
PlasticityNet: Learning to Simulate Metal, Sand, and
Snow for Optimization Time Integration

Xuan Li
Department of Mathematics

University of California, Los Angeles
xuanli1@math.ucla.edu

Yadi Cao
Department of Computer Science

University of California, Los Angeles
yadicao95@cs.ucla.edu

Minchen Li
Department of Mathematics

University of California, Los Angeles
minchen@math.ucla.edu

Yin Yang
School of Computing

University of Utah
yin.yang@utah.edu

Craig Schroeder
Department of Computer Science and Engineering

University of California, Riverside
craigs@cs.ucr.edu

Chenfanfu Jiang
Department of Mathematics

University of California, Los Angeles
cffjiang@math.ucla.edu

Abstract

In this paper, we propose a neural network-based approach for learning to represent
the behavior of plastic solid materials ranging from rubber and metal to sand and
snow. Unlike elastic forces such as spring forces, these plastic forces do not result
from the positional gradient of any potential energy, imposing great challenges on
the stability and flexibility of their simulation. Our method effectively resolves this
issue by learning a generalizable plastic energy whose derivative closely matches
the analytical behavior of plastic forces. Our method, for the first time, enables
the simulation of a wide range of arbitrary elasticity-plasticity combinations using
time step-independent, unconditionally stable optimization-based time integrators.
We demonstrate the efficacy of our method by learning and producing challenging
2D and 3D effects of metal, sand, and snow with complex dynamics.

1 Introduction

Combining machine learning with physical simulations has recently attracted a lot of attention. A vast
amount of existing research adopts an end-to-end approach, where the specific underlying computa-
tional physics system is treated as a black box [46, 41]. Harnessing the power of neural networks, this
research has been successfully applied in computer animation [10], multibody systems [3, 6, 59, 12],
human musculature simulation [20], computational fluid dynamics [4, 13], and non-linear contin-
uum mechanics [5]. An alternative direction is represented by physics-informed neural networks
(PINN) [44, 21], where in its original form, the residual of a partial differential equation is directly
used as the loss function so that the network training is a physics-aware learning process. PINN
becomes powerful when the design space of the input to the network can be parameterized, which
accelerates both the roll-out and the inverse optimization process [51]. Another noteworthy category
is learning the physical modeling where the machine can either help increase the model resolution in
a coarser grid [24], inject nonlinearity to a linear model [37], or apply a learnable model reduction to
reduce the system degrees-of-freedom (DOF) for acceleration [47, 48].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Despite its great success, training a neural network to replace a traditional simulator is not always
the preferred choice. This is partially due to the challenges in the trained model’s generality and
portability. For example, a trained model on a particle-based deformable body solver (such as the
Material Point Method (MPM [19]) cannot be directly applied to the mesh-based Finite Element
Method (FEM) [49], while in traditional continuum mechanics, the constitutive model that describes
the relationship between force and deformation is an independent module from the underlying
geometric description or simulation scheme. Indeed, by simply switching the constitutive model and
applying minor changes to the existing and general simulation pipeline, a wide range of materials
can be simulated in the same framework, ranging from sand [42, 9, 23, 52] and metal [39], to snow
[15, 57, 35] and glacier [58].

Many elastic materials, including those represented by mass-spring systems [2] and common hypere-
lastic solids [50], are usually governed by analytical elastic potential energy functions in terms of the
deformation. These models are well fitted to experiments and proven to be simple, accurate, and pre-
dictive. Although most of these energy functions are highly nonlinear and non-convex, reformulating
the dynamic simulation process as a numerical optimization problem and solving it using projected
Newton and line search can guarantee global convergence to a solution [28]. Beyond hyperelasticity,
plasticity is much more challenging. The mechanical response of plastic materials imposes extra
difficulties in the implementation as it is path-dependant and non-smooth. One common handling
of plasticity is the return mapping algorithm, which applies the effects of plastic deformation to the
elastic forces. However, this leads to asymmetrical force derivatives, which eliminate the possibility
of integrating the plasticity into the energy function in a single optimization and complicates the
pipeline. In the recent work of Energetic Consistent Inelasticity (ECI) [34], the plasticity is analyt-
ically modeled as an energy functional, and the simulation can be formulated as an optimization
problem just like simulating pure elastic materials. However, their analytical derivation only works
for St.Venant-Kirchhoff (StVK) elasticity with the von-Mises plasticity.

In this work, we propose PlasticityNet, a neural network-based approach for learning an energy-
based force that locally approximates elastic forces with plasticity models and is compatible with
optimization time integrators. PlasticityNet framework supports any combinations of elastic models
and plastic models and works with both MPM and FEM discretizations. With optimization time
integrators, we demonstrate that our framework can simulate vast types of plasticities, such as metal,
sand, and snow, with large time step sizes.

2 Related work

Classic Plasticity Models The classic plastic models utilized the geometry information of the plas-
ticity and are available for many applications. In the computer graphics community, researchers have
followed mechanical literature on the Drucker-Prager elastoplasticity model [42, 9], and developed
particle-based simulations of dry [23] and wet [52] sand. Extending a similar Cam-Clay plasticity
model, snow avalanches [15, 35], glacier calving [58] and food fracturing [57] are also captured
with high visual plausibility as well as physical accuracy. For metals and dough-like materials,
the von-Mises plasticity model [39] is usually adopted, while [56, 18] presented its anisotropic
extensions. Still, the implementation of these models in modern, optimization-based simulators is
cumbersome due to the non-integrable forces. Recently, [34] proposed an elastoplastic energy of
von-Mises plasticity under StVK elasticity for optimization time integrator, which can be viewed
as a special-case analytical solution to our framework under the same combination of elasticity and
plasticity. But our framework works for arbitrary combinations.

