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Abstract

In zero-sum games, an NE strategy tends to be overly conservative confronted
with opponents of limited rationality, because it does not actively exploit their
weaknesses. From another perspective, best responding to an estimated opponent
model is vulnerable to estimation errors and lacks safety guarantees. Inspired
by the recent success of real-time search algorithms in developing superhuman
AI, we investigate the dilemma of safety and opponent exploitation and present a
novel real-time search framework, called Safe Exploitation Search (SES), which
continuously interpolates between the two extremes of online strategy refinement.
We provide SES with a theoretically upper-bounded exploitability and a lower-
bounded evaluation performance. Additionally, SES enables computationally
efficient online adaptation to a possibly updating opponent model, while previous
safe exploitation methods have to recompute for the whole game. Empirical results
show that SES significantly outperforms NE baselines and previous algorithms
while keeping exploitability low at the same time.

1 Introduction

Behind the recent breakthroughs of superhuman AIs in Go [Silver et al., 2016, 2017, Schrittwieser
et al., 2020], heads-up no-limit Texas hold’em (HUNL) [Brown et al., 2018, Moravcík et al., 2017,
Brown and Sandholm, 2019, Brown et al., 2020], and Hanabi [Lerer et al., 2020], search plays a vital
role. In perfect information games, Monte Carlo tree search (MCTS) is widely applied to improve
policy’s strength. In zero-sum imperfect information games such as poker, search algorithms are used
to find a Nash equilibrium (NE) approximation in subgames encountered in real time [Brown and
Sandholm, 2017, Burch et al., 2014]. They are both theoretically sounded and empirically powerful.

In zero-sum games, NE-based search algorithms [Burch et al., 2014, Moravcik et al., 2016, Brown
and Sandholm, 2017, Brown et al., 2018] find safe strategies with low exploitability and produce
strong baselines against all opponents [Brown and Sandholm, 2019]. However, it may be overly
conservative confronted with opponents with limited rationality, and fail to take advantage of their
weaknesses to obtain higher rewards [McCracken and Bowling, 2004, Johanson et al., 2007, Li
and Miikkulainen, 2018]. From another perspective, there have been extensive studies on opponent
exploitation to address the problem. Some typical works [Carmel and Markovitch, 1996, Billings
et al., 2003, Gilpin and Sandholm, 2006, Li and Miikkulainen, 2018] model the opponent’s strategy
based on previous observations and then search for a new strategy to exploit this model. However,
these methods often neglect the significance of the strategy safety, thus being highly exploitable.

Few exceptions including Johanson et al. [2007] and Ganzfried and Sandholm [2015a] aim to search
for safe and robust counter-strategies. Ganzfried and Sandholm [2015a] provides a characterization of
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safe deviations from NE in repeated games. Restricted Nash response (RNR) [Johanson et al., 2007]
finds a Pareto optimal strategy with respect to safety and exploitation in the full game. However, it is
computationally inefficient because it needs to recompute a strategy for the whole game whenever
the opponent model is updated. This can be even infeasible in an online setting where the opponent
model is being updated continuously with streamed data.

In this paper, we study the dilemma of safety and opponent exploitation and present a new scalable
real-time search framework Safe Exploitation Search (SES) that continuously interpolates between
the two extremes of strategy search, hence unifying safe search and opponent exploitation. It enables
computationally efficient online adaptations to a continuously changing opponent model, which is
hard to address by previous safe exploitation algorithms. The safety criterion requires the refined
strategy to stay close to NE, formally speaking, to expose limited exploitability against any opponents,
while the opponent exploitation criterion requires the strategy to adapt to its specific opponent and to
exploit its weaknesses. We propose a novel maximization objective in the subgame search framework
which combines the safety objective and exploitation, controlled by the exploitation level ↵. We
construct a new gadget game to optimize this objective, which enables our method’s scalability to
large games such as Texas Hold’em. Theoretically, we prove that SES is guaranteed to outperform
NE at the cost of some constant increase in its own exploitability confronted with non-NE opponents.

