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Abstract

We develop a simple and unified framework for nonlinear variable importance
estimation that incorporates uncertainty in the prediction function and is compatible
with a wide range of machine learning models (e.g., tree ensembles, kernel methods,
neural networks, etc). In particular, for a learned nonlinear model f(x), we consider
quantifying the importance of an input variable xj using the integrated partial
derivative  j = k

@
@xj f(x)k2

PX
. We then (1) provide a principled approach for

quantifying uncertainty in variable importance by deriving its posterior distribution,
and (2) show that the approach is generalizable even to non-differentiable models
such as tree ensembles. Rigorous Bayesian nonparametric theorems are derived
to guarantee the posterior consistency and asymptotic uncertainty of the proposed
approach. Extensive simulations and experiments on healthcare benchmark datasets
confirm that the proposed algorithm outperforms existing classical and recent
variable selection methods.

1 Introduction
Variable selection is often of fundamental interest in many data science applications, providing
benefits in prediction error, interpretability, and computation by excluding unnecessary variables.
As datasets grow in complexity and size, it is crucial that variable importance estimation methods
can account for complex dependencies among variables while remaining computationally feasible.
Furthermore, as the number of approaches to model such datasets has increased, it is crucial that the
importance of each variable can be compared across model classes and extended to new ones as they
are developed.

While there are established approaches for quantifying variable importance in linear models (e.g.,
LASSO regression Hastie et al. [2015]), there is little consensus as to the preferred methodology
or theory for variable importance in nonlinear models. Generalized additive models Hastie and
Tibshirani [1990] use similar methods as their linear counterparts Wang et al. [2014], but the
additivity assumption for nonlinear functions of the variables is too restrictive in many applications.
Random Forests (RF) Breiman [2001] measure variable importance using an impurity measure, which
is based on the average reduction of the loss function were a given variable removed from the model.
Friedman [2001] extended this method to boosting, where the definition of variable importance is
generalized by considering the average over all of the decision trees. Deep neural networks (DNNs)
are widely-used for many artificial intelligence applications, and a substantial effort has been invested
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into developing DNNs with variable selection capabilities. Typically, this class of models involves
manipulating the input layer, for example by imposing an L1 penalty Castellano and Fanelli [2000],
Feng and Simon [2019], using backward selection Castellano and Fanelli [2000], or knockoffs Lu
et al. [2018]. Unfortunately, each model class based on DNNs requires a tailored procedure, which
limits comparability across different model formulations.

Bayesian variable selection methods provide principled uncertainty quantification in variable im-
portance estimates as well as a complete characterization of their dependency structure. These
methods allow the variable importance estimation procedure to tailor its decision rule with respect
to the correlation structure Liu [2021]. Yet, as in frequentist models, each method has a different
definition of a variable’s importance. For example, in Bayesian additive regression trees (BART), a
variable’s importance can be measured by the proportion of trees that use it Chipman et al. [2010],
while in Gaussian process (GP) models, a variable’s importance can be measured by the frequency
of the fluctuations of the estimated outcome-predictor function (e.g., the length-scale parameter as
controlled by the automatic relevance determination) in the direction of the variable Neal [1996],
Wipf and Nagarajan [2007]. Recently, a closely-related line of work uses the norm of the kernel
gradient to quantify variable importance under classical GP models [He et al., 2021] or deep Bayesian
neural networks [Liu, 2021]. However, these work either do not incorporate uncertainty, or are
restricted to a particular model class (see Appendix J). Furthermore, the traditional Bayesian model-
ing procedures tend to be computationally burdensome, making them less feasible for large-scale
applications [Andrieu et al., 2003].

Our work starts with the observation that many machine learning models can be written as kernel
methods by constructing a corresponding feature map. For example, random forests can be written
as kernel methods by partitions Davies and Ghahramani [2014], and deep neural networks can be
written as kernel methods by using the last hidden layer as the feature map Snoek et al. [2015], Hinton
and Salakhutdinov [2007], Calandra et al. [2016]. Each of these feature maps can be constructed
before Bayesian learning of the GP (e.g., by pre-training on the same or a separate dataset), providing
additional modeling expressiveness and representational capacity. Then, the GP learning is equivalent
to performing Bayesian inference with respect to the (linear) weighting parameters of the feature-map
basis functions and the posterior inference proceeds analogously to that of a Bayesian linear regression
(see Section 2.1 for details). The ability of a GP model to incorporate these adaptive feature maps
becomes especially important in high-dimensional applications, where effective dimension reduction
is necessary to circumvent the curse of dimensionality and ensure good finite-sample performance
[Bach, 2016].