Data-Driven Plasticity Models The machine learning approach has been used to find new plastic
models using large sets of measurements and parameters, outperforming many long-standing hand-
crafted models. The macro-level constitutive relationship is learned from the results of the micro-level
simulations [40, 45]. A similar approach is applied in [53] to learn anisotropic hyperelasticity, where
additional geometrical information is included in the input. PINN can also be applied in plastic model
finding from experimental measurements [1, 54, 25], where the loss includes the stress and Hessian,
to infer stress with more accuracy in the implicit simulators. However, there does not exist any prior
work, to the best of the author’s knowledge, that tried to find variational form for arbitrary plasticity
model.

2



Optimization Time Integration The optimization time integrators have advantages in terms
of stability under large deformations and large time step sizes. Many of the nonlinear systems
of equations that arise from implicit simulation can be integrated to get equivalent optimization
problems, which allow robust optimization techniques to be applied. The MPM simulator in this
work is based on [14], which formulated the backward Euler time integration with hyperelastic
materials as a minimization problem. [30] and [55] also explored domain decompositions and
hiearachical preconditioners to improve robustness and efficiency. The FEM simulator in this work is
based on Incremental Potential Contact (IPC) [29], which proposed a variational form for frictional
contacts. Their optimization-based frictional contact framework was also extended to codimensional
objects [31], rigid bodies [11, 26], articulated multibodies [7], reduced elastic solids [27], embedded
interfaces [60], and FEM-MPM coupled domains [33].

3 Background

3.1 Optimization Time Integration

In this section, we briefly introduce the optimization time integration for elastodynamics simulations
with the Material Point Method (MPM) and the Finite Element Method (FEM). We refer the readers
to [28] and [14] for more details.

FEM discretizes the simulation domain as unstructured meshes (e.g., triangle meshes in 2D), while in
MPM, a point cloud composed of material particles is used to discretize the domain. While FEM
directly uses the mesh nodes as the simulation degrees-of-freedom (DOF), MPM transfers its particle
state to a uniform background grid, whose nodes are used as the DOFs for the integration of forces
[19]. Robust simulation of elastodynamics can be achieved via implicit time integration, which
updates the nodal positions (x) or velocities (v) step by step based on the previous physical states. To
step from tn to tn+1 = tn +∆t with time step size ∆t, with implicit Euler time integration rule, one
needs to solve a nonlinear system of equations

M(vn+1 − (vn + g∆t)) = ∆tfn+1. (1)
Here v is the velocity DOF formed by concatenating all nodal velocity vectors, similarly concatenated,
M is the mass matrix, g is the gravitational acceleration vector, and f is the internal force vector.
Without plasticity, the internal force on a node i can be calculated as

fn+1
i = −

∑
q

V 0
q P(Fn+1

q )∇wiq, (2)

where q iterates the surrounding elements/particles of node i in FEM/MPM, V 0
q is the initial volume

of the element/particle, F = (I +∆t∇v)Fn (MPM) or F = ∇xn +∆t∇v (FEM) is the deformation
gradient, which measures deformation from the undeformed state to the deformed state, and P is the
first-Piola Kirchhoff stress, which describes the internal force per unit area within a material. ∇wiq

is the gradient of the weight function on node i evaluated on an element/particle center. The weight
function is for transferring physical quantities between the elements/particles and the mesh/grid
nodes. Unlike FEM, the last time step is used in MPM as the reference configuration, and so ∇wiq is
calculated as Fn⊤

q ∇wn
iq .

When there exists an energy density function Ψ such that P(F) = ∂Ψ
∂F , solving Equation 1 is equivalent

to solving the following optimization problem

vn+1 = argminv
1

2
∥v − (vn + g∆t)∥2M +

∑
q

V 0
q Ψ(Fq). (3)

This formulation is more favored because with line search methods, convergence to a local minimum
of Equation 3 can be guaranteed even when simulating challenging cases with stiff materials or large
time step sizes. After solving for the velocity vn+1, FEM directly updates mesh nodal positions
as xn+1 = xn +∆tvn+1, while for MPM, the velocity on the grid node is interpolated to particle
locations for particle advection. The background grid is reset at the beginning of each time step,
which allows MPM to benefit from the conveniences of a regular grid and a mesh-free formulation at
the cost of some accuracy loss due to the transfers between the grid and particles.

3.2 Return Mapping for Plasticity

3



Elastic Region

Plastic Region

Figure 1: An illustration
of a return mapping.