Empirically, we evaluate the effectiveness of our search algorithm in 1 didactic matrix game 2 poker
games: Leduc Hold’em [Southey et al., 2005] and Flop Hold’em Poker (FHP) [Brown et al., 2019].
The experiment results demonstrate that our algorithm significantly outperforms NE baselines against
non-NE opponents and keeps low exploitability at the same time. Additionally, we show that SES is
not only much more computationally efficient than previous safe exploitation methods but also more
robust to estimation errors in opponent models.

2 Related work

This paper investigates the problem of safe opponent exploitation in two-player zero-sum imperfect
information games. We propose a novel search algorithm that balances between NE and exploiting
opponents. Two major relevant research areas are search algorithms in imperfect information games
and opponent exploitation.

Search in imperfect information games. In recent literature, search techniques are witnessed to be
important in developing strong AI strategies in both perfect and imperfect information games [Burch
et al., 2014, Moravcik et al., 2016, Brown and Sandholm, 2017]. Texas hold ’em poker is widely
employed as a benchmark for imperfect information games. A primary part of the long-term research
on Texas hold’em poker is the evolution of subgame solving algorithms, which aim at achieving a
more accurate Nash equilibrium approximation in the subgame encountered given a pre-computed
strategy for the full game which we refer to as the blueprint strategy. Unsafe search [Billings et al.,
2003, Ganzfried and Sandholm, 2015b, Gilpin and Sandholm, 2006, 2007] estimates the subgame
reach probability assuming the opponent follows blueprint, and searches for a refined subgame
strategy. Subgame resolving [Burch et al., 2014] and maxmargin search [Moravcik et al., 2016]
are theoretically sounded safe search algorithms which ensure that the subgame strategy obtained
is no worse than the blueprint. They search in a gadget game and achieve safety by providing the
opponent with the option not entering the current subgame. DeepStack [Moravcík et al., 2017]
and Libratus [Brown et al., 2018] build strong poker AIs with the aid of search. Beyond poker,
search algorithms for subgame refinement have also shown promise in improving joint strategies in
cooperative imperfect information games such as Hanabi [Lerer et al., 2020] and the bidding phase of
contract bridge [Tian et al., 2020]. The purpose of our search algorithm is different from previous
methods in poker literature. We seek to exploit opponents while keeping exploitability low, rather
than simply approximating NE.

Opponent exploitation. Most previous opponent exploitation researches [Carmel and Markovitch,
1996, Billings et al., 2003, Gilpin and Sandholm, 2006, Li and Miikkulainen, 2018] typically model
the opponent’s strategy based on previous observations and then search for a new strategy to exploit
this model, but put little emphasis on safety.

One similar work is Johanson et al. [2007] which proposes p-restricted Nash response (RNR) to find
a safe exploitation strategy to the estimated opponent’s strategy. It calculates a Nash equilibrium
for the whole game restricting that the opponent plays the estimated strategy �

fix with probability p,
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and any strategy with probability 1 � p. In that paper, Johanson et al. [2007] prove that a p-RNR
to �

fix is Pareto optimal with respect to exploitation and safety. However, it does not provide an
explicit bound. Additionally, whenever the estimated opponent model changes or we want to use
a different p to balance between safety and exploitation, the original p-RNR has to recompute the
strategy for the whole game. It is computationally inefficient in an online setting, where the opponent
model is updated after every round with new game data. Our algorithm instead takes modeling error
into account and provides explicit bounds for both safety and exploitation. With the aid of real-time
search, it only searches for strategies in subgames encountered instead of the whole game.

Ganzfried and Sandholm [2015a] study safe exploitation strategies in repeated games, which is a
different setting from this paper. Intuitively, it achieves safety by risking in exploitability at most
what it has earned over NE in expectation in previous rounds. Therefore, its expected value in the
whole repeated game is never worse than the NE. In contrast, this paper focuses on the safety of
stage game strategies. Furthermore, our algorithm is complementary to Ganzfried and Sandholm
[2015a]. Ganzfried and Sandholm [2015a] calculate an "-safe best response for the whole game at
each iteration with LP. This procedure is one of the main limitations on the algorithm’s scalability.
Our algorithm can be a possible efficient substitute for the calculation.

