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Abstract

Established approaches to obtain generalization bounds in data-driven optimization
and machine learning mostly build on solutions from empirical risk minimization
(ERM), which depend crucially on the functional complexity of the hypothesis class.
In this paper, we present an alternate route to obtain these bounds on the solution
from distributionally robust optimization (DRO), a recent data-driven optimization
framework based on worst-case analysis and the notion of ambiguity set to capture
statistical uncertainty. In contrast to the hypothesis class complexity in ERM,
our DRO bounds depend on the ambiguity set geometry and its compatibility
with the true loss function. Notably, when using statistical distances such as
maximum mean discrepancy, Wasserstein distance, or ϕ-divergence in the DRO,
our analysis implies generalization bounds whose dependence on the hypothesis
class appears the minimal possible: The bound depends solely on the true loss
function, independent of any other candidates in the hypothesis class. To our best
knowledge, it is the first generalization bound of this type in the literature, and we
hope our findings can open the door for a better understanding of DRO, especially
its benefits on loss minimization and other machine learning applications.

1 Introduction

We study generalization error in the following form. Let ℓ : F × Z → R be a loss function
over the function class F and sample space Z ⊂ Rd. Let EP [ℓ(f, z)] be the expected loss under
the true distribution P for the random object z. This EP [ℓ(f, z)] can be an objective function
ranging from various operations research applications to the risk of a machine learning model.
Given iid samples {zi}ni=1 ∼ P , we solve a data-driven optimization problem or fit model to give
solution fdata. The excess risk, or optimality gap of fdata with respect to the oracle best solution
f∗ ∈ argminf∈F EP [ℓ(f, z)], is given by

EP [ℓ(fdata, z)]− EP [ℓ(f
∗, z)] (1)

This gap measures the relative performance of a data-driven solution in future test data, giving rise to
a direct measurement on the generalization error. Established approaches to obtain high probability
bounds for (1) have predominantly focused on empirical risk minimization (ERM)

f̂∗ ∈ argmin
f∈F

EP̂ [ℓ(f, z)]

for empirical distribution P̂ , or its regularized versions. A core determination of the quality of these
bounds is the functional complexity of the model, or hypothesis class, which dictates the richness
of the function class F or L := {ℓ(f, ·) | f ∈ F} and leads to well-known measures such as the
Vapnik-Chervonenkis (VC) dimension [1]. On a high level, these complexity measures arise from the
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need to uniformly control the empirical error, which in turn arises from the a priori uncertainty on the
decision variable f in the optimization.

In this paper, we present an alternate route to obtain concentration bounds for (1) on solutions obtained
from distributionally robust optimization (DRO). The latter started as a decision-making framework
for optimization under stochastic uncertainty [2–4], and has recently surged in popularity in machine
learning, thanks to its abundant connections to regularization and variability penalty [5–12] and
risk-averse interpretations [13, 14]. Instead of replacing the unknown true expectation EP [·] by an
empirical expectation EP̂ [·], DRO hinges on the creation of an uncertainty set or ambiguity set K.
This set lies in the space of probability distribution P on z and is calibrated from data. It obtains a
solution f∗

dro by minimizing the worst-case expected loss among K

f∗
dro ∈ argmin

f∈F
max
Q∈K

EQ[ℓ(f, z)]. (2)

The risk-averse nature of DRO is evident from the presence of an adversary that controls Q in (2).
Also, if K is suitably chosen so that it contains P with confidence (in some suitable sense) and shrinks
to singleton as data size grows, then one would expect f∗

dro to eventually approach the true solution,
which also justifies the approach as a consistent training method. The latter can often be achieved by
choosing K as a neighborhood ball surrounding a baseline distribution that estimates the ground truth
(notably the empirical distribution), and the ball size is measured via a statistical distance.

Our main goal is to present a line of analysis to bound (1) for DRO solutions, i.e.,

EP [ℓ(f
∗
dro, z)]− EP [ℓ(f

∗, z)] (3)

which, instead of using functional complexity measures as in ERM, relies on the ambiguity set
geometry and its compatibility with only the true loss function. More precisely, this bound depends
on two ingredients: (i) the probability that the true distribution lies in K, i.e., P[P ∈ K] and, (ii)
given that this occurs, the difference between the robust and true objective functions evaluated at
the true solution f∗, i.e., maxQ∈K EQ[ℓ(f

∗, z)]− EP [ℓ(f
∗, z)]. These ingredients allow us to attain

generalization bounds that depend on the hypothesis class in a distinct, less sensitive fashion from
ERM. Specifically, when using the maximum mean discrepancy (MMD), Wasserstein distance, or
ϕ-divergence as a statistical distance in DRO, our analysis implies generalization bounds whose
dependence on the hypothesis class L appears the minimal possible: The bound depends solely on
the true loss function ℓ(f∗, ·), independent of any other ℓ(f, ·) ∈ L.

Note that although there exist generalization bounds that do not utilize conventional complexity
measures like the VC dimension [1], they are all still dependent on other candidates in the hypothesis
class and therefore, are different from our results. Examples include generalization bounds based
on hypothesis stability [15], algorithmic robustness [16], the RKHS norm [17], and generalization
disagreement [18]. These approaches all rely on the data-driven algorithmic output fdata, which varies
randomly among the hypothesis class due to its dependence on the random training data. Therefore,
to translate into generalization bounds, they subsequently require taking expectation over fdata ([15,
Definition 3 and Theorem 11]; [18, Theorem 4.2]) or taking a uniform bound over F ([16, Definition
2 and Theorem 1]; [17, Theorem 4.2]). In contrast, our bound depends on the hypothesis class
through the deterministic ℓ(f∗, ·), in a way that links to the choice of ambiguity set distance. To our
best knowledge, generalization bounds of our type have never appeared in the literature (not only for
DRO but also other ML approaches). We hope such a unique property will be useful in developing
better machine learning algorithms in the future, especially in harnessing DRO on loss minimization
and broader statistical problems.