With plasticity, objects can undergo both plastic and elastic deformations,
and the deformation gradient at the current time step can be decomposed
as

Fn+1 = FE,n+1FP,n+1 (4)

based on the finite strain theory. Here FP,n+1 encodes the permanent
plastic deformation of the rest shape, and FE,n+1 is the elastic defor-
mation that results in effective elastic forces. In theory, FE,n+1 is con-
strained within certain elastic regions. Computation-wise, an elastic
predictor FE,tr = Fn+1(FP,n)−1 can be computed first by assuming
FP,n+1 = FP,n. If FE,tr is outside the elastic region, it will be projected
back onto the boundary of the region to obtain FE,n+1 = Z(FE,tr) (Fig-
ure 1). This projection Z is called a return mapping. Within this framework, the implicit elastoplastic
nodal force can be computed as [34]

fn+1
i = −

∑
q

V 0
q τ (Z(FE,tr

q ))FE,tr
q

−⊤
FP,n−⊤∇wiq (5)

where τ (F) = P(F)F⊤ is the Kirchoff stress. The above forces are integrable only if τ (Z(F))F−⊤

can be represented as the gradient of some energy function:

∂Ψ

∂F
= τ (Z(F))F−⊤. (6)

Most combinations of elastic constitutive models and plastic return mappings do not satisfy this
integrability condition because the Jacobian field of the right-hand side is asymmetrical. Note that
directly feeding Z(F) into an elastic potential does not form a potential energy for the elastoplastic
forces defined in Equation 5. [34] only found one specific combination such that an elastoplastic
potential energy exists. Thus, it remains challenging to simulate versatile plastic behaviors with
optimization time integrators and achieve robust performance.

4 PlasticityNet

We propose PlasticityNet, a neural network-based elastoplastic model that finds a family of local
potential energies whose negative gradients can approximate the elastoplastic forces within a small
neighborhood so that plasticity can be conveniently simulated using optimization time integrators.
The model architecture is illustrate in Figure 2. Specifically, instead of finding a global energy
function Ψ(F), we search for an energy Ψ(F,F0), parameterized by F0, such that

∂Ψ

∂F
(F,F0)|F=F0

= τ (Z(F0))F−⊤
0 , and

∂Ψ

∂F
(F,F0) ≈ τ (Z(F))F−⊤. (7)

To exactly enforce the first equality, we propose the following linear correction:

Ψθ(F,F0) = NN θ(F,F0)− (∇FNN θ(F0,F0)− τ (Z(F0))F−⊤
0 )⊙ F. (8)

Here A ⊙ B = AijBij = tr(A⊤B) is the matrix inner product. It can be verified that
∂Ψθ

∂F (F,F0)|F=F0
= τ (Z(F0))F−⊤

0 .

Then we only need to focus on the approximation part in Equation 7. We design the training loss
function for our neural network as

L(θ) = EF0
EF

∥∥∥∥∂Ψθ

∂F
(F,F0)− τ (Z(F))F−⊤

∥∥∥∥2
F

. (9)

During training, F is only sampled near F0. Please refer to Section 5.1 for details.

4



4.1 Hardening of Plasticity

Figure 2: An overview of
PlasticityNet. It is a map
from R2d2+1 to R.

Hardening effects are widely observed in metals and snow. With harden-
ing, the elastic region will expand by a certain amount whenever FE,tr

falls in the plastic region. To account for hardening, the return mapping
Z(F, h) and the energy Ψθ(F,F0, h) will depend on an extra hardening
state h, which controls the shape of the elastic region. This hardening
state is a function of F. However, to maintain integrability with respect to
F, we approximately update h based on F0, which is assumed to be close
to F.

4.2 Optimization Time Integration with PlasticityNet

Fixed-Point Iteration The gradient of our learned elastoplastic potential energy Ψθ(F,F0) only
approximates the effective stresses locally near F0. To approach the accurate solution of Equation 1
with elastoplastic forces, we apply a fixed-point iteration on F0 to let it converge to Fn+1. Specifically,
we solve a sequence of optimization problems

vn+1,j+1 = argminv
1

2
∥v − (vn + g∆t)∥M +

∑
q

V 0
q Ψθ(Fq,Fj

0,q, h
j
q), for j = 0, 1, 2, ..., (10)

treating the concatenated deformation gradients Fj
0 and hardening states h as constants, which are

only updated before each optimization as Fj
0 = F(vn+1,j) and h = h(F0). At convergence, we will

obtain the true solution of Equation 1. In practice, a few number of fixed-point iterations can already
generate high-quality results.

Stability Regularizer We augment our learned potential with an extra quadratic regularizer to
stabilize the simulation especially when the material is stiff or the time step size is large:

Ψθ(F,F0) = NN θ(F,F0)− (∇FNN θ(F0,F0)− τ (Z(F0))F−⊤
0 )⊙ F +

1

2
µ∥F − F0∥2F . (11)

Here µ is the shear modulus of the material that Ψθ is learning. Note that this extra term is added
after the model is trained instead of during the training. This extra term does not change the gradient
at F0, so it will not change the fixed point of Procedure 10. Please see Section 5.3 for a comparison
between simulations with and without this regularizer.

4.3 Learning Volume-Preserving Return Mapping
Elastic Region

Figure 3: Volume-preserving
projection.

The return mapping Z required by PlasticityNet can be either given
analytically or learned. Note that with different combinations of
many practical elasticity and plasticity models, the return mapping
may not have a closed-form solution, and the projection can only be
performed by solving a nonlinear system of equations.

