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A Derivations

A.1 Proof of Lemma 1

According to the Barber and Agakov’s variational lower bound [1], the mutual information I(x; y)
between x and y can be bounded as follows:

I(x; y) = Ep(x,y) log
p(y|x)
p(y)

≥ Ep(x,y) log
q(y|x)
p(y)

, (1)

where q is an arbitrary distribution. Specifically, q(y|x) is defined by independently sampling a set
of examples {y1, . . . , yK} from a proposal distribution π(y) and then choosing y from {y1, . . . , yK}
in proportion to the importance weights wy = eψ(x,y)∑

k e
ψ(x,yk)

, where ψ is a function that takes x and

y and outputs a scalar. According to the section 2.3 in [2], by setting the proposal distribution as
the marginal distribution π(y) ≡ p(y), the unnormalized density of y given a specific set of samples
y2:K = {y2, . . . , yK} and x is:

q (y | x, y2:K) = p(y) · K · eψ(x,y)

eψ(x,y) +
∑K
k=2 e

ψ(x,yk)
(2)

where K denotes the numbers of samples. According to the equation 3 of section 2 in [3], the
expectation of q (y | x, y2:K) with respect to resampling of the alternatives y2:K from p(y) produces
a normalized density:

q̄(y | x) = Ep(y2:K) [q (y | x, y2:K)] (3)

∗Ping Luo is the corresponding author. Yao Mu and Fei Ni conducted this work during the internship in
Huawei Noah’s Ark Lab.
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With Equation 3 and Jensen’s inequality applied in Equation 1, we have

I(x, y) ≥ Ep(x,y) log
Ep(y2:K)q (y | x, y2:K)

p(y)
≥ Ep(x,y)

[
Ep(y2:K) log

q (y | x, y2:K)

p(y)

]
= Ep(x,y)

[
Ep(y2:K) log

p(y)K · wy
p(y)

]
= Ep(x,y)

[
Ep(y2:K) log

K · eψ(x,y)

eψ(x,y) +
∑K
k=2 e

ψ(x,yk)

] (4)

It is obviously that eψ(x,y)

eψ(x,y)+
∑K
k=2 e

ψ(x,yk)
≤ 1, thus we have

Ep(x,y)

[
Ep(y2:K) log

K · eψ(x,y)

eψ(x,y) +
∑K
k=2 e

ψ(x,yk)

]
≤ logK (5)

With Equation 5, we have

Ep(x,y)

[
Ep(y2:K) log

K · eψ(x,y)

eψ(x,y) +
∑K
k=2 e

ψ(x,yk)

]

=Ep(x,y1)p(y2:K)

[
log

eψ(x,y)

1
K

∑K
k=1 e

ψ(x,yk)

]
= INCE(x; y | ψ,K) ≤ logK,

(6)

Therefore, we have
I(x, y) ≥ INCE(x; y | ψ,K) ≤ logK (7)

If I(x, y) > logK, then I(x, y) > logK ≥ INCE(x; y | ψ,K), and INCE will be a loose bound.

Thus, INCE ≤ I(x, y) ≤ logK is the necessary condition for INCE to be a tight bound of I(x, y).

A.2 Detailed derivation of Theorem 1

As the number of confounders increases, although the true mutual information I(c; T ) does not
increase, the necessary condition of INCE to be a tight lower bound of INCE becomes more difficult
to satisfy, and the demand of data increases significantly.

As for an entangled context, the necessary condition of the InfoNCE lower bound INCE(c; T ) to be
a tight bound is

INCE (c; T ) ≤ I (c; T ) ≤ logK (8)

Since I(c; T ) ≥
∑N
i=0 I (ui; T ), to let the above condition satisfied, the amount of data K must

satisfy

logK ≥
N∑
i=0

I (ui; T ) (9)

K ≥ e
∑N
i=0 I(ui;T ) (10)

Therefore, if the number of confounders increases, then the demand for data will grow exponentially.

When data is not rich enough, the nesseray condition may not be satisfied. The InfoNCE lower bound
INCE(c; T ) may be loose, that is INCE(c; T ) may be much smaller than the true mutual information
I(c; T ), thus the MI optimization based on INCE(c; T ) will be severely affected.

INCE (ci; T ) is the lower bound of I (ci; T ) and the necessary condition of INCE (ci; T ) to be a
tight bound of I (ci; T ) is
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INCE (ci; T ) ≤ I (ci; T ) ≤ logK (11)

As for disentangled context c = {c1, c2, · · · , cN}, we then derive the necessary condition of I(c, T )
to be a tight lower bound of I(c, T ):
With the assumption that the contexts {c1, c2, · · · , cN} are independent to each other, then I(c; T )
could be derived as

∑
I (ci; T ). Therefore, under the confounder independent assumption, let

INCE(c; T ) be a tight bound is only necessary to let every INCE(ci; T ) to be a tight bound.

If every INCE(ci; T )(i = 1, 2, . . . , N) is a tight bound, then we have

INCE (ci; T ) ≤ I (ci; T ) ≤ logK (12)

under the confounder independent assumption, we have∑
INCE (ci; T ) ≤

∑
I (ci; T ) ≤ N logK (13)

INCE (c; T ) =
∑

INCE (ci; T ) ≤ I (c; T ) =
∑

I (ci; T ) ≤ N logK (14)

Thus, the necessary condition of INCE (c; T ) to be a tight bound of I (c; T ) could be relaxed to

INCE (c; T ) ≤ I (c; T ) ≤ N logK (15)

Therefore, by decomposing the MI estimation under the confounder independent assumption, the
demand of the amount K of data could be reduced from K ≥ eI(c;T ) to K ