
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please refer to the conclusion

section.
(c) Did you discuss any potential negative societal impacts of your work? [No] To the

best of our knowledge, this work does not have potential negative social impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We will release
our source code and detailed instructions for reproducing our results upon acceptance
of this paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Dataset splits are described in the main paper. Hyperparameters
are introduced in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [No] Since we split the datasets by time, there are not
randomness in terms of training, validation and test sets, which is the same as many
prior works.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] These are introduced in the
Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] These are introduced in the Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] These are introduced in the Appendix.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] These are introduced in the Appendix.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Discussion

A.1 Connection between SVD and Frequency Analysis

First, we introduce the concept of “low frequency signals” following the common practice in graph
signal processing.

We use R to represent the observed interaction matrix, R̃ to represent the user’s real preference
matrix, where larger R̃ij indicates higher chance for user i to interact with item j, and R̂ to represent
the predicted interaction matrix. We can use S = R⊤R to represent the similarity between items,
and D to represent the degree matrix of S. The Laplace matrix of S is defined as L = D − S. We
can take xxx ∈ Rn as a graph signal where each node is assigned with a scalar. The smoothness of the
graph signal can be measured by the total variation defined as follows:

TV (xxx) = xxxTLxxx =
∑

Sij(xi − xj)
2. (9)

When the input graph signal is the real preference vector of user u, which means xxx = R̃u ∈ Rn: 1) if
two items i and j (i ̸= j) are similar, i.e., Sij is large, the user’s preferences for these two items will
be similar, which means that (R̃ui − R̃uj)

2 should be small and will not lead to excessive TV (xxx); 2)
if two items i and j (i ̸= j) are dissimilar, i.e., Sij is small, the user often has different preferences
for the two items, which means that (R̃ui − R̃uj)

2 should be large, which also does not cause TV (xxx)
to be too large because their similarity Sij is small. In conclusion, if the real preference signal is
used as input, the total variation should have a small value. However, due to the exposure noise and
quantization noise in the observed interaction matrix [35], the total variation becomes larger when
the input signal is the observed user interaction signal, which means xxx = Ru. Therefore, the key to
predict the real preference matrix through the observed interaction matrix is to design a low-pass
filter to remove the high-frequency part of the observed interaction matrix.

Then, we explain why the reconstruction matrix obtained by truncated SVD is low-frequency, which
is also related to graph signal processing.

The energy of the graph signal is defined as E(xxx) = ||xxx||2. The normalized total variation of xxx can
be calculated with the Rayleigh quotient as

Ray(xxx) =
TV (xxx)

E(xxx)
=

xxxTLxxx

xxxTxxx
=

∑
Sij(xi − xj)

2∑
x2
i

. (10)

As L is real and symmetric, its eigendecomposition is given by L = UΛUT where Λ =
diag(λ1, λ2, ..., λn), λ1 ≤ λ2 ≤ ... ≤ λn, and U = (uuu1,uuu2, ...,uuun) with uuui ∈ Rn being the
eigenvector for eigenvalue λi. We call x̃xx = UTxxx as the graph Fourier transform of the graph signal xxx
and its inverse transform is given by xxx = Ux̃xx. Rayleigh quotient can be transformed into spectral
domain as

Ray(xxx) =
xxxTLxxx

xxxTxxx
=

xxxTUΛUTxxx

xxxTUUTxxx
=

x̃xxTΛx̃xx

x̃xxT x̃xx
=

∑
λix̃

2
i∑

x̃2
i

. (11)

Take xxx = uuui, we can get Ray(uuui) = λi, indicating that the eigenvector corresponding to the small
eigenvalue is smoother.

There are similar conclusions when we take S = RR⊤. SVD extends the signal on the node from
scalar to vector. The three matrices obtained by truncated SVD correspond to the first k eigenvectors
of RR⊤, the first k eigenvalues of RR⊤ and the first k eigenvectors of R⊤R respectively. Therefore,
it only retains the eigenvectors with low frequency to reconstruct the interaction matrix, so its essence
is an ideal low-pass filter. And their frequency is related to the magnitude of eigenvalues.