Here we provide a simple approach to learn a volume-preserving
return mapping, which ensures that det(Z(F)) = det(F). For
isotropic materials, the projection can be performed in the diag-
onal space, i.e., with F = UDiag(Σ)V⊤ being the singular value
decomposition of F; the projection is only needed for Σ. In the
diagonal space, a volume-preserving path is a straight line in the
Hencky strain (defined as ϵ = log(Σ)) space, which is perpen-
dicular to the diagonal line. The direction of the projection path
is ϵ̂ = ϵ − sum(ϵ)1. The volume-preserving projection in the Hencky strain can be unified by
H = ϵ− δγ ϵ̂

∥ϵ̂∥ for some δγ, with ZΣ(Σ) = exp(H) and Z(F) = UDiag(ZΣ)V⊤. An illustration
is shown in Figure 3.

The elastic region is usually represented by an implicit function y(Σ) ≤ 0. We can use a neural
network to predict δγ, where the training leverages the differentiability of the implicit representation
for the elastic region boundary. The volume-preserving path usually has two intersections with the

5



Sand Snow

0 2500 5000 7500 10000 12500 15000 17500 20000

Epoch

10 2

10 1

100

101

102

Tr
a
n
in

g
 L

o
ss

Metal

Figure 4: Training losses of our 2D models.

elastic region boundary. To eliminate this ambiguity, we clamp the output of the neural network with
a maximum ∥ϵ̂∥. We define our neural-network-based return mapping on the diagonal space as:

δγθ(Σ) = min{NN θ(Σ), ∥ϵ̂∥}, ZΣ
θ (Σ) =

{
exp(ϵ− δγθ

ϵ̂
∥ϵ̂∥ ), y(Σ) > 0,

Σ, y(Σ) ≤ 0.
(12)

The training loss function for a single Σ is defined as

L(Σ; θ) =

{
y(ZΣ

θ (Σ))2 +max{δγθ(Σ)− ∥ϵ̂∥, 0}, y(Σ) > 0

0, y(Σ) ≤ 0
(13)

Here, the first term is to pull the points outside the elastic region back onto the boundary. The second
term is to avoid these points to be always projected onto the diagonal due to the clamping in δγθ. To
account for hardening, we only need to let the δγ network accept an extra hardening state variable h:
δγθ(Σ, h) = min{NN θ(Σ, h), ∥ϵ̂∥}. The learned return mapping is then ready to be used by our
PlasticityNet.

5 Experiments

We show examples to demonstrate the capability of our PlasticityNet in learning versatile plasticity
models. Our physical simulators are implemented using C++, and we applied PyTorch to learn the
potential energies, which are then loaded into our simulators with TorchScript. All our potential
energies are trained as multilayer perceptrons using the Adam optimizer [22] on a single Nvidia RTX
3090 GPU. Please see Appendix A.1 for more training details. All ground-truth data are generated
using standard explicit time integration with analytical plasticity returning mapping under small time
step sizes for stability. With our PlasticityNet, we can robustly simulate elastoplastic behaviors with
much larger time step sizes using optimization time integrators.

5.1 Training

The training of PlasticityNet only requires the return mapping (either given analytically or pre-trained)
for the plasticity model and the Kirchhoff stress for the underlying elasticity model. There is no need
for extra labeled data. At each epoch, we will sample a new batch of (F,F0,h). The sampling of
deformation gradients is based on its singular value decomposition F = UDiag(Σ)V⊤, with U,V
being two rotation matrices. To sample F and F0 so that their singular values are close to each other,
we set F0 = R1 Diag(eϵ)R2 and F = R3 Diag(eϵ+δϵ)R4, where ϵ is a randomly sampled vector, δϵ
is a random perturbation, and Ri’s are randomly sampled rotation matrices. The hardening state is
sampled uniformly from an appropriate range depending on the plasticity model. Please see Appendix
A.2 for definitions of hardening states and their range selections. In this work, we uniformly sample
ϵ from [−1, 1]d, δϵ from [−0.1, 0.1]d for sand plasticity and metal plasticity, and [−0.2, 0.2]d for the
snow plasticity. The training loss curves of our 2D models are shown in Figure 4.

5.2 Testing on 2D Simulations

In this section, explicit time integrators are used to generate the ground-truth data for the validation
of the optimization time integrators with PlasticityNet on multiple 2D experiments. The quantitative
comparisons are plotted in Figure 5. We additionally include the computational costs in Table 1. We

6



Sand

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Simulation Time [s]

0.75

0.80

0.85

0.90

0.95

1.00

Io
U

Snow

(b)

Metal

(c)

Figure 5: (a) (b) The intersection-over-union (IOU) [17] measure between the ground truth and our
results. The IOUs are computed using the mass distributions on the MPM grid. (c) The average FEM
nodal position difference. Note that the bounding box of the 2D metal frame is 0.1m× 0.18m.

Table 1: Computational costs of 2D experiments.

Experiment Ours Explicit
Time step (s) s/frame Time step (s) s/frame

Sand 1e-3 12.58 1e-5 6.20
Snow 1e-3 35.56 1e-5 6.78
Von-Mises Metal 1e-2 1.08 1e-5 5.39
Neohookean Metal 1e-2 1.03 1e-5 7.88
MPM-FEM Coupling 1e-3 38.90 1e-6 184.58

remark that the main objective of our work is not to surpass the performance of the existing simulation
of every constitutive model, but to provide a methodology that enables the usage of implicit plasticity
in an optimization time integration framework.