Bernasconi-de Luca et al. [2021] use a UCB-like algorithm to learn how to encourage opponent’s
engagement in repeated games setting by guaranteeing that the opponent’s utility lies in the desired
range. Moravcík et al. [2017] use a similar mixing distribution technique as ours to speed-up resolving
procedure for NE by fixing the distribution of infosets on top of the subgame with a prediction of
some unknown NE strategy. This work does not study opponent exploitation. Besides, it does not
provide a safety or an exploitation bound for the algorithm.

To our knowledge, we are the first paper to investigate the safe opponent exploitation problem
in subgame resolving schemes. Subgame resolving enables online adaptations to a continuously
changing opponent model, eliminating the need to recompute a whole game strategy. It offers
computational benefits in practical opponent exploitation circumstances. Our experiments in section
5 demonstrate its efficiency and robustness.

There is extensive research [Albrecht and Stone, 2018] on agent modeling. However, this paper
only focuses on the safe exploitation algorithm, but not the agent modeling techniques. We can use
off-the-shelf agent modeling algorithms to estimate the opponent’s strategies.

3 Notations and background

An extensive-form imperfect information game G = (P,H,Z,A,�, ⇢, ·,�c, u, I) describes sequen-
tial interactions among agents, where agents have private information. A finite set P consists of n
players and a chance node c which represents the stochastic nature of the environment. The set of
non-terminal decision nodes is denoted as H , and Z is a set of terminal nodes or leaves. The set of
possible actions is A, and � : H ! 2|A| is a function which assigns to each decision node h 2 H a
set of legal actions. A player function ⇢ : H ! P assigns to each decision node a player p 2 P who
acts at that node. If action a leads from h to h

0, we write h · a = h
0. If there exists a sequence of

actions leading from h to h
0, we write h v h

0. At each node h 2 H , the acting player p = ⇢(h) picks
an action from legal actions a 2 �(h), and leads node h into its child h · a. The chance node always
samples an action from its own distribution �c, which is common knowledge to all players. Utility
functions are u = (u1, u2, . . . , un), where ui : Z ! R defines the utility of player i at terminal node
z 2 Z. The nature of imperfect information is characterized by infosets I = (I1, I2, . . . , In), where
Ii = (Ii,1, . . . , Ii,ki) is a partition of H for player i. Two states in the same infoset must have the
same acting player and the same legal action sets. We use I(h) to denote the infoset that h belongs to.
A player p cannot distinguish between states h1 and h2 if I(h1) = I(h2), and thus should behave
identically on all states in the same infoset.

The strategy of a player p is �p : Ip ⇥A ! R, where �p(I, a) is a distribution over valid actions on
infoset I . For simplicity, we also use �p(h, a) to denote �p(I(h), a). We use ⇡�(h) to denote the prob-
ability of reaching state h from the root when agents choose a strategy profile � = h�1,�2, . . . ,�ni.
Formally, ⇡�(h) =

Q
h0·avh �⇢(h0)(h

0
, a). We use ⇡

�
�p(h) =

Q
h0·avh^⇢(h0) 6=p �⇢(h0)(h

0
, a) to de-

note the probability of reaching h when player p always chooses the action that leads to h whenever
possible. ⇡�(h, h0) is the reaching probability of h0 from h. ⇡�(h · a, h0) is the the probability of
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reaching h
0 from h if action a is taken at h. These probabilities can be formally defined in a similar

manner. A blueprint is a pre-computed strategy for the full game.

The expected utility of player p given strategy profile � is u�
p =

P
z2Z ⇡

�(z)up(z). The counterfac-
tual value v

�
p (I, a) is the expected utility that player p will obtain after taking action a at infoset I ,

given the joint policy profile is �. Mathematically, it is the weighted sum of expected values at all
states h 2 I .

v
�
p (I, a) =

P
h2I,z2Z ⇡

�
�p(h)⇡

�(h · a, z)up(z)P
h2I ⇡

�
�p(h)

(1)

We further define v
�
p (I) =

P
a2A ⇡

�
p (h, a)v

�
p (I, a).

In the rest of the paper, we focus on two-player zero-sum games with perfect recall. Zero-sum means
8z 2 Z, u1(z) + u2(z) = 0. Perfect recall means that no player will forget the information which
has been obtained previously in the game. This is a common assumption in related literature.