Contributions. We propose a unified variable importance estimation framework that is compatible
with a wide range of machine learning models and can be defined by, or be closely approximated
by, a differentiable feature map. Notable members include neural networks and random forests
(Appendix B). Our approach defines variable importance as the norm of the function’s partial
derivative, as was previously studied in the context of frequentist nonparametric regression Rosasco
et al. [2013]. We extend it to a much wider class of models than previously considered (Section 2),
propose a principled Bayesian approach to quantify the variable importance uncertainty in finite
data (Section 3.1), and derive rigorous Bayesian nonparametric theorems to guarantee the method’s
consistency and asymptotic optimality (Section 3.2). To incorporate powerful non-differentiable
models into our framework, we also show how to apply this approach to partition-based methods (e.g.,
decision trees) by leveraging their (soft) feature representation (Appendix F.1). This leads to the first
derivative-based Bayesian variable importance estimation approach for tree-type models that is both
theoretically grounded and empirically powerful. This method strongly outperforms other variable
importance estimation approaches tailor-designed for random forests (e.g., impurity or random-forest
knockoff [Breiman et al., 1984, Candes et al., 2017]). We conduct extensive empirical validation of
our approach and compare its performance to that of many existing methods across a wide range of
data generation scenarios. The results show a clear advantage of the proposed approach, especially in
complex scenarios or when the input is a mixture of discrete and continuous features (Section 4).

2 Preliminaries
Problem Setup. We consider the classical nonparametric regression setting with d-dimensional
features x = (x1, . . . ,xd) 2 X = Rd and a continuous response y 2 R. The features x are allowed
to have a flexible nonlinear effect on y, such that:

y = f0(x) + ei, where ei
i.i.d.
⇠ N (0,�2), (1)
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with homoscedastic noise level �2. The data dimension d is allowed to be large but assumed to be
constant and does not grow with the sample size n. Here the data-generating function f0 is a flexible
nonlinear function that resides in an reproducing kernel Hilbert space (RKHS) H0 induced by a
certain positive definite kernel function k0, and the input space X0 of the true function spans only a
small subset of the input features (x1, . . . ,xd), i.e., X0 ⇢ X .

To this end, the goal of global variable importance estimation is to produce a variable importance
score  j for each of the input features (x1, . . . ,xd) such that it can be used as a classification signal
for whether xj

2 X0. As a result, the variable selection decision can be made by threhsolding
 j > s with a pre-defined threshold s. The quality of a variable selection signal  j can be evaluated
comprehensively using a standard metric such as the area under the receiver operating characteristic
(AUROC), which measures the Type-I and Type-II errors of variable selection decision I( j > s)
over a range of thresholds s.

2.1 Quantifying Model Uncertainty via Featurized GP
In the nonlinear regression scenario given by Equation (1), a classical approach to uncertainty-aware
model learning is the Gaussian process (GP). Specifically, assuming that f0 can be described by a
flexible RKHS Hk governed by the kernel function k, the GP model imposes a Gaussian process prior
f ⇠ GP(0, k), such that the function evaluated at any collection of examples follows a multivariate
normal (MVN ) distribution

f ⌘ (f(x1), . . . , f(xn))>
⇠ MVN (mn⇥1,Kn⇥n),

with mean mi = m(xi) and covariance matrix Ki,j = k(xi,xj). The choice of the prior mean m
and kernel k enables prior specification directly in the function space. For example, the Matérn kernel
with parameter ⌫ places a prior over d⌫e � 1 times differentiable functions, with length-scale l2 and
amplitude variance �2. As ⌫ ! 1, this reduces to the common radial basis function (RBF) kernel
k(xi,xj) = �2 exp(kxi � xjk

2
2/l2).

Under the above construction, the posterior predictive distribution of f evaluated at new observations
x⇤

1, . . . ,x
⇤
n⇤ is also a multivariate normal,

f⇤
|{xi yi}

n
i=1 ⇠ MVN (E[f⇤], Cov[f⇤]), where (2)

E[f⇤] = m⇤ + K⇤(K + �2In)�1(y � m); Cov[f⇤] = K⇤⇤
� K⇤(K + �2In)�1K⇤>,

with m⇤
i = m(x⇤

i ), K⇤
ij = k(x⇤

i ,xj), and K⇤⇤
ij = k(x⇤

i ,x
⇤
j ). Equation (2) is known as the kernel-

based representation (or dual representation) of a GP Rasmussen and Williams [2005]. Although
mathematically elegant, the posterior (2) is expensive to compute due to the need to invert the n ⇥ n
matrix (K + �2I).

Feature-based Representation of A GP. Alternatively, Mercer’s theorem Cristianini and Shawe-
Taylor [2000] states that as long as the kernel function k(·, ·) can be written as the inner product of
a set of basis functions �(x) = {�k(x)}Dk=1, such that k(x,x0) = �(x)>�(x0), then elements of
the RKHS f 2 Hk can be written in terms of a linear expansion of basis functions Rasmussen and
Williams [2005]:

f(x) =
DX

k=1

�k�k(x) = �(x)>�, where � ⇠ MVN (µ, ID). (3)

This is known as the feature-based representation (or primal representation) of a GP. Notice that
(3) is not an approximation method but an exact reparametrization of the GP model whose kernel
function is induced by feature representation �(x). Also note that under this featurized representation
(3), the predictive model f is linear in terms of the model parameters � = {�k}

D
k=1. However, this

“linearity” in the model parameters does not restrict the expressiveness of f , since the GP model is
essentially learning to use the weights {�k}

D
k=1 to flexibly combine the nonlinear basis functions

{�k}Dk=1 to best fit the outcome. Furthermore, the basis functions {�k(x)}Dk=1 can be updated as
part of the learning process, which we discuss in the sequel.