Ours (dt = 1e-5s) 

Ground truth (dt = 1e-5s) 

Ours (dt = 1e-3s) 

Figure 6: Sand plasticity.

Sand Plasticity We start by learning the elastoplas-
tic model of dry sand (Figure 6). The model com-
bination is St. Venant-Kirchhoff (StVK) elasticity,
and the closed-form Drucker Prager plasticity return
mapping [23] (See Appendix A.2.1). In this example,
we simulate a column of sand falling onto the ground
under gravity with MPM. Our method generates vi-
sually identical results compared to the ground truth,
both with the same time step size and a 100× larger
time step size. The quantitative comparison between
our results and the ground truth is shown in Figure 5a.
Note that there is no hardening mechanism in this
plasticity model, so our PlasticityNet does not need the hardening state in its input.

Ours (dt = 1e-5s) 

Ground truth (dt = 1e-5s) 

Ours (dt = 1e-3s) 

Figure 7: Snow plasticity with hardening.

Snow Plasticity with Hardening Snow is an
elastoplastic material that can become stiffer under
compression. Essentially, this is the effect of hard-
ening where its elastic region get expanded. The
variation in the stiffness across the snow body makes
it easily fracture. Here we simulate a snowball hitting
the ground in the MPM simulator (Figure 7). We use
Neo-Hookean elasticity with the closed-form non-
associative Cam-Clay plasticity return mapping [15]
(See Appendix A.2.2). Our method generates similar
results compared to the ground truth when using the
same time step size. The quantitative comparison of
our results and the ground truth is shown in Figure 5b. Our framework remains stable even under
much larger time step sizes. However, more numerical damping artifacts are introduced as the time
step size increases, which results in slightly different behaviors compared to the ground truth.

7



Ours (E = 1e7 Pa, dt = 1e-5s) 

Ground truth (E = 1e7 Pa, dt = 1e-5s) 

Ours (E = 1e10 Pa, dt = 1e-2s) 

Figure 8: Metal plasticity with harden-
ing.

Metal Plasticity with Hardening Metal is another com-
mon plastic material with hardening. In this example, we
train PlasticityNet to learn metal plasticity with the StVK
elasticity and the closed-form von-Mises plasticity return
mapping [39]. (See Appendix A.2.3) We simulate a metal
frame compressed by a rigid plate in the FEM simulator
(Figure 8), where the Incremental Potential Contact (IPC)
[29] is used to handle the frictional contact between the
solids. When we run the explicit time integration to gen-
erate ground truth, we have to decrease Young’s modulus
to enable using large enough time step sizes so that the
simulation can be finished in practical time. Our method
with the original setting generates visually identical re-
sults using a much large time step size. The quantitative
comparison of our result and the ground truth is shown in
Figure 5c.

Figure 9: Learned metal plasticity return
mapping with neo-Hookean elasticity.

Metal Plasticity Return Mapping Here we show an
example simulated using PlasticityNet with a learned von-
Mises plasticity return mapping. The underlying elasticity
is neo-Hookean, instead of the StVK model in the last ex-
ample (See Appendix A.2.4). Note that for Neo-Hookean
material, there is no closed-form solution available for
the von-Mises return mapping. In this case, a nonlinear
optimization problem will need to be solved to perform the return mapping for every element/particle
in every time step, which could severely slow down the standard explicit time integration. Using
the same parameters as the metal compression experiments above, we show that PlasticityNet with
learned plasticity return mapping under neo-Hookean elasticity can generate qualitatively similar
results (Figure 9) to those from PlasticityNet with closed-form return mapping under the StVK
elasticity.

Ours (dt = 1e-3s) 

Explicit (dt = 1e-6s) 

Figure 10: Two-way coupling between
FEM elasticity and MPM sand plasticity.

MPM-FEM Coupling PlasticityNet enables the sim-
ulation of plastic materials in the MPM-FEM coupling
framework BFEMP [33], where only pure elasticity was
supported. When simulating with explicit BFEMP, the
time step size required by stability is the minimum be-
tween MPM step size upperbound and FEM step size
upperbound. Here we show an example where a stiff FEM
elastic body falls onto MPM sand (Figure 10), where the
implicit BFEMP can use a time step size 1000x larger than
the explicit BFEMP and achieves an approximately 5x
speedup in wall-clock time. We also remark that when the time step size is small (as is required
to keep the explicit time integration stable in this case), MPM suffers from excessive numerical
damping due to the significant amount of particle-grid transfers. This is a known issue of explicit
MPM simulations.

Different Energy Representations Here we include some different energy representations we
investigated (Figure 11), whose inaccurate results motivated us to develop our final representation
Equation 8. These experiments are all conducted on the 2D sand column collapse example. The
first straightforward idea is to find a globally defined neural energy function Ψ(F) = Ψθ(F) that
solves Equation 6, where θ is the parameter of the neural network. Note that it is theoretically
unachievable to train a global potential energy function because the right hand side of Equation 6 is not
integrable in the plastic region. But it is still worth trying to explore an approximation by minimizing
L(θ) = EF

∥∥∥ ∂Ψθ
∂F (F)− τ (Z(F))F−⊤

∥∥∥2

F
. However, the experiment shows that this formulation makes

the sand column behave like an elastic body. It is also noteworthy that the sand column cannot even
maintain the rest shape at the first frame: it erroneously shrinks suddenly and jumps off the ground.
Additional insight is provided by realizing that a linear correction is necessary to exactly vanish stress
when the deformation gradient is the identity; so we experiment with Ψ(F) = Ψθ(F) −∇FΨθ(I).