A best response strategy BRp(��p) = argmax�p u
h�p,��pi
p for player p is the strategy that maximize

his own expected utility against fixed opponent strategy ��p. The exploitability of strategy �p is
exp(�p) = u

�⇤

p � u
h�p,BR�p(�p)i
p where �

⇤ is the optimal strategy, and is an NE in two-player
zero-sum games. It measures the performance of �p against its best response comparing with the
NE. A counterfactual best response CBRp(��p) is a strategy where �p(I, a) > 0 if and only if
v
�
p (I, a) � maxb v�p (I, b). Counterfactual best response is a best response, but not vice versa. The

counterfactual best response value CBV
��p
p (I) = v

hCBRp(��p),��pi
p (I) is the expected utility of

the counterfactual best response policy. Since we focus on two-player zero-sum games, we will use
CBV

�p(I) as a shorthand notation for CBV
�p

�p (I).

We follow the imperfect information subgame definition as in Burch et al. [2014]. An augmented
infoset contains states which cannot be distinguished by the remaining players.
Definition 3.1. An imperfect information subgame S is a forest of trees, closed under both the
descendant relation and membership within augmented infosets for any player. Let Stop be the set of
nodes which are roots of each tree in S.

4 Method

In this section, we introduce our novel search algorithm called safe exploitation search (SES), which
exploits the weaknesses of the opponent while ensuring a bounded exploitability efficiently. Let �
be the pre-computed blueprint strategy. Without loss of generality, assume we search for player 2’s
refined strategy �

S
2 by applying SES to all subgames S 2 S. Finally, the refined strategy for P2 after

search is �0
2, which is the same as �2 in {Ii2|8S 2 S, Ii2 /2 S} and is replaced with �

S
2 in S 2 S.

4.1 Safe Exploitation Search

Our algorithm offers a unified approach to balance these two demands with theoretical guarantees.
The objective of our search algorithm is to find a new subgame strategy �

S
2 for S 2 S which

maximizes
SE(�S

2 ) = ↵

X

Ij
12Stop

p̂(Ij1)
⇣
v
�
1 (I

j
1)� CBV

�S
2

1 (Ij1)
⌘

+ (1� ↵) min
Ij
12Stop

⇣
v
�
1 (I

j
1)� CBV

�S
2

1 (Ij1)
⌘
,

(2)

where ↵ 2 [0, 1] is a hyper-parameter controlling the exploitation level, and p̂(Ij1) is the estimated
probability of player 1 entering infoset Ij1 2 Stop. Given P2’s strategy (which is the blueprint �2)
and P1’s actual strategy (which does not have to be the blueprint �1), the real probability of player
1 entering infoset Ij1 2 Stop (which we denote as p(Ij1)) is determined. p̂(Ij1) is an estimation of
p(Ij1). For instance, in poker, it is the estimated distribution of private cards player 1 holds. Both
theoretically and empirically, such estimation does not have to be fully accurate. It can be done with
off-the-shelf opponent modeling techniques, which lies beyond the focus of this paper.
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Intuitively, the maximization objective achieves a balance between opponent exploitation and
safety, controlled by exploitation level ↵. The first part of the objective is maximized when
P

Ij
12Stop

p̂(Ij1)CBV
�S
2

1 (Ij1) is minimized. It aims at finding a strategy �
S
2 which results in the

lowest value for P1 under the assumption that the reach probabilities is p̂. It can be interpreted
as exploiting the estimated P1’s strategy. The second part of the objective demands the resolved
strategy to behave well against any reach probability distribution. We use the subgame margin
minIj

12Stop

⇣
v
�
1 (I

j
1)� CBV

�S
2

1 (Ij1)
⌘

[Moravcik et al., 2016] which can be regarded as the worst-
case utility increase for P2.