Scalable Posterior Computation via Minibatch Updates. The above feature-based representation
is powerful in that it reduces the GP posterior inference into a Bayesian linear regression problem for
�. This brings two concrete benefits. First, the posterior of � in Equation (3) adopts a closed form:

� ⇠ MVN (E[�], Cov[�]), where (4)

E[�] = µ + ⌃��
>(y � �µ)/�2; Cov[�] = ⌃� = (�>�/�2 + I)�1,
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where � = (�(x1)>, . . . ,�(xn)>)>
2 Rn⇥D is the feature matrix evaluated on the training data

Rasmussen and Williams [2005]. For large-scale applications, Equation (4) enables us to compute
the exact posterior of � in a mini-batch fashion. For example, the posterior matrix Cov[�] = ⌃� can
be updated using the Woodbury identity:

⌃�,t+1 = ⌃�,t � ⌃�,t�
>
m(�2I + �m⌃�,t�

>
m)�1�m⌃�,t, (5)

where �m is the D-dimension batch-specific feature matrix evaluated on the mini-batch. Similarly,
the posterior mean E[�] can be computed by accumulating the D ⇥ 1 vector �>(y � �µ) =P

m �
>
m(ym � �mµ), and computing the posterior mean according to Equation (4) at the end.

The posterior distribution of � induces a GP posterior for the prediction function f⇤ = �⇤�, where�⇤

is the feature map evaluated on the test data, with mean E[f⇤] = �⇤µ + �⇤⌃��>(y � �µ)/�2 and
covariance Cov[f⇤] = �⇤⌃��⇤>. This distribution is equivalent to the kernel-based representation
(2) but reduces the computational complexity from cubic time O(n3) to linear time O(n) and is
minibatch compatible (i.e., Equation (5)). Algorithm 1 and 3 provides a summary of the learning
algorithm. Finally, we note that the basis functions � = {�k}Dk=1 can also be updated as part of
the learning procedure (e.g., via maximum a posteriori (MAP) inference), which we discuss in
Appendix A.4.

Incorporating Modern ML Model Classes. The second key advantage of the feature-based
representation (3) is its generality: a wide range of machine learning models can be written in the
feature-based form f(x) = �(x)>� Rahimi and Recht [2007], Davies and Ghahramani [2014], Lee
et al. [2017], making the GP a unified framework for quantifying model uncertainty for a wide array
of modern ML models. Appendix B summarizes important examples including GAMs, decision trees,
random-feature models, deep neural networks and their ensembles. Appendix B.1 summarizes a list
of general conditions the model should satisfy for it to be compatible with the proposed framework
(i.e., weak differentiability, Lipschitz condition, and growth rate of model complexity). Furthermore,
when a deterministically-trained �̂ is available (e.g., via a sophisticated adaptive shrinkage procedure
that is not available in a Bayesian context), we can incorporate this as prior knowledge into GP
modeling by setting µ = �̂ (Equation (3)).
2.2 Bayesian Nonparametric Guarantees for Probabilistic Learning
The quality of a Bayesian learning procedure is commonly measured by the learning rate of its
posterior distribution ⇧n = ⇧(· | {xi, yi}ni=1). Intuitively, the rate of this convergence is measured
by the size of the smallest shrinking balls around f0 that contains most of the posterior probability.
Specifically, we consider the size of the set An = {g | kg � f0k

2
n  M✏n} such that ⇧n(An) ! 1

[Ghosal and Vaart, 2007, Polson and Rockova, 2018]. The concentration rate ✏n here indicates how
fast the small ball An concentrates towards f0 as the sample size increases. Below we state the formal
definition of posterior convergence Ghosal and Vaart [2007].
Definition 1 (Posterior Convergence). For f0 : X ! R where X = Rd, let H0 denote the true
RKHS induced by a kernel function k0, and let H� denote the RKHS induced by the feature function
� : X ! RD. Let f0 2 H0 be the true function, and let E0 denote the expectation with respect to
the true data-generation distribution. Assuming H� is dense in H0, then, the posterior distribution
⇧n(f) concentrates around f0 at the rate ✏n if there exists an ✏n ! 0 such that, for any Mn ! 1,

E0⇧n(f : kf � f0k
2
n � Mn✏n) ! 0. (6)

Notice that we allow the model space H� and the true function space H0 to be different, but H�

must be dense in H0 for the convergence to happen. Fortunately, this condition is shown to hold for a
wide variety of ML models, including random features, random forests, and neural networks [Biau,
2012, Hornik et al., 1989, Rahimi and Recht, 2008, Schmidt-Hieber, 2020, Ročková and van der Pas,
2020]. The notion of posterior convergence can also be used to discuss the learning quality of other
probabilistic estimates (e.g., variable importance  j). In that case, we can simply replace (f, f0) in
(6) by their variable importance counterparts. This is the focus of Section 3.2.