Finally, our another goal is to conduct a comprehensive review on how DRO intersects with machine
learning, which serves to position our new bounds over an array of motivations and interpretations
of DRO. This contribution is in Section 2 before we present our main results (Section 3 - 5) and
numerical experiments (Section 6).

2 Related Work and Comparisons

DRO can be viewed as a generalization of (deterministic) robust optimization (RO) [19, 20]. The
latter advocates the handling of unknown or uncertain parameters in optimization problems via a
worst-case perspective, which often leads to minimax formulations. [21, 22] show the equivalence of
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ERM regularization with RO in some statistical models, and [16] further concretizes the relation of
generalization with robustness.

DRO, which first appeared in [23] in the context of inventory management, applies the worst-case
idea to stochastic problems where the underlying distribution is uncertain. Like in RO, it advocates
a minimax approach to decision-making, but with the inner maximization resulting in the worst-
case distribution over an ambiguity set K of plausible distributions. This idea has appeared across
various disciplines like stochastic control [24] and economics [25, 26]. Data-driven DRO constructs
and calibrates K based on data when available. The construction can be roughly categorized into
two approaches: (i) neighborhood ball using statistical distance, which include most commonly
ϕ-divergence [27–31] and Wasserstein distance [32–34, 6]; (ii) partial distributional information
including moment [35, 2–4, 36], distributional shape [37–40] and marginal [41–43] constraints.
The former approach has the advantage that the ambiguity set or the attained robust objective value
consistently approaches the truth [27, 44]. The second approach, on the other hand, provides flexibility
to decision-maker when limited data is available which proves useful on a range of operational or
risk-related settings [45–47].

The first approach above, namely statistical-distance-based DRO, has gained momentum especially
in statistics and machine learning in recent years. We categorize its connection with statistical
performance into three lines, and position our results in this paper within each of them.

2.1 Absolute Bounds on Expected Loss

The classical approach to obtain guarantees for data-driven DRO is to interpret the ambiguity set K as
a nonparametric confidence region, namely that P[P ∈ K] ≥ 1− δ for small δ ∈ (0, 1). In this case,
the confidence guarantee on the set can be translated into a confidence bound on the true expected
loss function evaluated at the DRO solution f∗

dro in the form

P[EP [ℓ(f
∗
dro, z)] ≤ max

Q∈K
EQ[ℓ(f

∗
dro, z)]] ≥ 1− δ (4)

via a direct use of the worst-case definition of maxQ∈K EQ[·]. This implication is very general,
with K taking possibly any geometry (e.g., [2, 27, 44, 32]). A main concern on results in the form
(4) is that the bound could be loose (i.e., a large maxQ∈K EQ[ℓ(f

∗
dro, z)]). This, in some sense, is

unsurprising as the analysis only requires a confidence guarantee on the set K, with no usage of other
more specific properties, which is also the reason why the bound (4) is general. When K is suitably
chosen, a series of work has shown that the bound (4) can achieve tightness in some well-defined
sense. [48, 49] show that when K is a Kullback-Leibler divergence ball, maxQ∈K EQ[ℓ(f

∗
dro, z)]

in (4) is the minimal among all possible data-driven formulations that satisfy a given exponential
decay rate on the confidence. [8, 50, 51] show that for divergence-based K, maxQ∈K EQ[ℓ(f, z)]
matches the confidence bound obtained from the standard central limit theorem by deducing that it is
approximately EP̂ [ℓ(f, z)] plus a standard deviation term (see more related discussion momentarily).

Our result leverages part of the above “confidence translation” argument, but carefully twisted to
obtain excess risk bounds for (1). We caution that (4) is a result on the validity of the estimated
objective value maxQ∈K EQ[ℓ(f

∗
dro, z)] in bounding the true objective value EP [ℓ(f

∗
dro, z)]. The

excess risk (1), on the other hand, measures the generalization performance of a solution in comparison
with the oracle best. The latter is arguably more intricate as it involves the unknown true optimal
solution f∗ and, as we will see, (4) provides an intermediate building block in our analysis of (1).

2.2 Variability Regularization

In a series of work [30, 31, 7, 9, 51], it is shown that DRO using divergence-based ball, i.e.,
K = {Q ∈ P : D(Q, P̂ ) ≤ η} for some threshold η > 0 and D a ϕ-divergence (e.g., Kullback-
Leibler, χ2-distance), satisfies a Taylor-type expansion

max
Q∈K

EQ[ℓ(f, z)] = EP̂ [ℓ(f, z)] + C1(f)
√
η + C2(f)η + · · · (5)

where C1(f) is the standard deviation of the loss function,
√

Var[ℓ(f, z)], multiplied by a constant
that depends on ϕ. Similarly, if D is the Wasserstein distance and η is of order 1/n, (5) holds
with C1(f) being the gradient norm or the Lipschitz norm [12, 10, 5, 52]. Furthermore, [17],
which is perhaps closest to our work, studies MMD as the DRO statistical distance and derives a
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high-probability bound for maxQ∈K EQ[ℓ(f, z)] similar to the RHS of (5), with C1(f) being the
reproducing kernel Hilbert space (RKHS) norm of ℓ(f, ·). Results of the form (5) can be used to
show that maxQ∈K EQ[ℓ(f, z)], upon choosing η properly (of order 1/n), gives a confidence bound
on EP [ℓ(f, z)] [8, 51]. Moreover, this result can be viewed as a duality of the empirical likelihood
theory [53, 12, 51, 54].