Our search objective is a convex combination of exploitation and safety, which is closely related to
previous safe exploitation research [McCracken and Bowling, 2004, Johanson et al., 2007]. RNR
[Johanson et al., 2007] calculates an exploitation strategy by computing an NE in the full game,
restricting the opponent to play its fixed strategy with probability p and any other strategy with 1� p.
RNR is proved to be Pareto optimal with respect to safety and exploitation. However, it neither
provides an explicit bound on exploitability and performance nor takes modeling errors into account.
Furthermore, without search, RNR has to recompute for the whole game whenever the opponent’s
strategy changes, which limits its efficiency. Experiment section 5.3 demonstrates that SES is much
more computationally efficient, and section 5.4 shows that, even we augment RNR with search
framework, SES is still much more robust to estimation errors in opponent strategy.

By maximizing the objective 2, we provide sound theoretical results for both safety and opponent
exploitation. Additionally, we provide analyses of how (1) exploitation level ↵, (2) accuracy of
opponent modeling, and (3) strength of the blueprint strategy impact the theoretical bound. By
gradually increasing ↵ from 0 to 1, our algorithm tends to exploit rather than keep safe.
Theorem 4.1. (safety) Let S be a disjoint set of subgames S. Let �⇤ = h�⇤

1 ,�
⇤
2i be the NE where P2’s

strategy is constrained to be the same with �2 outside S. Define � = maxS2S,Ii
12Stop

|CBV
�⇤
2

1 (Ii1)�
v
�
1 (I

i
1)|. Let p̃(Ii1) be the reach probability given by �

⇤
1 . Let p̂(Ii1) be the estimation of reach

probability p(Ii1) given by the real opponent strategy. Define ⌧ = maxS2S,Ii
12Stop

| p̂(I
i
1)�p̃(Ii

1)
p̃(Ii

1)
|.

Whenever 1� (2⌧ + 1)↵ > 0, we have a bounded exploitability given by:

exp(�0
2)  exp(�⇤

2) +
2

1� (2⌧ + 1)↵
�. (3)

Recall that �0
2 is the refined strategy after search. The proof is provided in Appendix B. This

theorem implies that the exploitability of the new strategy is smaller than that of strategy �
⇤
2 plus a

constant value, which is the closest strategy to NE if constrained to differ from �2 only in S. The
corresponding theoretical result of maxmargin search [Moravcik et al., 2016], a safe search algorithm
with no opponent exploitation abilities, is exp(�0

2)  exp(�⇤
2)+2�. Comparing these two results, we

can interpret the term 2/(1� (2⌧ +1)↵) as the additional risk introduced by exploiting the opponent.
If exploitation level ↵ = 0, then our bound is as tight as that of maxmargin search [Moravcik et al.,
2016]. The bound also gets tighter if the ⌧ gets smaller, or the blueprint �2 is closer to �

⇤
2 .

Theorem 4.2. (opponent exploitation) Let ✏ = kp̂ � pk1 be the L1 distance of the distribution
p(Ii1) and p̂(Ii1). Let ⌘ = minS2S maxIj

12Stop

⇣
CBV1(I

j
1 ,�

S
2 )� CBV1(I

j
1 ,�

⇤
2)
⌘

� 0. We use

BR
[S,�p]
p (�) to denote the strategy for player p which maximizes its utility in subgame S 2 S against

��p under the constraint that BR
[S,�p]
p (�) and �p differs only inside S. By maximizing objective 2,

for all S 2 S, the refined strategy �
0
2 satisfies

u

D
BR

[S,�1]
1 (�0

2),�0
2

E

2 (S) � u

D
BR

[S,�1]
1 (�⇤

2 ),�
⇤
2

E

2 (S)

+
1� ↵

↵
(⌘ � 2�)� ✏⌘

(4)

The proof is provided in Appendix B. Observe that the reach probability p is characterized by P1’s
strategy outside S and p̂ is its estimation. Because the search algorithm always find a stronger
response strategy for P1 in S (which is exactly BR

[S,�1]
1 (�0

2)) as well, opponent exploitation refers
to adapting to P1’s strategy �1 outside S. This theorem implies that the utility of the new strategy
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�
0
2 is lower bounded by the utility of �⇤

2 when both confronted with P1’s unknown strategy outside
S. It provides theoretical guarantees for the opponent exploitation ability of our algorithm. ✏ can
be interpreted as estimation error. The lower bound increases if the estimation error get smaller or
the blueprint �2 is closer to �

⇤
2 . We show empirically how exploitation level ↵ and estimation error

impact both safety and exploitation abilities in section 5.

4.2 Gadget Game

S1

C C C

P1

S2

C C C

C

C
1 − % %

Figure 1: The gadget game of SES. The shadow and dashed line indicate that player 2 cannot
distinguish between the two branches. C represents chance node, P1 represents player 1’s action
node. S1 and S2 are two identical copies of the subgame S with utility shifted.

In order to find �
S
2 which maximize objective 2, a straight-forward method is to reformulate the

maximization problem as a Linear Programming problem [Moravcik et al., 2016]. However, LP
solvers [Koller et al., 1994] cannot handle large-scale problems. Alternatively, inspired by Moravcik
et al. [2016], we create a gadget game and then apply iteration-based NE algorithms such as CFR
[Zinkevich et al., 2007, Tammelin et al., 2015, Lanctot et al., 2009] in the gadget game. The gadget
game is carefully designed such that the NE solution found in it is exactly the solution to the original
optimization problem.

As shown in Figure 1, the original subgame is copied into two identical parts S1, S2 in the gadget
game. Player 2’s infosets stretch over both branches, while player 1 can distinguish between the two
parts. We use P1 to denote player 1, and P2 for player 2. The procedure of constructing such gadget
game can be summarized into 4 steps as described below:

1. Create a chance node at the top of the gadget game. It goes to the left part with probability
1 � ↵, and the right part with probability ↵. The outcome is visible to P1 but not P2. Therefore,
corresponding nodes in both branches are in the same infosets for P2, and his strategy �

S
2 will be

the same for both parts. For P1, notice that S1 and S2 only differs in the distribution of the infosets
of player 1. Given the strategies of player 2 in S1 and S2 are the same, the difference between the
distribution of infosets of player 1 on the top of the subgame will not change the counterfactual value
of player 1. Therefore, we will have the same counterfactual regret and the same strategies generated
by CFR for player 1 in S1 and S2.

2. We subtract u1(z) by v
�
1 (I

i
1) for all z v h, h 2 I

i
1 where I

i
1 denotes the infoset on the top

of the subgame, and add u2(z) by v
�
1 (I

i
1) in order to keep the subgame zero-sum on both S1 and

S2. By doing so, the objective of p2 will change from maximizing �CBV
�S
2

1 (Ii1) to maximizing
v
�
1 (I

i
1)� CBV

�S
2

1 (Ii1).

3. As for the left part of the gadget game, the P1 node enables P1 to enter an arbitrary infoset
I
i
1. The following chance nodes sample a specific state with probability proportional to ⇡

�
�1(h) for

all h 2 I1. Since this is a zero-sum game, in an NE strategy, he will enter the one with lowest
v
�
1 (I

i
1)� CBV1(Ii1,�

⇤
2) which is exactly the minimization in the second term of SE(�S

2 ).

4. The chance node in the right part will sample an infoset Ii1 according to reach probability p̂(Ii1).
The following chance nodes again sample a specific state with probability proportional to ⇡

�
�1(h) for

all h 2 I1. So the NE objective of this part is exactly the summation in the first term of SE(�S
2 ).
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The pseudocode of SES is shown in Appendix A. We also provide a didactic matrix game in Appendix
D as an example to show the necessity of considering safety and expected payoff simultaneously, and
to demonstrate the superiority of SES over a simple mixing strategy.

5 Experiment

Our experiment is done in Leduc Hold’em [Southey et al., 2005] and Flop Hold’em Poker (FHP)
[Brown et al., 2019]. Leduc Hold’em is a smaller-scale poker game and FHP is a larger one. The rules
of these two pokers are provided in Appendix C. We demonstrate the exploitability and evaluation
performance of SES against opponents of various strengths. The exploitability measures a search
algorithm’s safety, while head-to-head evaluation measures the ability of opponent exploitation. We
also illustrate how estimation accuracy of opponent’s strategy and the exploitation level ↵ impact the
results. Please refer to Appendix E for implementation details.