3 Methods
3.1 Quantifying Variable Importance under Uncertainty

In this work, we consider quantifying the global importance of a variable based on the norm of
the corresponding partial derivative. This is motivated by the observation that, if a function f is
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differentiable, the relative importance of a variable xj at a point x can be captured by the magnitude
of the partial derivative function, |

@
@xj f(x)| Rosasco et al. [2013]. This quantity requires the

consideration of two issues. First, instead of quantifying the relevance of a variable on a single
input point, we need to define a proper global notion of variable importance. Therefore, it is
natural to integrate this partial derivative over the input space x 2 X :  j(f) = k

@
@xj fk

2
PX

=R
x2X |

@
@xj f(x)|2 dPX (x). Second, since PX (x) is not known from the training observations,  j(f)

can be approximated by its empirical counterpart,
 j(f) = k

@

@xj
fk

2
n =

1

n

nX

i=1

|
@

@xj
f(xi)|

2. (7)

Notice that  j(f) is an estimator that is derived from the prediction function f estimated using finite
data. Consequently, to make a proper decision regarding the importance of an input variable xj ,
it is important to take into account uncertainty in f . To this end, by leveraging the featurized GP
representation introduced in Section 3.1, we show that this can be done easily for a wide range of ML
models f(x) = �(x)>� by studying the posterior distribution of  j .

Posterior Distribution of Variable Importance. After we obtain the posterior distribution of � (4),
the posterior distribution of variable importance can be derived according to Equation (7):

 j(f) =
1

n
|
@

@xj
f(X)|>|

@

@xj
f(X)| =

1

n
�> @�

@xj

@�>

@xj
�, (8)

where @�
@xj 2 RD⇥n is the derivative of the feature map with respect to xj , across n training samples.

The posterior distribution of  j(f) adopts a closed form as a generalized chi-squared distribution
(see Appendix A.2 for derivation). In practice, we can sample  j conveniently from its posterior
distribution by computing @

@xj f(X) =
�

@�
@xj

�>
�(s), where �(s) are Monte Carlo samples from the

closed-form posterior (4).

There are two ways in which uncertainty aids the variable importance estimation process. First,
the posterior survival function P ( j(f) > s) of the variable importance utilizes the full posterior
distribution of  j(f) to identify the probability that the variable xj exceeds a given threshold s.
By increasing s 2 (0, 1), P ( j > s) provides an intuitive sense of how a model’s belief about
the importance of variable xj changes as the criteria s becomes more stringent, similar to the
regularization path used by LASSO methods [Friedman et al., 2010] but with the incorporation
of posterior uncertainty about the variable importance. See Appendix I for an application to a
Bangladesh birth cohort study. Second, by integrating the survival function over the threshold, i.e.,R
s>0 P ( j(f) > s) ds, we obtain the posterior mean of  j(f), and this too incorporates uncertainty

in f . To see this, notice that by using the “trace trick” we can write

E[ j(f)] = E


tr
✓
�> @�

@xj

@�>

@xj
�

◆�
= E[�]T

@�

@xj

@�>

@xj
E[�] + tr

✓
@�

@xj

@�>

@xj
Cov[�]

◆
, (9)

where all expectations are taken with respect to the posterior. Therefore, the posterior mean of  j(f)
depends on the covariance structure of �, and how it interacts with the eigenspace of the partial
derivative functions (encoded by @�

@xj
@�>

@xj ). In Section 4 we provide an extensive investigation of
AUROC scores using the posterior mean of  j(f) for quantifying variable importance.

In Appendix A.3, we summarize the algorithms for computing the posterior distributions of the
featurized Gaussian process (Equation (4)) and for the posterior distributions of variable importance
(Equation (8)), and discuss their space and time complexity.

3.2 Theoretical Guarantees

From a theoretical perspective, the variable importance measure  j introduced in (7) can be under-
stood as a quadratic functional of the GP model f Efromovich and Low [1996]. To this end, rigorous
Bayesian nonparametric guarantees can be obtained for  j’s ability in learning the true variable
importance in finite samples (i.e., posterior convergence, Theorem 1) and its statistical optimality
from a frequentist perspective, in providing a low-variance estimator that attains the Cramér-Rao
bound (i.e., Bernstein von-Mises phenomenon, Theorem 2). Note that for a given general model
f(x) = �(x)>�, it only need to satisfy three mild regularity conditions to be fully compatible with
the proposed framework (i.e., weak differentiability, Lipschitz condition, and growth rate of model
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complexity). We summarize these conditions in Appendix B.1 and explain them in detail in the
sequel.

Posterior Convergence. We first show that, for an ML model f that can learn the true function f0

with rate ✏n (in the sense of Definition 1), the entire posterior distribution of the variable importance
measure  j(f) converges consistently to a point mass at the true  j(f0) at a speed that is equal or
faster than ✏n.

Theorem 1 (Posterior Convergence of Variable Importance  j). Suppose yi = f0(xi) + ei, ei
i.i.d.
⇠

N (0,�2), and denote as E0 the expectation with respect to the true data-generation distribution
centered around f0. For the RKHS H� induced by the feature function � : X ! RD and f 2 H�, if:

(1) The posterior distribution ⇧n(f) converges toward f0 at a rate of ✏n;

(2) The differentiation operator Dj : f !
@

@xj f is bounded: kDjk
2
op = inf{C � 0 :

kDjfk
2
2  Ckfk

2
2, for all f 2 H�};

Then the posterior distribution for  j(f) = k
@

@xj fk
2
n contracts toward  j(f0) = k

@
@xj f0k

2
PX

at a
rate not slower than ✏n. That is, for any Mn ! 1,

E0⇧n

"
sup

j2{1,...,d}
| j(f) � j(f0)| � Mn✏n

#
! 0.

The proof is in Appendix C. Theorem 1 is a generalization of the classical result of quadratic
functional convergence under linear models and sparse neural networks to a much wider range
of ML models in the context of Bayesian variable importance estimation [Efromovich and Low,
1996, Liu, 2021, Wang and Rocková, 2020]. It confirms the important fact that, for an ML model
f that can accurately learn the true function f0 under finite data, we can consistently recover the
true variable importance at a fast rate by using the proposed variable importance estimate  j(f),
despite the potential lack of identifiablity in the model parameters (e.g., weights in a neural network).
Importantly, although our main setting assumes fixed data dimension d (see Problem Setup), the
posterior concentration result Theorem 1 does not rely on this assumption in its proof, and is in fact
compatible with the high-dimensional setting where d is allowed to grow with sample size at a rate of
o(n). See Appendix C (in particular, Remark 4) for further discussion.

From a practical point of view, Theorem 1 reveals that the finite-sample performance of variable
importance  j(f) depends on two factors: (1) the finite-sample generalization performance of the
prediction function f , and (2) the mathematical property of f in terms of its Lipschitz condition.
Therefore, to ensure effective variable importance estimation in practice, the practitioner should take
care to select a model class f that has a theoretical guarantee in capturing the target function f0,
empirically delivers strong generalization performance under finite data, and is well-conditioned in
terms of the behavior of its partial derivatives. To this end, we note that, under the featurized Gaussian
process f = �(x)>� discussed in this work, users are free to choose a performant model class (e.g.,
random forest, random-feature or DNN) whose feature representation spans an RKHS H� that is
dense in the infinite-dimensional function space (therefore f enjoys a convergence guanrantee, see
Remark 3 in Appendix C for further discussion) [Biau, 2012, Hornik et al., 1989, Rahimi and Recht,
2008, Schmidt-Hieber, 2020, Ročková and van der Pas, 2020], and is empirically more effective than
the GP methods based on classical kernels such as RBF. We discuss the Lipschitz condition of these
models in Appendix E.1. Indeed, as we will verify in experiments (Section 4), there does not exist
an “optimal" model class that performs universally well across all data settings (i.e., no free lunch
theorem [Wolpert and Macready, 1997]). This highlights the importance of having a general-purpose
framework for variable importance estimation that can flexibly incorporate the most effective model
for the task at hand. Finally, we notice that although Theorem 1 is stated as an asymptotic result,
when a finite-sample error bound ✏n for the model class is available (i.e., Condition (1) in Theorem 1),
it is trivial to obtain a finite-sample error bound for variable importance  j(f) by extending the proof
of Theorem 1. Appendix C.1 provides an example of such a bound based on the Bernstein inequality.

Statistical Efficiency & Uncertainty Quantification. Next, we verify the uncertainty quantification
ability of the variable importance measure  j(f) under a featurized GP by showing that it exhibits
the Bernstein-von Mises (BvM) phenomenon. That is, its posterior measure ⇧n( j(f)) converges
towards a Gaussian distribution that is centered around the truth  j(f0), so that its (1 � ↵)% level

6



credible intervals achieve the nominal coverage probability for the true variable importance. More
importantly, the BvM theorem verifies that the posterior distribution of  j(f) is statistically optimal,
in the sense that its asymptotic variance attains the Cramér-Rao bound (CRB) that cannot be improved
upon [Bickel and Kleijn, 2012].
Theorem 2 (Bernstein-von Mises Theorem for Variable Importance  j). Suppose yi = f0(xi) +

ei, ei
i.i.d.
⇠ N (0,�2), i = 1, . . . , n. Denote Dj : f !