In connecting (5) to the solution performance, there are three implications. First, the robust objective
function maxQ∈K EQ[ℓ(f, z)] can be interpreted as approximately a mean-variance optimization,
and [7, 55] prove that, thanks to this approximation, the DRO solution can lower the variance of the
attained loss which compensates for its under-performance in the expected loss, thus overall leading
to a desirable risk profile. [7, 55] have taken a viewpoint that the variance of the attained loss is
important in the generalization. On the other hand, when the expected loss, i.e., the true objective
function EP [ℓ(f, z)], is the sole consideration, the approximation (5) is used in two ways. One way
is to obtain bounds in the form

EP [ℓ(f
∗
dro, z)] ≤ min

f∈F
{EP [ℓ(f, z)] + C1(f)/

√
n}+O(1/n) (6)

thus showing that DRO performs optimally, up to O(1/n) error, on the variance-regularized objective
function [9]. From this, [9] deduces that under special situations where there exists f with both small
risk EP [ℓ(f, z)] and variance Var[ℓ(f, z)], (6) can be translated into a small excess risk bound of
order 1/n. Moreover, such an order also desirably appears for DRO in some non-smooth problems
where ERM could bear 1/

√
n. The second way is to use DRO as a mathematical route to obtain

uniform bounds in the form

EP [ℓ(f, z)] ≤ EP̂ [ℓ(f, z)] + C1(f)/
√
n+O(1/n), ∀f ∈ F , (7)

which is useful for proving the generalization of ERM. In particular, we can translate (7) into a high
probability bound for EP [ℓ(f̂

∗, z)]− EP [ℓ(f
∗, z)] of order 1/

√
n. This use is studied in, e.g., [56]

in the case of Wasserstein and [17] in the case of MMD.

Despite these rich results, both (6) and (7), and their derived bounds on the excess risk (1), still depend
on other candidates in the hypothesis class through the choice of the ball size η or the coefficient
C1(f). Our main message in this paper is that this dependence can be completely removed, when
using the solution of a suitably constructed DRO. Note that this is different from localized results for
ERM, e.g., local Rademacher complexities [57]. Although the latter establishes better generalization
bounds by mitigating some dependence on the hypothesis class, local dependence on other candidates
still exists and cannot be removed.

2.3 Risk Aversion

It is known that any coherent risk measure (e.g., conditional value-at-risk) [13, 14] of a random
variable (in our case ℓ(f, z)) is equivalent to the robust objective value maxQ∈K EQ[ℓ(f, z)] with
a particular K. Thus, DRO is equivalent to a risk measure minimization, which in turn explains
its benefit in controlling tail performances. In machine learning, this rationale has been adopted to
enhance performance on minority subpopulations and in safety or fairness-critical systems [58]. A
related application is adversarial training in deep learning, in which RO or DRO is used to improve
test performances on perturbed input data and adversarial examples [59, 60]. DRO has also been used
to tackle distributional shifts in transfer learning [61, 62]. In these applications, numerical results
suggest that RO and DRO can come at a degradation to the average-case performance [63, 60, 64]
(though not universally, e.g., [65] observes that robust training can help reduce generalization error
with very few training data). To connect, our result in this paper serves to justify a generalization
performance of DRO even in the average case that can potentially outperform ERM.

3 General Results

We first present a general DRO bound.
Theorem 3.1 (A General DRO Bound). Let Z ⊂ Rd be a sample space, P be a distribution on Z ,
{zi}ni=1 be iid samples from P , and F be the function class. For loss function ℓ : F × Z → R, DRO
solution f∗

dro ∈ argminf∈F maxQ∈K EQ[ℓ(f, z)] satisfies that for any ε > 0,

P[EP ℓ(f
∗
dro, z)−EP ℓ(f

∗, z) > ε] ≤ P[P /∈ K]+P[max
Q∈K

EQℓ(f
∗, z)−EP ℓ(f

∗, z) > ε|P ∈ K]. (8)
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Proof of Theorem 3.1. We first rewrite EP [ℓ(f
∗
dro, z)] − EP [ℓ(f

∗, z)] as the following three terms:
[EP [ℓ(f

∗
dro, z)] − maxQ∈K EQ[ℓ(f

∗
dro, z)]] + [maxQ∈K EQ[ℓ(f

∗
dro, z)] − maxQ∈K EQ[ℓ(f

∗, z)]] +
[maxQ∈K EQ[ℓ(f

∗, z)] − EP [ℓ(f
∗, z)]]. Note that the second term maxQ∈K EQℓ(f

∗
dro, z) −

maxQ∈K EQℓ(f
∗, z) ≤ 0 almost surely by the DRO optimality of f∗

dro. Also, by definition of
maxQ∈K EQ[·] as the worst-case objective function, we have maxQ∈K EQ[ℓ(f, z)] ≥ EP [ℓ(f, z)]
for all f ∈ F as long as P ∈ K. Thus,
P[EP ℓ(f

∗
dro, z)− EP ℓ(f

∗, z) > ε] ≤ P[P /∈ K] + P[max
Q∈K

EQℓ(f
∗, z)− EP ℓ(f

∗, z) > ε, P ∈ K]

≤ P[P /∈ K] + P[max
Q∈K

EQℓ(f
∗, z)− EP ℓ(f

∗, z) > ε|P ∈ K].

This completes our proof.

A key feature of the bound in Theorem 3.1 is that it requires only the true loss function ℓ(f∗, ·). This
contrasts sharply with other bounds that rely on other candidates in the hypothesis class. To see where
this distinction arises, note that in proof of Theorem 3.1, we divide EP [ℓ(f

∗
dro, z)] − EP [ℓ(f

∗, z)]
into three parts where the second term is trivially ≤ 0 and the third term depends only on the true
loss. The key is that the first term satisfies EP [ℓ(f

∗
dro, z)]−maxQ∈K EQ[ℓ(f

∗
dro, z)] ≤ 0 as long as

P ∈ K, thanks to the worst-case definition of the robust objective function maxQ∈K EQ[ℓ(·, z)]. In
contrast, in the ERM case for instance, the same line of analysis gives [EP [ℓ(f̂

∗, z)]−EP̂ [ℓ(f̂
∗, z)]]+

[EP̂ [ℓ(f̂
∗, z)]−EP̂ [ℓ(f

∗, z)]] + [EP̂ [ℓ(f
∗, z)]−EP [ℓ(f

∗, z)]], and while the second and third terms
are handled analogously, the first term depends on f̂∗ that varies randomly among the hypothesis
class and is typically handled by the uniform bound supf∈F |EP [ℓ(f, z)]−EP̂ [ℓ(f, z)]| that requires
empirical process analysis [66] and the complexity of the hypothesis class F or L. Thus, in a sense,
the worst-case nature of DRO “transfers” the uniformity requirement over the hypothesis class into
alternate geometric requirements on only the true loss function.

4 Specialization to MMD DRO

4.1 Generalization Bounds

Our next step is to use Theorem 3.1 to derive generalization bounds for a concrete DRO formulation.
In the following, we use ambiguity set K as a neighborhood ball of the empirical distribution measured
by statistical distance, namely

K = {Q ∈ P : DMMD(Q, P̂ ) ≤ η} (9)
for a threshold η > 0. Moreover, we specialize in max mean discrepancy (MMD) [67] as the choice
of distance DMMD(·, ·). MMD is a distance derived from the RKHS norm, by using test functions
constrained by this norm in an Integral Probability Metric (IPM) [68]. Specifically, let k : Z×Z → R
be a positive definite kernel function on Z and (H, ⟨·, ·⟩) be the corresponding RKHS. For any
distributions Q1 and Q2, the MMD distance is defined by the maximum difference of the integrals over
the unit ball {h ∈ H : ∥h∥H ≤ 1}. That is, DMMD(Q1, Q2) := suph∈H:∥h∥H≤1

∫
hdQ1 −

∫
hdQ2.

In this way, MMD-DRO can be formulated as
min
f∈F

max
Q:DMMD(Q,P̂ )≤η

EQ[ℓ(f, z)] (10)

MMD is known to be less prone to the curse of dimensionality [69–71], a property that we leverage
in this paper, and such a property has allowed successful applications in statistical inference [67],
generative models [72, 73], reinforcement learning [74], and DRO [17, 75]. In particular, [76] studies
the duality and optimization procedure for MMD DRO. For a recent comprehensive review of MMD,
we refer readers to [77].

In the sequel, we adopt bounded kernels, i.e., supz,z′∈Z
√

k(z, z′) < +∞, to conduct our analy-
sis. This assumption applies to many popular choices of kernel functions and more importantly,
guarantees the so-called kernel mean embedding (KME) [77] is well-defined in RKHS. That is,
µQ :=

∫
k(z, ·)dQ ∈ H, ∀ Q ∈ P. This well-definedness of KME gives two important implica-

tions. One is that MMD is equivalent to the norm distance in KME: DMMD(P,Q) = ∥µP − µQ∥H
[78, 67]. Second, it bridges the expectation and the inner product in the RKHS space [70]: ∀ f ∈ H,
Ex∼P [f(x)] =

∫
x
⟨f, k(x, ·)⟩dP (x) = ⟨f, µP ⟩. Both properties above will facilitate our analysis.

We refer the reader to Appendix A for further details on KME.
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Theorem 4.1 (Generalization Bounds for MMD DRO). Adopt the notation and assumptions in
Theorem 3.1. Let Z be a compact subspace of Rd, k : Z × Z → R be a bounded continu-
ous positive definite kernel, and (H, ⟨·, ·⟩H) be the corresponding RKHS. Suppose also that (i)
supz∈Z

√
k(z, z) ≤ K; (ii) ℓ(f∗, ·) ∈ H with ∥ℓ(f∗, ·)∥H ≤ M . Then, for all δ ≥ 0, if we choose

ball size η = K√
n
(1 +

√
2 log(1/δ)) for MMD DRO (10), then MMD DRO solution f∗

M-dro satisfies

EP [ℓ(f
∗
M-dro, z)]− EP [ℓ(f

∗, z)] ≤ 2KM√
n

(1 +
√
2 log(1/δ))

with probability at least 1− δ.

We briefly overview our proof of Theorem 4.1, leaving the details to Appendix B. In view of Theo-
rem 3.1, the key lies in choosing the ball size η to make a good trade-off between P[DMMD(P, P̂ ) ≥ η]

and an upper bound of maxQ∈K EQ[ℓ(f
∗, z)]− EP [ℓ(f

∗, z)] when DMMD(P, P̂ ) ≤ η. The former
can be characterized by the established concentration rate of KME (See Proposition B.1). To get the
latter bound, we use the properties of KME to translate expectations into inner products:

max
Q∈K

EQ[ℓ(f
∗, z)]− EP [ℓ(f

∗, z)] = max
Q∈K

⟨ℓ(f∗, ·), µQ − µP ⟩ ≤ max
Q∈K

∥ℓ(f∗, ·)∥HDMMD(Q,P )

≤ ∥ℓ(f∗, ·)∥H max
Q∈K

{DMMD(Q, P̂ ) +DMMD(P̂ , P )} ≤ ∥ℓ(f∗, ·)∥H · 2η. (11)

From these, we can choose η as indicated in Theorem 4.1 to conclude the result. In a nutshell, here we
harness the compatibility between K and the true loss function ℓ(f∗, ·), more specifically the RKHS
norm on ℓ(f∗, ·), and the dimension-free concentration of KME. Our general bound in Theorem 3.1
allows us to stitch these two ingredients together to obtain generalization bounds for MMD DRO.

4.2 Strengths and Limitations Compared with ERM

Figure 1: Let L1 and L2 be two hy-
pothesis classes with the same true loss
function ℓ(f∗, ·). L1 corresponds to
functions in the oval and L2 corre-
sponds to functions below the straight
line. In ERM, the uniform bound is
taken directly over L1 (blue area) or L2

(pink area), while DRO gives the same
bound that corresponds to uniformity
over H∥ℓ(f∗,·)∥H (orange area).

Our generalization bound in Theorem 4.1 in fact still uti-
lizes a uniformity argument, hidden in the distance con-
struction. Note that our bound comprises essentially the
product of ∥ℓ(f∗, ·)∥H, which depends on the true loss
function, and η, the size of the ambiguity set. The lat-
ter is controlled by DMMD(P, P̂ ), which is equivalent
to the supremum of the empirical process indexed by
H1 := {h | h ∈ H, ∥h∥H ≤ 1}. Note that this supre-
mum is expressed through supz∈Z

√
k(z, z), which is

independent of the hypothesis class.

To understand this further, Figure 1 provides geometric
representations on the classes of functions over which
ERM and our DRO apply uniform bounds. From this we
also argue how DRO relies less heavily on the hypothe-
sis class. In ERM, the uniform bound is taken directly
over the hypothesis class, say L. In DRO, from our dis-
cussion above, the uniform bound is taken over a dila-
tion of the H1-ball by a factor ∥ℓ(f∗, ·)∥H, equivalently
H∥ℓ(f∗,·)∥H := {h | h ∈ H, ∥h∥H ≤ ∥ℓ(f∗, ·)∥H}. Thus,
if two hypothesis classes contain the same true loss function ℓ(f∗, ·), their DRO generalization
bounds would be the same, while ERM could differ. In this sense, DRO generalization exhibits less
reliance on the hypothesis class.

With the above understanding, we can see several situations where DRO could outperform ERM: (i)
When ∥ℓ(f∗, ·)∥H is small compared to the size of L. Though one may argue that ℓ(f∗, ·) is typically
unknown and hence we ultimately resort to using uniformity over L to obtain any computable
bound, our bound in terms of ℓ(f∗, ·) explains why DRO can sometimes substantially outperform
ERM. In Section 6, we provide an example where ∥l(f∗, ·)∥H = 0 and the excess risk of DRO
achieves zero with high probability. (ii) When uniformly bounding over H1 is “cheap”. Many
commonly used kernel spaces are bounded and therefore uniform bounds over H1 are trivial to
establish (by Proposition B.1), which in turn leads to generalization bounds that depend only on a
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dilation (by ∥ℓ(f∗, ·)∥H) of these uniform bounds over H1. This is regardless of how complex the
hypothesis class L is, including when ∥L∥H = ∞ or L = H. ERM, in contrast, uses uniformity
over L and can result in an exploding generalization bound when ∥L∥H = ∞. (iii) When L
resembles the geometry of H. For instance, when L = HB := {h | h ∈ H, ∥h∥H ≤ B}, the
ERM bound yields 2B suph∈H1

{Ph− P̂ h} since B = supℓ∈L ∥ℓ(·)∥H, while the DRO bound gives
2∥ℓ(f∗, ·)∥H suph∈H1

{Ph− P̂ h} that depends only on the true loss function and is smaller.

Despite the strengths, our bound in Theorem 4.1 also reveals situations where DRO could under-
perform ERM: When L has a shape deviating from the RKHS ball such that L ⊂ H∥ℓ(f∗,·)∥H ,
then taking uniform bounds over H∥ℓ(f∗,·)∥H is costly compared to over L, in which case DRO
generalization bound is worse than ERM. Moreover, note that ℓ(f∗, ·), the optimal loss within L, can
shift when L becomes richer. In this sense Theorem 4.1 cannot completely remove the dependency
on the hypothesis class, but rather diminishes it to the minimum possible: The resulting bound does
not rely on any other candidates in the hypothesis class except ℓ(f∗, ·).
Remark 4.2. There exists another line of work that establishes generalization bounds with a faster
rate O(n−1) for ERM [79, 57, 80, 81] and ϕ-divergence DRO [9]. However, they are all based on
additional curvature conditions on F or L to relate the loss/risk and variance. Improving our bounds
towards O(n−1) rate is potentially achievable and constitutes future work.

4.3 Comparison with [17]

For bounds that do not utilize conventional complexity measures, to the best of our knowledge, they
are still dependent on other candidates in the hypothesis class; recall our discussion in Section 1. As a
concrete example, we compare our results with [17], which also studies generalization related to MMD
DRO and appears the most relevant to our paper. First, different from our research goal, [17] aims to
use MMD DRO as an analysis tool to derive uniform bounds for EP [ℓ(f, z)]− EP̂ [ℓ(f, z)], ∀f ∈ F .
More specifically, the main argument for their Theorem 4.2 is that, with high probability, one has

EP [ℓ(f, z)]−EP̂ [ℓ(f, z)] = O(∥ℓ(f, ·)∥H
√

log(1/δ)
n ) for any given f . Although this bound seems to

depend on a single loss function ℓ(f, ·), any algorithmic output, say fdata, needs to be learnt from data
and is thus random. This means that to construct a generalization bound, one has to either average
over fdata or take a supremem over f ∈ F . [17] adopts the latter approach and establishes a bound

EP [ℓ(f, z)]− EP̂ [ℓ(f, z)] = O(supf∈F ∥ℓ(f, ·)∥H
√

log(1/δ)
n ), ∀ f ∈ F in their Theorem 4.2. Our

Theorem 4.1, in contrast, only depends on ∥ℓ(f∗, ·)∥H which is potentially much tighter and provides
a distinct perspective.