8



Figure 11: Ablation studies on different energy representations.

3D Sand

3D Snow

3D Metal

Figure 13: 3D simulations with sand plasticity, snow palsticity and metal plasticity.

This formulation unfortunately also leads to an insufficient capture of plasticity, giving an elastic and
visually distinct incorrect result. These observations motivate us to investigate a family of potential
energies to solve Equation 6 locally. We first use Ψ(F,F0) = Ψθ(F,F0) −∇FΨθ(I,F0) and train
with the loss function in Equation 9. The simulation captures certain plastic behaviors when the
deformation is small, but the result quickly deviates from the ground truth when the deformation
becomes larger. Finally, we come up with Equation 8 to achieve the nice results in Figure 6.

5.3 Ablation Studies

Non-regularizedNon-regularized Regularized Regularized

Figure 12: The regularizer significantly
improves the stability of the simulation.

Stability Regularizer As an ablation study for the stabil-
ity regularizer in Equation 11, we compare the simulations
with and without the regularizer on two 2D examples (Fig-
ure 12). Without the regularizer, the metal frame can not
even stay in its original rest configuration after the first
time step. In the sand example, particles in the highlighted
regions tend to separate from the sand column in a non-
physical manner. These demonstrate that our regularizer
significantly improves the stability of the simulation.

5.4 Testing on 3D Simulations

Extending PlasticityNet to support 3D simulation is straightforward. We only need to increase the
dimension of the inputs to the PlasticityNet. To improve the expressiveness of the network, we also
increase the dimension of hidden variables. Here we demonstrate the 3D versions of our 2D examples
with similar physical parameters in Figure 13: 3D sand plasticity, 3D snow plasticity, and 3D metal
plasticity. The 3D metal is simulated with ∆t = 10−2, and for sand and snow, we use ∆t = 10−3s
to satisfy the CFL condition [8] in MPM, preventing the particles from traveling farther than the grid
cell spacing in a single time step.

6 Conclusion

We proposed PlasticityNet, a neural network-based elastoplastic model learning framework that is
agnostic to spatial discretizations. PlasticityNet represents the elastoplastic forces as the positional

9



gradients of learned potential energies, so that optimization time integration could be applied to
achieve robust and efficient simulation at large time step sizes. We demonstrated that low-level
components in traditional physical simulation frameworks can be substituted with neural networks
to obtain desired numerical properties that benefit the computation. Notably, this also avoids
tedious analytical derivations or expensive nonlinear root-findings without significantly sacrificing the
accuracy. We believe our work can inspire more research that applies machine learning to physical
simulation in the bottom-up style, maintaining fundamental physical properties and applicability to
general scenarios.

Limitations and Future Work There are several limitations of our framework. (1) We cannot
guarantee our fixed-point iteration will converge for arbitrary scenes. It is theoretically valuable to
explore under what conditions the fixed-point can converge and what loss functions can accelerate
the convergence. (2) Although the regularizer added during the simulation improves the stability
of the simulation without changing the solution at convergence, it may introduce some artificial
viscosity because the regularized energy penalizes deformations away from F0. Running more
fixed-point iterations can alleviate this issue. It will also be interesting to explore adaptive weighting
mechanisms for the regularizer, or convert this soft regularizer into a hard constraint. (3) We do
not consider the Hessian of the learned plastic energy in our training. Since we use second-order
methods to perform optimization time integration, the properties of the Hessian matrices may have an
impact on the convergence of the optimization method. Although the Jacobian matrices of the target
gradients are asymmetric, it may be helpful if the Hessian of our learned elastoplastic energy can
approximate them so that the stiffness of the material can be more accurately resolved. (4) Principled
physical assumptions of the learned potential energies by PlasticityNet, such as lower-boundedness
and convexity, are not enforced. It is interesting to explore whether enforcing these energy properties
would positively influence the convergence of the optimizations and fixed-point iterations. (5) A
trained PlasticityNet can be directly re-scaled to accommodate a different Young’s modulus, but it
needs to be re-trained for materials with different Poisson’s ratio or plasticity parameters. It is an
important future work to let our model more easily generalize to different parameters. For example,
these parameters can become extra inputs to the neural network. The generalized energy can also be
integrated into differentiable simulators [16, 43] to solve many inverse problems [38, 36, 32].

Acknowledgments and Disclosure of Funding

We would like to thank Pingying Chen for narrating the supplemental video. We would also like to
thank the anonymous reviewers for their valuable comments. This work has been supported in part by
NSF CAREER 2153851, CCF-2153863, ECCS-2023780, IIS-2011471, IIS-2016414, IIS-2006570,
DOE ORNL contract 4000171342.

References
[1] F. As’ ad, P. Avery, and C. Farhat. A mechanics-informed artificial neural network approach in

data-driven constitutive modeling. In AIAA Scitech 2022 Forum, page 0100, 2022.

[2] A. W. Bargteil, T. Shinar, and P. G. Kry. An introduction to physics-based animation. In
SIGGRAPH Asia 2020 Courses, pages 1–57. 2020.

[3] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks for learning
about objects, relations and physics. Advances in neural information processing systems, 29,
2016.

[4] F. D. A. Belbute-Peres, T. Economon, and Z. Kolter. Combining differentiable pde solvers
and graph neural networks for fluid flow prediction. In International Conference on Machine
Learning, pages 2402–2411. PMLR, 2020.

[5] F. E. Bock, R. C. Aydin, C. J. Cyron, N. Huber, S. R. Kalidindi, and B. Klusemann. A review
of the application of machine learning and data mining approaches in continuum materials
mechanics. Frontiers in Materials, page 110, 2019.

[6] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

10



[7] Y. Chen, M. Li, L. Lan, H. Su, Y. Yang, and C. Jiang. A unified newton barrier method for
multibody dynamics. ACM Trans. Graph. (SIGGRAPH), 41(4), 2022.

[8] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical
physics. IBM journal of Research and Development, 11(2):215–234, 1967.

[9] D. C. Drucker. Some implications of work hardening and ideal plasticity. Quarterly of Applied
Mathematics, 7(4):411–418, 1950.

[10] M.-L. Eckert, K. Um, and N. Thuerey. Scalarflow: a large-scale volumetric data set of real-world
scalar transport flows for computer animation and machine learning. ACM Transactions on
Graphics (TOG), 38(6):1–16, 2019.

[11] Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, D. Zorin, D. M. Kaufman,
and D. Panozzo. Intersection-free rigid body dynamics. ACM Transactions on Graphics, 40(4),
2021.

[12] C. Gan, J. Schwartz, S. Alter, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius, A. Bhandwaldar,
N. Haber, M. Sano, et al. Threedworld: A platform for interactive multi-modal physical
simulation. arXiv preprint arXiv:2007.04954, 2020.

[13] P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, and E. Hachem. A review on deep
reinforcement learning for fluid mechanics. Computers & Fluids, 225:104973, 2021.

[14] T. F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. M. Teran. Optimization integrator for
large time steps. IEEE transactions on visualization and computer graphics, 21(10):1103–1115,
2015.

[15] J. Gaume, T. Gast, J. Teran, A. Van Herwijnen, and C. Jiang. Dynamic anticrack propagation in
snow. Nature communications, 9(1):1–10, 2018.

[16] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Difftaichi:
Differentiable programming for physical simulation. ICLR, 2020.

[17] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and C. Gan. Plasticinelab: A soft-
body manipulation benchmark with differentiable physics. arXiv preprint arXiv:2104.03311,
2021.

[18] C. Jiang, T. Gast, and J. Teran. Anisotropic elastoplasticity for cloth, knit and hair frictional
contact. ACM Transactions on Graphics (TOG), 36(4):1–14, 2017.

[19] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. The material point method for
simulating continuum materials. In ACM SIGGRAPH 2016 Courses, pages 1–52. 2016.

[20] Y. Jin, Y. Han, Z. Geng, J. Teran, and R. Fedkiw. Analytically integratable zero-restlength
springs for capturing dynamic modes unrepresented by quasistatic neural networks. arXiv
preprint arXiv:2201.10122, 2022.

[21] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. Drucker-prager
elastoplasticity for sand animation. ACM Transactions on Graphics (TOG), 35(4):1–12, 2016.

[24] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Machine learning–
accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences,
118(21), 2021.

[25] A. Koeppe, F. Bamer, M. Selzer, B. Nestler, and B. Markert. Explainable artificial intelligence
for mechanics: physics-explaining neural networks for constitutive models. Front. Mater. 8:
824958. doi: 10.3389/fmats, 2022.

11



[26] L. Lan, D. M. Kaufman, M. Li, C. Jiang, and Y. Yang. Affine body dynamics: Fast, stable &
intersection-free simulation of stiff materials. ACM Trans. Graph. (SIGGRAPH), 41(4), 2022.

[27] L. Lan, Y. Yang, D. Kaufman, J. Yao, M. Li, and C. Jiang. Medial ipc: accelerated incremental
potential contact with medial elastics. ACM Trans. on Graph., 40(4):1–16, 2021.

[28] M. Li. Robust and Accurate Simulation of Elastodynamics and Contact. PhD thesis, University
of Pennsylvania, 2020.

[29] M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo, C. Jiang, and D. M.
Kaufman. Incremental potential contact: Intersection-and inversion-free, large-deformation
dynamics. ACM transactions on graphics, 2020.

[30] M. Li, M. Gao, T. Langlois, C. Jiang, and D. M. Kaufman. Decomposed optimization time
integrator for large-step elastodynamics. ACM Trans. Gr., 38(4), 2019.

[31] M. Li, D. M. Kaufman, and C. Jiang. Codimensional incremental potential contact. ACM
Transactions on Graphics, 40(4), 2021.

[32] S. Li, Z. Huang, T. Du, H. Su, J. B. Tenenbaum, and C. Gan. Contact points discovery for
soft-body manipulations with differentiable physics. arXiv preprint arXiv:2205.02835, 2022.

[33] X. Li, Y. Fang, M. Li, and C. Jiang. Bfemp: Interpenetration-free mpm–fem coupling with
barrier contact. Comp. meth. applied mech. eng., 2021.

[34] X. Li, M. Li, and C. Jiang. Energetically consistent inelasticity for optimization time integration.
ACM Trans. Gr., 41(4), 2022.