@
@xj f the differentiation operator and

Hj = D>
j Dj the inner product of Dj , such that:

 j(f) = kDj(f)k2
n =

1

n
hDjf, Djfi =

1

n
f>Hjf. (10)

Assuming conditions (1)-(2) in Theorem 1 hold, and additionally:

(3) f0 is square-integrable over the support X and kf0k2 = 1;

(4) rank(Hj) = op(
p

n);

Then
p

n( j(f) �  j(f0))
d
! N (0, 4�2

kHjf0k
2
n).

The proof is in Appendix D. Theorem 2 provides a rigorous theoretical justification for  j(f)’s
ability to quantify its uncertainty about the variable importance. More importantly, it verifies that
 j(f) has the good frequentist property that it quickly converges to a minimum-variance estimator
at a fast speed, which is important for obtaining good variable importance estimation performance
in practice. Compared to the previous BvM results that tend to focus on a specific Bayesian ML
model, Theorem 2 is considerably more general (i.e., applicable to a much wider range of models)
and comes with a simpler set of conditions [Rockova, 2020, Wang and Rocková, 2020, Liu, 2021].
Specifically, (3) is a standard assumption in nonparametric analysis. It ensures the true function f0

does not diverge towards infinity and makes learning possible [Castillo and Rousseau, 2015]. The
unit norm assumption kf0k2 = 1 is only needed to simplify the exposition of the proof, and the
theorem can be trivially extended to kf0k2 = C for any C > 0. The most interesting condition
is (4). Let us denote Hj as the space of partial derivatives functions @

@xj f of the model functions
f 2 H�. Then, intuitively, (4) says that to attain the BvM phenomenon, the effective dimension
of the derivative function space Hj (as measured by rank(Hj) = rank(Dj)) cannot be too large.
Since the effective dimension of the derivative space is bounded above by that of the original RKHS
f 2 H�, (4) essentially states that the effective dimension of the model space H� cannot grow too fast
with data size (i.e., op(

p
n)). Fortunately, this condition is satisfied by a wide range of ML models

including trees and deep networks [Rockova, 2020, Wang and Rocková, 2020]. See Appendix E.2 for
further discussion.

4 Experiment Analysis
In this section, we investigate the finite-sample performance of the derivative norm metric  j for
variable importance estimation (7) under a wide variety of ML methods. We illustrate the breath of
our framework by applying it to tree ensembles (Appendix F.1), where a principled and gradient-based
uncertainty-aware variable importance estimation approach has been previously unavailable. We
also apply it to linear models and (approximate) kernel machines, which are standard approaches
to variable selection in data science practice [Tibshirani, 1996, Bobb et al., 2015]. Over a wide
range of complex and realistic data scenarios (e.g., discrete features, interactions, between-feature
correlations) derived from socioeconomic and healthcare datasets, we investigate the method’s
statistical performance in accurately recovering the ground-truth features (in terms of the Type I and
Type II errors), and compare it to other well-established approaches in each of the model classes
(Table 1). Our main observations are:
O1: Importance of generality. There does not exist a model class that performs universally well
across all data scenarios (i.e., no free lunch theorem [Wolpert and Macready, 1997], Figures 1, 6-15).
This highlights the importance of an unified framework for variable importance that incorporates a
wide range of models, so that practitioners have the freedom of choosing the most suitable model
class for the task at hand.
O2: Good prediction translates to effective variable importance estimation. Comparing between
different model classes, the ranking of models’ predictive accuracy is generally consistent with the
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ranking of their variable importance estimation performance under  j (i.e., better prediction translates
to better variable importance estimation, as suggested in Theorem 1).
O3: Statistical efficiency of  j . Comparing within each model class, the derivative norm metric  j

generally outperforms other measures of variable importance. The advantage is especially pronounced
in small samples and for correlated features. This empirically verifies that  j has good finite-sample
statistical efficiency even under complex data scenarios (as suggested in Theorem 2).

Model Class (Ours) Baselines
Tree Ensembles RF-FDT RF-Impurity, RF-Knockoff, BART

Kernel Methods & NNs RFF, NN BKMR, BAKR
Linear Models GAM BRR, BL

Table 1: Summary of methods considered in the experiments.
Models & Methods. We consider three main classes of models (Table 1): (I) Random Forests (RF).
Given a trained forest, we quantify variable importance using  j by translating it to an ensemble
of featurized decision trees (FDT) (Appendix F.1), and compare it to three baselines: impurity
(RF-impurity) [Breiman et al., 1984], RF-based kernel knockoff (RF-knockoff) [Candes et al.,
2017], and Bayesian Additive Regression Trees (BART). (II) (Approximate) Kernel Methods &
Neural Networks. We apply  j to a random-feature model that approximates a GP with an RBF
kernel Rahimi and Recht [2007], and set the number of features to

p
n log(n) to ensure proper

approximation of the exact RBF-GP Rudi and Rosasco [2018], which is termed Random Fourier
Feature model (RFF). We also apply  j to Neural Networks (NN) based on wide ReLU neural
network with 512 hidden units and LASSO regularization in the hidden layer weights [Lemhadri
et al., 2021]. We compare them to Bayesian Kernel Machine Regression (BKMR) Bobb et al. [2015]
based on a GP with an exact RBF kernel and a spike-and-slab prior, and Bayesian Approximate Kernel
Regression (BAKR) based on random-feature model with a projection-based feature importance
measure and an adaptive shrinkage prior [Crawford et al., 2018]. (III) Linear Models. We apply  j