Second, our Theorem 4.1 also distinguishes from [17] in that our bound applies specifically to the
MMD DRO solution f∗

M-dro and reveals a unique property of this solution. This should be contrasted
to [17] whose result is a uniform bound for any f ∈ F , without any specialization to the DRO
solution. This also relates to our next discussion.

4.4 Comparison with RKHS Regularized ERM

We also compare our results to RKHS regularized ERM:

min
f∈F

ℓ(f, z) + η∥f∥H. (12)

When we additionally assume L ⊂ H, it is known that MMD DRO is equivalent to

min
f∈F

ℓ(f, z) + η∥ℓ(f, ·)∥H (13)

according to [17, Theorem 3.1]. Although (12) and (13) appear similar, their rationales are different.
When regularizing ∥f∥H, the goal is to maintain the simplicity of f . In comparison, through (13)
we are in disguise conducting DRO and utilizing its variability regularization property (Recall
Section 2.2). This observation motivates [17] to consider regularizing ℓ(f, ·) instead of f itself.
Our Theorem 4.1 reveals the benefit of regularizing ℓ(f, ·) at a new level: Regularizing ∥ℓ(f, ·)∥H
increases the likelihood of EP [ℓ(f

∗
M-dro, z)] − maxQ∈K EQ[ℓ(f

∗
M-dro, z)] ≤ 0, which is argued by

looking at the distribution space, instead of the loss function space, more specifically from the
likelihood of a DRO ambiguity set covering P . Because of this, we can establish generalization
bounds that depend on the hypothesis class only through the true loss ℓ(f∗, ·) for RKHS-regularized
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ERM when the regularization is on ℓ(f, ·). Furthermore, thanks to this we can relax the assumption
L ⊂ H adopted in (13) to merely ℓ(f∗, ·) ∈ H which is all we need in MMD DRO. Lastly, we point
out that our analysis framework is not confined only to MMD, but can be applied to other distances
in defining DRO (See Section 5).

4.5 Extension to ℓ(f∗, ·) /∈ H

In Theorem 4.1, we assume (i) supx∈X
√
k(x, x) ≤ K; (ii) ℓ(f∗, ·) ∈ H with ∥ℓ(f∗, ·)∥H ≤ M .

Although (i) is natural for many kernels, (ii) can be restrictive since many popular loss functions do
not satisfy ℓ(f∗, ·) ∈ H. For instance, if k is a Gaussian kernel defined on Z ⊂ Rd that has nonempty
interior, then any nonzero polynomial on Z does not belong to the induced RKHS H [82]. This is in
fact a common and well-known problem for almost all kernel methods [83], though many theoretical
kernel method papers just assume the concerned function g ∈ H for simplicity, e.g., [84, 85, 17].
This theory-practice gap motivates us to extend our result to ℓ(f∗, ·) /∈ H.

To this end, note that under universal kernels [86], any bounded continuous function can be ap-
proximated arbitrarily well (in L∞ norm) by functions in H. However, the RKHS norm of the
approximating function, which appears in the final generalization bound, may grow arbitrarily large
as the approximation becomes finer [87, 83]. This therefore requires analyzing a trade-off between the
function approximation error and RKHS norm magnitude. More specifically, we define the approxima-
tion rate I(ℓ(f∗, ·), R) := inf∥g∥H≤R ∥ℓ(f∗, ·)− g∥∞, and gR := arg inf∥g∥H≤R ∥ℓ(f∗, ·)− g∥∞.1
As a concrete example, we adopt the Gaussian kernel and the Sobolev space to quantify such a rate
and establish Theorem 4.3 below.
Theorem 4.3 (Generalization Bounds for Sobolev Loss Functions). Let (H, ∥ · ∥H) be the RKHS
induced by k(z, z′) = exp(−∥z − z′∥22/σ2) on Z = [0, 1]d. Suppose that ℓ(f∗, ·) is in the Sobolev
space Hd(Rd). Then, there exists a constant C independent of R but dependent on ℓ(f∗, ·), d, and σ

such that for all δ ≥ 0, if we choose ball size η = 1√
n
(1 +

√
2 log(1/δ)) for MMD DRO (10), then

MMD DRO solution f∗
M-dro satisfies

EP [ℓ(f
∗
M-dro, z)]− EP [ℓ(f

∗, z)] ≤ 2 inf
R≥1

{
C(logR)−

d
16 +

R√
n
(1 +

√
2 log(1/δ))

}
(14)

with probability at least 1− δ.

We briefly outline our proof, leaving the details to Appendix C. When ℓ(f∗, ·) /∈ H, we cannot
use KME to rewrite expectation as inner products as shown in (11). Rather, we will approximate
ℓ(f∗, ·) by some gR ∈ H and obtain EP [ℓ(f

∗, z)] ≤ EP [gR(z)] + I(ℓ(f∗, ·), R). Since gR ∈ H,
similar to (11) we can derive a generalization bound of gR, which appears in the second term of
(14). Then, it suffices to take infinum over R ≥ 1 to establish the aforementioned trade-off between
the approximation error I(ℓ(f∗, ·), R) (the first term of (14)) and the RKHS norm ∥gR∥H ≤ R (the
second term of (14)).

Compared to Theorem 4.1, here we have to pay an extra price on the solution quality when the loss
function is less compatible with the chosen RKHS, i.e., ℓ(f∗, ·) /∈ H. Concretely, in the setting of
Theorem 4.3, I(ℓ(f∗, ·), R) ≤ C(logR)−d/16 [87] and this results in a worse convergence rate in n.
For example, inserting R =

√
n(log n)−d/16 into (14) yields O(max{C,

√
log(1/δ)}(log n)−16/d).