Recently, Nt et al. [18] show that the method of graph neural network is essentially a low-pass graph
filter. Shen et al. [23] show that matrix factorization methods, linear auto-encoder methods, and
neighborhood-based methods can be equivalently described by designing different forms of graph
filters in graph signal processing. In addition, the method based on matrix factorization is proved to
be equivalent to an infinite layer graph neural network.

15

A.2 Why π/3 is the Boundary?

In summary, π/3 is the threshold to determine the effectiveness of model updates. Online updating
towards angles greater than π/3 indicates the online updating is even worse than no updating at all.
More detailed discussion is presented below.

When we use offline SVD during the processes of R̂0->R̂1, R̂1->R̂2 and R̂2->R̂3, there will be no
approximation error. However, the online SVD used in the processes of R̂0->R̂1′ , R̂1′->R̂2′ and
R̂2′->R̂3′ has approximation errors. Thus, their evolution directions are not consistent. We use the
F-norm of the difference between R̂i and R̂i′ (i = 1, 2, 3) to measure the online approximation error.
We cannot directly calculate this value in most cases, because the model will only execute the Online
module in most cases. From Figure 4, we find that the F-norm of the difference between R̂0 and R̂i′

(defined as distance in this paper) is positively correlated with the F-norm of the difference between
R̂i and R̂i′ (i = 1, 2, 3), and we have verified this empirically in Appendix A.3. Thus, we use
distance to estimate the error. As the approximation of the Offline module, the approximated value
calculated by the Online module should not be worse than the result without updating, otherwise it
means that the Online module is invalid. In this case, the approximation error of the reconstructed
matrix (R̂1′ , R̂2′ , R̂3′) obtained by the Online module is even greater than the F-norm between the
original matrix (R̂0) and the reconstructed matrix (R̂1, R̂2, R̂3) obtained by the Offline module.
Figure 8 shows the case when the evolution direction of Offline module and Online module is greater
than π/3. It can be seen that the F-norm of the difference between R̂0 and R̂i is smaller than the
F-norm of the difference between R̂i and R̂i′ (i = 1, 2, 3). In this case, instead of using R̂i′ as the
approximation of R̂i, it is better to directly use R̂0 as its approximation, i.e., online updating is even
worse than no updating at all.

Offline SVD

Online SVD

�𝑅𝑅1′

�𝑅𝑅2′
�𝑅𝑅3′

�𝑅𝑅1 �𝑅𝑅2 �𝑅𝑅3�𝑅𝑅0

Figure 8: The evolution direction of Offline module and Online module is greater than π/3

A.3 The Positive Correlation Between Approximation Error and Distance

0.00 0.25 0.50 0.75 1.00
Normalized Distance

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Er

ro
r

wikipedia

0.00 0.25 0.50 0.75 1.00
Normalized Distance

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Er

ro
r

lastfm

Figure 9: There is a strong positive correlation between distance (the F-norm distance between the
reconstructed matrix by online SVD at the current time step and the initial reconstructed matrix) and
online approximation error.

16

We first divide each dataset into T = 100 time intervals according to the number of interactions, and
run offline SVD as ground truth at the end of each time interval. We start to execute the online SVD
at the end of t-th time interval, and calculate the error of the online SVD and the distance at the
end of t+∆-th time interval. The value of ∆ is from 1 to 10, and the corresponding value of t is
from 1 to T −∆. Each ∆ corresponds to a group of errors and a group of distance. By grouping
according to ∆, we can calculate the mean value of each group of errors and the mean value of
distance, respectively, and draw the curve to understand their relationship. For ∆ = 1, ..., 10, we
define d∆ and e∆ as the corresponding mean of distance and mean of online approximation errors.
Then, we normalize d∆ and e∆ as the x-axis and y-axis, respectively, as follows:

x∆ = ||d∆|| =
dm∆

max(dm1 , ..., dm∆)
, (12)

y∆ = ||e∆|| =
e∆

max(e1, ..., e∆)
. (13)

As shown in Figure 9, there is a positive correlation between the normalized error and the normalized
distance, indicating that it is reasonable to estimate the online approximation error using the distance
measure. Although the power m varies between the two datasets, we can always find an appropriate
m so that we can fit the relationship between d∆ and e∆ almost by a straight line.

A.4 Memoryless Property of Time Decay Function

The Online-Monitor-Offline architecture indicates that our model has the concept of stage. We
believe that the decay function should have no memories, that is, the decay ratio of the same time
interval should be treated consistently in different stages. The reasons are explained in the following
discussion.