to a featurized GP representation of the Generalized Additive Model (GAM), with the prior center
µ set at the frequentist estimate of the original GAM model obtained from a sophisticated REML
procedure [Wood, 2006]. We compare it to two baselines: Bayesian Ridge Regression (BRR) Hoerl
and Kennard [1970] and Bayesian LASSO (BL) Park and Casella [2008]. Appendix G provides
further detail. Previously, [Liu, 2021] studied the specialization of our framework to the deep neural
networks (DNNs), so we do not repeat that work here as DNN is not yet a standard data science
model for tabular data.
To quantify variable importance while accounting for posterior uncertainty of the variable importance
 j(f), we examine its posterior survival function

R
s>0 P ( j(f) > s) ds (i.e., the posterior likelihood

of  j(f) being greater than the threshold s integrated over the full range of thresholds s). For other
methods, we use their default metrics to quantify variable importance (e.g., variable inclusion
probabilities in BART and BKMR. See Appendix G).

Datasets and Tasks. We consider two synthetic benchmark datasets and three real-world socio-
economic and healthcare datasets, encapsulating challenging phenomena such as between-feature
correlations and interaction effects. For the synthetic benchmark datasets, we generate data under the
Gaussian noise model y ⇠ N (f0, 0.01) for four types of outcome-generation functions f0 (linear,
rbf, matern32 and complex, see Appendix G.2 for a full description) with the number of causal
variables set at d? = 5. We consider two types of feature distribution: (1) synthetic-continuous:
all features follow xj

⇠ Unif(�2, 2); (2) synthetic-mixture: two of the causal features and two
of the non-causal features are distributed as Bern(0.5) and the rest are distributed as Unif(�2, 2).
Features in both distributions are independent. We vary sample size n 2 {100, 200, 500, 1000} and
data dimension d 2 {25, 50, 100, 200}, leading to 128 total scenarios.

For real-world data, we consider (1) adult: 1994 U.S. census data of 48842 adults with eight
categorical and six continuous features Kohavi; (2) heart: a coronary artery disease dataset of 303
patients from Cleveland clinic database with seven categorical and six continuous features Detrano
et al. [1989]; and (3) mi: disease records of myocardial infarction (MI) of 1700 patients from
Krasnoyarsk interdistrict clinical hospital during 1992-1995, with 113 categorical and 11 continuous
features Golovenkin et al. [2020]. All datasets exhibit non-trival correlation structure among features
(Appendix Figures 3-5). Since the ground-truth causal features on these datasets are not known, in
order to rigorously evaluate variable importance estimation performance, we follow the standard
practice in causal ML to simulate the outcome based on causal features selected from data [Yao
et al., 2021]. We use the four outcome-generating functions as described previously and evaluate
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over the same data size ⇥ dimension combinations, leading to 192 total scenarios2. We repeat the
simulation 20 times for each scenario, and use AUROC to measure the variable importance estimation
performance (in terms of Type I and Type II errors) of each method.

In Appendix I, we further evaluate the method on a well-studied environmental health dataset
(Bangladesh birth cohort study [Kile et al., 2014]) with respect to the real outcome (infant development
scores). We visualize the "Bayesian" regularization path as introduced earlier. The selected variables
correspond well with the established toxicology pathways in the literature [Gleason et al., 2014].

method
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NN (Ours)
GAM (Ours)
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Figure 1: Method performance in variable importance estimation (measured by AUROC, row 1) and prediction
(measured by test MSE, row 2) under matern32 data-generation function and with input dimension 100 (five
causal features). Therefore, the variable importance scores of the five causal features are expected to be
higher than the other 95 variable importance estimations. The x-axis represents the training sample sizes
n 2 {100, 200, 500, 1000}. GAM does not produce valid results for case of n  d so the results from this
model in these cases are not shown. The ranking of FDT (solid purple) outperforms other methods in most
of the data settings, and GAM outperforms in the setting of large data size and high percentage of categorical
features (adult and mi). The rankings of performance are roughly consistent between prediction and variable
importance estimation.
4.1 Results
Figure 1 shows the methods’ performance in variable importance estimation (Row 1) and prediction
(Row 2)3 in an exemplary setting, where the true function f0 is matern32 with an input dimension
d = 100. It represents the tabular data setting that we are the most interested in: nonlinear feature-
response relationship with interaction effects and high input dimension. This is because f0 is sampled
from an RKHS induced by Mátern 3

2 kernel, which contains a large space of continuous and at least
once differentiable functions [Rasmussen and Williams, 2005]. We delay complete visualizations for
all 320 scenarios to Appendix H. Recalling the three observations introduced earlier:

O1 ("No free lunch"): No method performs universally well. For example, BAKR performs
robustly in correlated datasets (heart and mi), but poorly otherwise. Kernel approaches (RFF and
BKMR) perform competitively in low dimension, but their performances deteriorate quickly as
dimension d increases (Figure 1 and Figure 6-7). This is likely due to the classical kernel method’s
well-known inability to learn an adaptive feature representation, which consequently leads to suffering
from the curse of dimensionality and unstable and suboptimal variable importance performance in
high dimensions [Bach, 2017]. FDT is generally the strongest method in small samples and high
dimensions, but can be outperformed by GAM in large samples and data with a high percentage
of categorical features (adult and mi). Notably, they often outperform NN, which is traditionally
regarded as the go-to model for high-dimensional nonlinear settings. This highlights the importance
of a unified framework that allows users to select the most appropriate model for variable importance
estimation depending on the data setting.

2In the setting where required data dimension is higher than that of the real data, we generate additional
synthetic features from Unif(�2, 2). We use n 2 {50, 100, 150, 257} for heart due to data size restrictions.

3For the prediction plots, a method will not be visualized if they share the model fit with another method
(RF-impurity and RF-knockoff), or if it does not produce valid results due to small sample size (GAM).
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O2 ("Good prediction implies effective variable importance estimation"): Fixing the variable
importance  j and comparing the variable importance estimation performance of each model class
(i.e., FDT, GAM, NN and RFF, which are solid lines in Figure 1), we see that their rankings in
prediction (row 2) are largely consistent with the corresponding rankings in variable importance
estimation. It is worth noting that this pattern is occasionally violated (e.g., GAM in adult, n = 500
and heart, n = 250), but that does not contradict our conclusion (Theorem 1) since the convergence
rate of the prediction function only forms an upper bound for the convergence rate of j . Finally, when
models have comparable generalization performance, we observe that the Lipschitz condition plays a
role in variance importance performance (which is consistent with our theoretical observations in
Theorem 1). For example, in Figure 1, NN and FDT are largely comparable in predictive performance
among the real datasets (adult, heart and mi). However, tree-based FDT are known to have well-
conditioned Lipschitz behavior when compared to NN (Appendix E.1), which is consequently
translated to improved finite-sample performance in variable importance estimation.

O3 (Statistical efficiency of  j): When comparing among variable importance estimation methods
from the same class (especially for tree models, i.e., FDT v.s. RF-impurity / RF-knockoff /
BART), we see that FDT is competitive or strongly outperforms its baselines in variable importance
estimation, despite being based on exactly the same fitted model (RF-impurity / RF-knockoff), or
not accounting for the uncertainty in the tree growing process (BART). This pattern is consistent
in most data settings, and the advantage is especially pronounced in high dimensions, small data
sizes, and correlated datasets (Appendix H, Figure 6-10). This provides strong empirical evidence for
the fact that  j is a statistically efficient estimator for variable importance with good finite-sample
behavior (as suggested in Theorem 2), and can deliver strong performance for tabular data when
combined with a performant ML model like random forests. Appendix H contains further discussion.

5 Discussion and Future Directions
The modern data analysis pipeline typically involves fitting multiple models, comparing their perfor-
mance, and iterating as necessary. When variable selection is involved, the practitioner may ask are
the variable importance scores across models measuring the same behavior? And, what if the most
suitable model does not have a satisfactory variable importance estimation procedure? By framing
model choice as the specification of a kernel — which includes kernels corresponding machine
learning methods like neural networks and random forests in addition to the long list of traditional
kernels — we propose a unified variable importance estimation procedure that is compatible across
models and prove strong guarantees for this procedure.

Limitations. We do not consider uncertainty in the feature map itself. For example, the kernel
induced by the featurized decision tree studied here does not consider uncertainty in the tree’s
partitioning process. Meanwhile, the fact that the full posterior inference is performed only with
respect to � indeed places a limitation on the model’s ability in uncertainty quantification, as the
uncertainty in the model hyperparameters is not accounted for. Yet, this does not seem to be a
significant limitation in the method’s empirical performance (e.g., FDT outperforms BART in
our experiments), although this point still merits further investigation in the future. On the other
hand, in the future, it would be worth expanding this framework to other model classes (e.g., MARS
Friedman [1991]) and estimating the importance of interaction effects and higher-order terms (see
Appendix K for details).

Societal Impacts. We expect the method proposed to provide a set of powerful tools for practitioners
to understand the importance of input variables in their ML models with limited data, which is
especially important for scientific investigations in the fields of epidemiology and computational
biology. However, we recognize that this approach can potentially be utilized by bad actors to probe
the input-variable uncertainty of an existing ML system, and use it to engineer more targeted white-
box adversarial attacks. To this end, we recommend system developers to incorporate this approach
into the formal verification procedure of an ML system, so as to monitor and understand the model
uncertainty with respect to input variables, and devise proper improvement and prevention strategies
(e.g., data augmentation or randomized smoothing targeted at specific variables) accordingly.
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