perceptrons using the Adam optimizer [22] on a single Nvidia RTX
3090 GPU. Please see Appendix A.1 for more training details. All ground-truth data are generated
using standard explicit time integration with analytical plasticity returning mapping under small time
step sizes for stability. With our PlasticityNet, we can robustly simulate elastoplastic behaviors with
much larger time step sizes using optimization time integrators.

5.1 Training

The training of PlasticityNet only requires the return mapping (either given analytically or pre-trained)
for the plasticity model and the Kirchhoff stress for the underlying elasticity model. There is no need
for extra labeled data. At each epoch, we will sample a new batch of(F; F0; h). The sampling of
deformation gradients is based on its singular value decompositionF = U Diag(� )V> , with U; V
being two rotation matrices. To sampleF andF0 so that their singular values are close to each other,
we setF0 = R1 Diag(e� )R2 andF = R3 Diag(e� + � � )R4, where� is a randomly sampled vector,� �
is a random perturbation, andRi 's are randomly sampled rotation matrices. The hardening state is
sampled uniformly from an appropriate range depending on the plasticity model. Please see Appendix
A.2 for de�nitions of hardening states and their range selections. In this work, we uniformly sample
� from [� 1; 1]d, � � from [� 0:1; 0:1]d for sand plasticity and metal plasticity, and[� 0:2; 0:2]d for the
snow plasticity. The training loss curves of our 2D models are shown in Figure 4.

5.2 Testing on 2D Simulations

In this section, explicit time integrators are used to generate the ground-truth data for the validation
of the optimization time integrators with PlasticityNet on multiple 2D experiments. The quantitative
comparisons are plotted in Figure 5. We additionally include the computational costs in Table 1. We
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(a) (b) (c)

Figure 5:(a) (b) The intersection-over-union (IOU) [17] measure between the ground truth and our
results. The IOUs are computed using the mass distributions on the MPM grid.(c) The average FEM
nodal position difference. Note that the bounding box of the 2D metal frame is0:1m � 0:18m.

Table 1: Computational costs of 2D experiments.

Experiment Ours Explicit
Time step (s) s/frame Time step (s) s/frame

Sand 1e-3 12.58 1e-5 6.20
Snow 1e-3 35.56 1e-5 6.78
Von-Mises Metal 1e-2 1.08 1e-5 5.39
Neohookean Metal 1e-2 1.03 1e-5 7.88
MPM-FEM Coupling 1e-3 38.90 1e-6 184.58

remark that the main objective of our work is not to surpass the performance of the existing simulation
of every constitutive model, but to provide a methodology that enables the usage of implicit plasticity
in an optimization time integration framework.

Figure 6: Sand plasticity.

Sand Plasticity We start by learning the elastoplas-
tic model of dry sand (Figure 6). The model com-
bination is St. Venant-Kirchhoff (StVK) elasticity,
and the closed-form Drucker Prager plasticity return
mapping [23] (See Appendix A.2.1). In this example,
we simulate a column of sand falling onto the ground
under gravity with MPM. Our method generates vi-
sually identical results compared to the ground truth,
both with the same time step size and a100� larger
time step size. The quantitative comparison between
our results and the ground truth is shown in Figure 5a.
Note that there is no hardening mechanism in this
plasticity model, so our PlasticityNet does not need the hardening state in its input.

Figure 7: Snow plasticity with hardening.

Snow Plasticity with Hardening Snow is an
elastoplastic material that can become stiffer under
compression. Essentially, this is the effect of hard-
ening where its elastic region get expanded. The
variation in the stiffness across the snow body makes
it easily fracture. Here we simulate a snowball hitting
the ground in the MPM simulator (Figure 7). We use
Neo-Hookean elasticity with the closed-form non-
associative Cam-Clay plasticity return mapping [15]
(See Appendix A.2.2). Our method generates similar
results compared to the ground truth when using the
same time step size. The quantitative comparison of
our results and the ground truth is shown in Figure 5b. Our framework remains stable even under
much larger time step sizes. However, more numerical damping artifacts are introduced as the time
step size increases, which results in slightly different behaviors compared to the ground truth.
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