Suppose there are four timestamps t1, t2, t3, t4, and t2 − t1 = t4 − t3. The decay function we used
fi(t) = exp{βi(t/Ti − 1)} is memoryless. When these four timestamps are all in the same stage
(e.g., i-th stage), we have fi(t2)/fi(t1) = fi(t4)/fi(t3) using the decay function. When these four
timestamps are in different stages, (e.g., t1 and t2 are at i-th stage, and t3 and t4 are at j-th stage
(i ̸= j)), we have fi(t2)/fi(t1) = fj(t4)/fj(t3), when βi/βj = Ti/Tj .

We point out here that the linear decay function gi(t) = βit/Ti is not memoryless. This is because
we cannot ensure gi(t2)/gi(t1) = gj(t4)/gj(t3) both in the above two cases.

A.5 Comparison between Different Models

In order to more clearly explain the difference between FreeGEM and TPP-based, RNN-based and
GNN-based methods, we summarized this and presented the results in the Table 7.

In all methods, only FreeGEM is parameter-free. Various dynamic graph learning methods use time
decay mechanism, but in different forms. For the methods based on temporal point process [28, 30,
41], the time decay is reflected in the intensity function. When RNN-based method [14] predicts
the user/item embeddings, it specifically considers the current user’s previous interactions using
RNN. GNN-based method [37] adopts a neural ordinary differential equation to model the temporal
dynamics of user/item embeddings. It should be noted that the dynamic time decay in other methods
can also be applied to our framework but may introduce learnable-parameters and thus hurt the
computational efficiency.

TPP-based models [28, 30, 41] make use of collaboration through interaction between users and items.
RNN-based model [14] uses a pair of coupled RNNs to model users and items respectively to make
use of collaborative relationships. Because GNN naturally contains graph information, the model
based on GNN [37] naturally uses the collaborative relationship through adjacency matrix. Similar
to the GNN-based model, the SVD method used by FreeGEM also contains graph information, so
collaborative information is naturally adopted.

17

Table 7: Comparison between different kinds of methods.

TPP-based RNN-based GNN-based FreeGEM
parameter-free ✗ ✗ ✗ ✓

how to use
time information

intensity
function RNN neural ordinary

differential equation
dynamic

time decay
how to use

collaboration relationship
interaction

events coupled RNN GNN SVD

B Appendix

B.1 Statistics of the Datasets

We use four publicly available datasets to evaluate the performance of FreeGEM in the future item
recommendation task, the detailed statistics of which are presented in Table 8.

Table 8: Statistics of the datasets of the future item recommendation task.

Datasets # Users # Items # Interactions # Density # Unique Timestamps
Amazon Video 5,130 1,685 37,126 0.43% 1,946
Amazon Game 24,303 10,672 231,780 0.09% 5,302

MovieLens-100K 943 1,349 99,287 7.81% 49,119
MovieLens-1M 6,040 3,416 999,611 4.85% 458,254

We use two publicly available datasets to evaluate the performance of FreeGEM in the next interaction
prediction task, the detailed statistics of which are presented in Table 9.

Table 9: Statistics of the datasets of the next interaction prediction task.

Dataset # Users # Items # Interactions # Unique Timestamps
Wikipedia 8,227 1,000 157,474 152,757
LastFM 980 1,000 1,293,103 1,283,614

B.2 Hyperparameter Settings

Although there are no learnable parameter in FreeGEM, we have several hyperparameters for model
building and user preference fusion. In our experiments, we use a simple grid search method to
obtain the optimal hyperparameters. The hyperparameter search space of FreeGEM in the future item
recommendation task is presented in Table 10.

Table 10: Hyperparameter search space for future item recommendation task.

β1 α k1 k2, k3, k4, k5 α1 α2 α3

1, ..., 100 2.0 1, 2, 4, 8, 16, 32, 64, 128, 256 0, 1 0, 1, 2 0, 1, 2 0, 1, 2

After grid search, we find the optimal hyperparameters of FreeGEM for the four datasets on the future
item recommendation task in Table 11.

Table 11: Hyperparameter settings for future item recommendation task.