This convergence rate is rather slow. However, it mainly results from the slow approximation rate
I(ℓ(f∗, ·), R) established by non-parametric analysis. If we further utilize the structure of ℓ(f∗, ·),
then a faster convergence rate or even close to O(n−1/2) rate can be potentially achieved. Nonetheless,
our main message in Theorem 4.3 is that even if ℓ(f∗, ·) /∈ H, our bound (14) still depends minimally
on the hypothesis class L: The bound depends solely on the true loss function ℓ(f∗, ·), independent
of any other ℓ(f, ·) ∈ L.

5 Specialization to 1-Wasserstein and χ2-divergence DRO

Our framework can also be specialized to DROs using other statistical distances. Below, we derive
results for DROs based on the 1-Wasserstein distance and χ2-divergence, and discuss their implica-

1gR is well-defined since for fixed R, h(g) = ∥ℓ(f∗, ·)− g∥∞ is a continuous function over a compact set
{g : g ∈ H, ∥g∥H ≤ R}.
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tions and comparisons with MMD DRO. Due to page limit, we delegate more detailed discussions
to Appendix D. Let f∗

W-dro be the solution to 1-Wasserstein DRO (See Appendix D.1) and f∗
χ2-dro be

the solution to χ2-divergence DRO (See Appendix D.2). Also denote ∥ · ∥Lip as the Lipschitz norm.
Then, we have the following generalization bounds.
Theorem 5.1 (Generalization Bounds for 1-Wasserstein DRO). Suppose that P is a light-tailed
distribution in the sense that there exists a > 1 such that A := EP [exp (∥z∥a)] < ∞. Then,
there exists constants c1 and c2 that only depends on a,A, and d such that for any given 0 <

δ < 1, if we choose ball size η =
( log(c1/δ)

c2n

)1/max{d,2}
and n ≥ log(c1/δ)

c2
, then f∗

W-dro satisfies

EP [ℓ(f
∗
W-dro, z)]−EP [ℓ(f

∗, z)] ≤ 2∥ℓ(f∗, ·)∥Lip(
log(c1/δ)

c2n
)1/max{d,2} with probability at least 1− δ.

Theorem 5.2 (Generalization Bounds for χ2-divergence DRO on Discrete Distributions). Suppose
that P is a discrete distribution with m support with P[z = zi] = pi. Suppose that (i) pmin =
min1≤i≤m pi > 0; (ii) ∥ℓ(f∗, ·)∥∞ < +∞. Then, for all 0 < δ < 1, if we choose ball size
η = 1

n (m+ 2 log(4/δ) + 2
√
m log(4/δ)) for χ2-divergence DRO, then for all n ≥ 106m2

p3
minδ

2 , f∗
χ2-dro

satisfies EP [ℓ(f
∗
χ2-dro, z)]− EP [ℓ(f

∗, z)] ≤ ∥ℓ(f∗, ·)∥∞{ 1√
n

√
m+ 2 log(4/δ) + 2

√
m log(4/δ) +√

2 log(2/δ)
n } with probability at least 1− δ.

Like Theorem 4.1, Theorems 5.1 and 5.2 are obtained by analyzing the two components in Theorem
3.1, which correspond to: (1) the ambiguity set contains true distribution P with high confidence and
(2) compatibility of the statistical distance with ℓ(f∗, ·). The bounds in Theorems 5.1 and 5.2 involve
only ℓ(f∗, ·) but not other candidates in the hypothesis class. Notice that if P is continuous, then
using χ2-divergence, and more generally ϕ-divergence (See Definition D.3), for DRO entails a bit
more intricacies than MMD and Wasserstein DRO. Due to the absolute continuity requirement in the
definition, if P is continuous, then ϕ-divergence ball centered at P̂ will never cover the truth, which
violates the conditions required in developing our generalization bounds. In Theorem 5.2, to showcase
how generalization bounds of ϕ-divergence DRO depend on the hypothesis class, we present an
explicit bound for discrete P and χ2-divergence, for which we can use P̂ -centered ambiguity set. To
remedy for continuous P , one can set the ball center using kernel density estimate or a parametric
distribution, albeit with the price of additional approximation errors coming from the “smoothing”
of the empirical distribution. In Appendix D.2, we present a general bound (Theorem D.4) for
ϕ-divergence DRO that leaves open the choice of the ball center and the function ϕ. Once again, this
generalization bound involves only ℓ(f∗, ·) but not other candidates in the hypothesis class. However,
we would leave the explicit bounds of other cases than that of Theorem 5.2, including the choice and
usage of the remedial smoothing distributions in the continuous case, to separate future work.

Moreover, in our result for Wasserstein DRO, the rates in terms of n is n−1/max{d,2}, which is slower
than our result for MMD DRO in Theorem 4.1 and the classical ERM rate n−1/2. The slow rate of
Wasserstein DRO comes from the large ball size needed to confidently cover the true P and control
the first term of (8). Specifically, the ball size is controlled by the 1-Wasserstein distance DW1(P, P̂ ),
which is equivalent to the supremum of the empirical process indexed by Lip1 := {h | ∥h∥Lip ≤ 1}
by the dual representation of DW1(·, ·) [88]. Similar to our discussion in Section 4.2, Theorem 5.1
shows a tradeoff between the hypothesis class dependence and the rate in n that differs from ERM.
More precisely, Wasserstein DRO has a generalization that favorably relies only on the true loss

25 50 75 100 125 150 175 200
sample size n

10
−20

10
−16

10
−12

10
−8

10
−4

10
0

ex
ce
ss
 ri
sk

ERM, B=1
ERM, B=10
ERM, B=100
DRO, B=1
DRO, B=10
DRO, B=100

(a) Performance of ERM and DRO under varying n

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
η

10
−20

10
−17

10
−14

10
−11

10
−8

10
−5

10
−2

ex
ce
ss
 ri
sk

ERM, B=1, n=50
ERM, B=1, n=100
ERM, B=1, n=200
DRO, B=1, n=50
DRO, B=1, n=100
DRO, B=1, n=200

(b) Performance of ERM and DRO under varying η

Figure 2: Excess risks of ERM and DRO

9



ℓ(f∗, ·), but scales inferiorly in terms of n (due to uniformity over Lip1). It is thus most suited when
the complexity of hypothesis class outweighs the convergence rate consideration. In Appendix E, we
will describe the distribution shift setting where such a tradeoff can be amplified.