5.1 Opponents

In our experiments, we test the performance of our algorithm against opponents of various strengths.
We create 3 types of opponents with 3 random seeds each. The first one is an approximation of NE,
and is regarded as a strong opponent. For the second and third type of opponents, we enumerate
every infoset in the blueprint strategy and shift the action distribution randomly with probability
Prshuffle = 0.3 or 0.7. We multiply the probability of each action by a random variable from
Uniform(0, 1), and then re-normalize the probability distribution. The procedure is motivated by
Brown et al. [2018], in which such method is applied to create a number of diverse but reasonably
strong agents. Even when Prshuffle = 0.7, the strategy keeps close to NE with average L1 distance of
each infoset 0.132 comparing to 1.036 of a random strategy to NE. So they are regarded as opponents
who are not fully rational but with competitive strength.

5.2 Safe Opponent Search

In Figure 2, we demonstrate the head-to-head evaluation performances and corresponding exploitabil-
ity of the refined strategies found by SES against opponents of various strengths, under different
exploitation level ↵ and estimation errors of opponent’s strategy. Different lines in each plot refers to
corresponding estimation error ✏, which is the L1 distance of p̂ and p. We evaluate our refined strategy
when ✏ = 0.0, 0.3, 0.6, 0.9, 1.2. Please refer to Appendix E for details of generating opponent
estimations. The blue line is the result of blueprint strategy without conducting any search.

Generally speaking, SES balances between safety and opponent exploitation. The increase of
exploitation level ↵ helps win more chips from opponents, while resulting in the increase of the
strategy’s own exploitability. As can be seen in Figure 2, the exploitability increases when the
exploitation level ↵ grows from 0 to 1, which is consistent with Theorem 4.1. One exception is in
FHP when ✏ is small: the exploitability surprisingly keeps decreasing even if SES puts more emphasis
on opponent exploitation. Similar situations have also occurred in previous literature [Brown and
Sandholm, 2017]. The reason is that our opponent is quite close to NE outside the subgame which
will make p̂ close to p̃ when ✏ is small, which means the ⌧ in Theorem 4.1 is small. As a result,
we will have a low-exploitability resolved strategy when using unsafe search and the exploitability
increases as ✏ increases.

When the estimation is completely correct (✏ = 0.0, the yellow line), the expected payoff in FHP
(3rd row in Figure 2) increases as the exploitation level ↵ grows higher. In Leduc poker, since the
game is very small, the pre-computed blueprint is very close to NE. Therefore, when confronted
with relatively strong opponents (Prshu✏e = 0.0, 0.3) which are also close to NE, actually few things
can be done other than sticking with the blueprint. So the improvement introduced by SES is small.
When facing relatively weak opponent (Prshu✏e = 0.7), the improvement margin is slightly larger.

SES relies on an estimation of opponent’s strategy. In order to test the robustness of our algorithm
when the prediction of p(Ii1) is not accurate, we evaluate the performance of our algorithm with
different values of estimation error ✏. As illustrated in Figure 2, the exploitability increases and the
expected payoff drops when ✏ grows larger. The result is expected since an accurate estimation always
provides benefits. However, it also demonstrates that SES can still achieve a trade-off between safety
and opponent exploitation even when ✏ is considerably high. For instance, in FHP, ✏ is between 0 and
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Figure 2: Experiment results on Leduc (Row 1 & 2) and FHP (Row 3 & 4). Row 1 & 3: Head-to-head
payoffs against corresponding opponents. Row 2 & 4: Exploitability. Each row represents a type of
opponent with Prshuffle = 0.0, 0.3, 0.7. The X-axis is the exploitation level ↵.

2, and ✏ = 1.2 means that the predicted distribution is almost random. When ✏  0.6, the expected
payoff still keeps increasing with respect to ↵. In case of a bad estimation, we can always choose
smaller ↵ to ensure safety.