[35] X. Li, B. Sovilla, C. Jiang, and J. Gaume. Three-dimensional and real-scale modeling of flow
regimes in dense snow avalanches. Landslides, 18(10):3393–3406, 2021.

[36] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan. Diffskill: Skill abstraction
from differentiable physics for deformable object manipulations with tools. arXiv preprint
arXiv:2203.17275, 2022.

[37] R. Luo, T. Shao, H. Wang, W. Xu, X. Chen, K. Zhou, and Y. Yang. Nnwarp: Neural network-
based nonlinear deformation. IEEE transactions on visualization and computer graphics,
26(4):1745–1759, 2018.

[38] P. Ma, T. Du, J. B. Tenenbaum, W. Matusik, and C. Gan. Risp: Rendering-invariant state
predictor with differentiable simulation and rendering for cross-domain parameter estimation.
arXiv preprint arXiv:2205.05678, 2022.

[39] R. v. Mises. Mechanik der festen körper im plastisch-deformablen zustand. Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse,
1913:582–592, 1913.

[40] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, and M. Bessa. Deep learning predicts
path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52):26414–
26420, 2019.

[41] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-based
simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

[42] W. Prager. The theory of plasticity: a survey of recent achievements. Proceedings of the
Institution of Mechanical Engineers, 169(1):41–57, 1955.

[43] Y. Qiao, J. Liang, V. Koltun, and M. Lin. Differentiable simulation of soft multi-body systems.
Advances in Neural Information Processing Systems, 34:17123–17135, 2021.

[44] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

12



[45] D. Reimann, K. Nidadavolu, H. ul Hassan, N. Vajragupta, T. Glasmachers, P. Junker, and
A. Hartmaier. Modeling macroscopic material behavior with machine learning algorithms
trained by micromechanical simulations. Frontiers in Materials, 6:181, 2019.

[46] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning
to simulate complex physics with graph networks. In International Conference on Machine
Learning, pages 8459–8468. PMLR, 2020.

[47] S. Shen, T. Shao, K. Zhou, C. Jiang, F. Luo, and Y. Yang. Hod-net: High-order differentiable
deep neural networks and applications. 2022.

[48] S. Shen, Y. Yin, T. Shao, H. Wang, C. Jiang, L. Lan, and K. Zhou. High-order differentiable
autoencoder for nonlinear model reduction. arXiv preprint arXiv:2102.11026, 2021.

[49] E. Sifakis and J. Barbic. Fem simulation of 3d deformable solids: a practitioner’s guide to
theory, discretization and model reduction. In Acm siggraph 2012 courses, pages 1–50. 2012.

[50] A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran. Energetically consistent invertible
elasticity. In Proceedings of the 11th ACM SIGGRAPH/Eurographics conference on Computer
Animation, pages 25–32, 2012.

[51] L. Sun, H. Gao, S. Pan, and J.-X. Wang. Surrogate modeling for fluid flows based on physics-
constrained deep learning without simulation data. Computer Methods in Applied Mechanics
and Engineering, 361:112732, 2020.

[52] A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. Multi-species
simulation of porous sand and water mixtures. ACM Transactions on Graphics (TOG), 36(4):1–
11, 2017.

[53] N. N. Vlassis, R. Ma, and W. Sun. Geometric deep learning for computational mechanics
part i: Anisotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering,
371:113299, 2020.

[54] N. N. Vlassis and W. Sun. Sobolev training of thermodynamic-informed neural networks for
interpretable elasto-plasticity models with level set hardening. Computer Methods in Applied
Mechanics and Engineering, 377:113695, 2021.

[55] X. Wang, M. Li, Y. Fang, X. Zhang, M. Gao, M. Tang, D. M. Kaufman, and C. Jiang. Hierarchi-
cal optimization time integration for cfl-rate mpm stepping. ACM Trans. on Graph., 39(3):1–16,
2020.

[56] J. Wolper, Y. Chen, M. Li, Y. Fang, Z. Qu, J. Lu, M. Cheng, and C. Jiang. Anisompm: Animating
anisotropic damage mechanics: Supplemental document. ACM Trans. Graph, 39(4), 2020.

[57] J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. Cd-mpm: continuum damage material
point methods for dynamic fracture animation. ACM Transactions on Graphics (TOG), 38(4):1–
15, 2019.

[58] J. Wolper, M. Gao, M. P. Lüthi, V. Heller, A. Vieli, C. Jiang, and J. Gaume. A glacier–
ocean interaction model for tsunami genesis due to iceberg calving. Communications Earth &
Environment, 2(1):1–10, 2021.

[59] S. Yang, X. He, and B. Zhu. Learning physical constraints with neural projections. Advances in
Neural Information Processing Systems, 33:5178–5189, 2020.

[60] Y. Zhao, J. Choo, Y. Jiang, M. Li, C. Jiang, and K. Soga. A barrier method for frictional
contact on embedded interfaces. Computer Methods in Applied Mechanics and Engineering,
393:114820, 2022.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	Related work
	Background
	Optimization Time Integration
	Return Mapping for Plasticity

	PlasticityNet
	Hardening of Plasticity
	Optimization Time Integration with PlasticityNet
	Learning Volume-Preserving Return Mapping

	Experiments
	Training
	Testing on 2D Simulations
	Ablation Studies
	Testing on 3D Simulations

	Conclusion