We also note that, unlike Wasserstein DRO, χ2-divergence DRO retains a rate of 1/
√
n. However,

this is because Theorem 5.2 has focused on the finite-support case, where the number of support
points m comes into play in the multiplicative factor instead of the rate. If we consider continuous P
and use a smooth baseline distribution (instead of P̂ ), we expect the rate of χ2-divergence DRO to
deteriorate much like the case of Wasserstein DRO and there may exist a similar tradeoff.

6 Numerical Experiments

We conduct simple experiments to study the numerical behaviors of our MMD DRO and compare
with ERM on simulated data, which serves to illustrate the potential of MMD DRO in improving
generalization and validate our developed theory. We adapt the experiment setups from [9, Section
5.2] and consider a quadratic loss with linear perturbation: l(θ, z) = 1

2∥θ − v∥22 + z⊤(θ − v), where
z ∼ Unif[−B,B]d with constant B varying from {1, 10, 100} in the experiment. Here, F = {θ |
θ ∈ Θ} and we use f and θ interchangeably. v is chosen uniformly from [1/2, 1]d and is known to the
learner in advance. In applying MMD DRO, we use Gaussian kernel k(z, z′) = exp(−∥z− z′∥22/σ2)
with σ set to the median of {∥zi − zj∥2 | ∀ i, j} according to the well-known median heuristic
[67]. To solve MMD DRO, we adopt the semi-infinite dual program and the constraint sampling
approach from [76], where we uniformly sample a constraint set of size equal to the data size n. The
sampled program is then solved by CVX [89] and MOSEK [90]. Each experiment takes the average
performance of 500 independent trials. Our computational environment is a Mac mini with Apple
M1 chip, 8 GB RAM and all algorithms are implemented in Python 3.8.3.

In Figure 2(a), we present the excess risks of ERM and DRO, i.e., EP [ℓ(fdata, z)] − EP [ℓ(f
∗, z)],

where fdata denotes the ERM or DRO solution. We set d = 5 and tune the ball size via the best
among η ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, . . . , 1.0} (more details to be discussed on Figure 2(b)
momentarily). Figure 2(a) shows that, as n increases, both DRO and ERM incur a decreasing loss.
More importantly, DRO appears to perform much better than ERM. For n = 200 and B = 100 for
instance, the expected loss of DRO is less than 10−20, yet that of ERM remains at around 101.

We attribute the outperformance of DRO to its dependency on the hypothesis class only through the
true loss function ℓ(f∗, ·). This can be supported by an illustration on the effect of ball size η. In
Figure 2(b), we present excess risk EP [ℓ(fdata, z)] − EP [ℓ(f

∗, z)] for B = 1, d = 5, n = 50, and
varying η. We see that the excess risk of the DRO solution drops sharply when η is small, and then
for sufficiently big η, i.e., η ∈ [0.5, 1], it remains at a fixed level of 10−19, which is close to the
machine accuracy of zero (such an “L”-shape excess loss also occurs under other choices of sample
size n, and we leave out those results to avoid redundancy). Such a phenomenon coincides with our
theorems. First, note that f∗ = v and the optimal loss function satisfies ∥ℓ(f∗, ·)∥H = ∥0∥H = 0, so
that our assumptions in Theorem 4.1 are satisfied. Recall that by Theorem 3.1,
P[EP ℓ(f

∗
M-dro, z)− EP ℓ(f

∗, z) > ε] ≤ P[P /∈ K] + P[max
Q∈K

EQℓ(f
∗, z)− EP ℓ(f

∗, z) > ε|P ∈ K].

Conditioning on P ∈ K, we have f∗
M-dro = f∗ = v and maxQ∈K EQ[ℓ(f

∗
M-dro, z)] = EP [ℓ(f

∗, z)] =
0. Thus, the above inequality yields P[EP [ℓ(f

∗
M-dro, z)]− EP [ℓ(f

∗, z)] > ε] ≤ P[P /∈ K]. The proof
of Theorem 4.1 reveals that ∀ δ > 0, if the ball size is big enough, namely η ≥ K√

n
(1+

√
2 log(1/δ)),

then excess risk will vanish, i.e., EP [ℓ(f
∗
M-dro, z)]− EP [ℓ(f

∗, z)] = 0 with probability ≥ 1− δ. This
behavior shows up precisely in Figure 2(b).

Our discussion above is not to suggest the choice of η in practice. Rather, it serves as a conceptual
proof for the correctness of our theorem. In fact, to the best of our knowledge, none of the previ-
ous results, including the multiple approaches to explain the generalization of DRO reviewed in
Section 2, can explain the strong outperformance of DRO with the “L”-shape phenomenon in this
example. These previous results focus on either absolute bounds (Section 2.1) or using variability
regularization (Section 2.2) whose bounds, when converted to excess risks, typically increase in η
when η is sufficiently large and, moreover, involve complexity measures on the hypothesis class
(e.g., the ϕ-divergence case in [9, Theorems 3, 6] and the Wasserstein case in [56, Corollaries 2,
4]). Our developments in Section 3 thus appear to provide a unique explanation for the significant
outperformance of DRO in this example.
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