5.3 Comparison with Restricted Nash Response

We also compare SES with restricted Nash response (RNR) [Johanson et al., 2007], a previous safe
exploitation algorithm, in FHP. RNR calculates an NE for for the whole game restricting that the
opponent plays the estimated strategy �fix with probability p, and any strategy with probability 1� p.
In each round, we limit the computation time of RNR(normal) to 10 CPU second*, which is the same
for SES. However, as stated in section 4.1, RNR needs to recompute a strategy for the whole game in
each round. It cannot converge in 10s. So we also compare with RNR(big), which has a budget of
10M CFR iterations in each round (around 190 CPU second in time). In contrast, SES only uses 10M
CFR iterations to calculate its blueprint once. As is shown in Figure 3, SES significantly outperforms
RNR(normal) in both exploitability and evaluation. SES also achieves much lower exploitability than
RNR(big) and comparable evaluation results with much less computation time.

5.4 Comparison with EXP-STRATEGY

It is possible to augment p�RNR with real-time search. For a subgame S, we can create a similar
gadget game to SES in Figure 1. The difference is that it keeps the opponent strategy fixed to its

*We test it on Intel(R) Xeon(R) Platinum 8276L CPU @ 2.20GHz
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Figure 3: Comparison between SES and RNR. Each row represents a type of opponent with Prshuffle =
0.0, 0.3, 0.7. The X-axis is the parameter ↵ for SES and p for RNR.
Table 1: Exploitability and evaluation performance of SES and EXP-STRATEGY. Strategy estimation
error is 0.1, and Prshuffle = 0.3.

↵(p) EXP-STRATEGY SES

EXPLOITABILITY

0.0 29.43(±0.01) 29.43(±0.00)
0.3 34.75(±0.13) 28.06(±0.04)
0.7 134.37(±2.59) 41.95(±0.39)
1.0 981.47(±11.86) 55.10(±1.13)

EVALUATION

0.0 5.15(±0.19) 5.15(±0.19)
0.3 1.63(±0.40) 6.21(±0.25)
0.7 -27.22(±0.91) 6.00(±0.81)
1.0 -88.94(±6.07) 3.30(±0.96)

estimation in the whole exploitation part, while SES only uses the reach probability p̂ calculated from
the estimated opponent strategy and allows the search algorithm to find opponent strategies in the
exploitation part as well. To our best knowledge, this algorithm does not exist in previous literature,
and can be regarded as an ablation study for SES. We call it EXP-STRATEGY.

Table 1 shows the exploitability and evaluation performance of SES and EXP-STRATEGY under
different exploitation level ↵ (or p in RNR). We add errors in the estimation of opponent strategy,
and use the same estimation for both algorithms. SES performs much better than EXP-STRATEGY:
maintains lower exploitability and achieves higher evaluation performances† The experiment shows
that EXP-STRATEGY is sensitive to modeling errors, because it relies on the estimated strategy in
the whole subgame. SES, which exploits a distribution of infoset instead of the full opponent strategy,
is more robust. Please refer to Appendix F for full comparison results.

Similar to SES, we derive the theoretical bounds for both exploitability and exploitation for EXP-
STRATEGY. And the theory also demonstrates that EXP-STRATEGY is more sensitive to the
accuracy of the estimation. Please refer to Appendix G for details.

6 Conclusion

We propose a novel safe exploitation search (SES) algorithm which unifies both safe search and
opponent exploitation. With the aid of real-time search, SES can make online adaptations to a
changing opponent model. We also prove safety and opponent exploitation guarantees of SES in
Theorem 4.1 and Theorem 4.2. The experimental results in our designed matrix game confirm the

†The parameter ↵ in SES and p in RNR are not directly comparable. To be precise, we should compare
the “frontier” of exploitability and exploitation for ↵, p 2 [0, 1]. For instance, under the same evaluation
performance, which algorithm achieves lower exploitability. In table 1, SES is strictly better.
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existence of the refined strategy which is both safe and actively exploiting the opponent. In games
of poker, our method outperforms NE baselines while keeping exploitability low. SES is also much
more efficient than previous safe exploitation algorithms without search. Additionally, SES is more
robust to opponent modeling errors.

One limitation of SES is that it relies on an estimation of opponent. Although the assumption is
common in opponent exploitation literature, efficient opponent modeling is still an active research
area. Additionally, the exploitation level ↵ is now regarded as a hyperparameter in SES. We find that
↵ should be tuned for each specific purpose and automatically learning ↵ is not trivial (see Appendix
H for a brief discussion). We leave this for future work.
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