β1 α k1 k2 k3 k4 k5 α1 α2 α3

Video 21.0 2.0 128 0 0 0 0 1 0 0
Game 18.0 2.0 256 0 0 0 0 1 0 0

ML-1M (no-attr) 60.0 2.0 8 0 0 0 0 1 0 0
ML-100K (no-attr) 60.0 2.0 1 0 0 0 0 1 0 0
ML-1M (with-attr) 50.0 2.0 4 1 1 1 1 0 1 0

ML-100K (with-attr) 15.0 2.0 1 1 1 1 1 0 2 1

The hyperparameter search space of FreeGEM in the next interaction prediction task is presented in
Table 12.

18

Table 12: Hyperparameter search space for next interaction prediction task.

d β1 a b k1 γ λ
Wikipedia 5, 10,..., 50 5, 10, ..., 50 1, 3, 5 1, 2, 3 128, 256, 512 1/2, 1/3, ..., 1/10 0.01, 0.02, ..., 1.00

Lastfm 300, 400, ..., 800 1, 2, ..., 10 1, 3, 5 1, 2, 3 128, 256, 512 1/2, 1/3, ..., 1/10 0.01, 0.02, ..., 1.00

After grid search, we find the optimal hyperparameters of FreeGEM for the two datasets on the next
interaction prediction task in Table 13.

Table 13: Hyperparameter settings for next interaction prediction task.

d β1 a b k1 γ λ
Wikipedia 35.0 35.0 3 1 512 1/2 0.80
LastFM 500.0 2.0 1 2 512 1/5 0.74

In addition, we have the following observations about the hyperparameters.

(1) Hyperparameters related to the attribute-integrated SVD module include k2, k3, k4, k5, and
α1, α2, α3. Due to the inclusion of attribute information, this module can improve the prediction
accuracy but also introduce several more hyperparameters. It can be observed in ablation experiments
that our method can still surpass other methods even without using attribute information. Thus,
in practice, attribute information can be used only for those users with scarce interactions or cold
start users, which can significantly improve the accuracy as shown in Section 5.4. In addition,
during hyperparameter search, we observe that using k1 = k2 = k3 = k4 can achieve outstanding
performance, even though they can be tuned separately.

(2) The hyperparameter that controls the restart of the Offline module has less significant effect on
the prediction accuracy. Its role is to control the restart times according to the data scale. As we can
see, in Wikipedia dataset with small data scale, we use the search interval of 5, 10, ..., 50, while in
LastFm dataset with large data scale, we use the search interval of 300, 400, ..., 800.

(3) In the experiments, we find that for different datasets, the hyperparameter β, which controls the
time decay is sensitive to the dataset. We can set higher priority for the searching of β. Luckily, β is
not very sensitive to the values of other hyperparameters, so that we can search other hyperparameters
after the optimal β is found.

(4) As shown in Table 6, the model training time of our method is much shorter compared to other
methods for one group of hyperparameters, especially on larger dataset. Thus, we find that the overall
running time (include hyperparameter searching) of our method is still much lower than the other
methods.

B.3 Experimental Environment

We run all the experiments on a server equipped with one NVIDIA TESLA T4 GPU and Intel(R)
Xeon(R) Gold 5218R CPU. All the code of this work is implemented with Python 3.9.7.

B.4 Copyrights of the Existing Assets

All the code that we use to reproduce the results of the compared works is publicly available and
permits usage for research purpose.

All the datasets that we use in the experiments are publicly available and permit usage for research
purpose.

19

	Introduction
	Related Work
	Incremental Graph Embedding Engine
	Offline Module
	Frequency-aware Preference Matrix Reconstruction
	Attribute-integrated SVD

	Online Module
	Monitor Module

	Personalized Dynamic Interaction Pattern Modeller
	Dynamic Time Decay
	Attention Module

	Experiments
	Future item recommendation
	Next interaction prediction
	Ablation Studies
	Other Studies

	Conclusion
	Discussion
	Connection between SVD and Frequency Analysis
	Why /3 is the Boundary?
	The Positive Correlation Between Approximation Error and Distance
	Memoryless Property of Time Decay Function
	Comparison between Different Models

	Appendix
	Statistics of the Datasets
	Hyperparameter Settings
	Experimental Environment
	Copyrights of the Existing Assets

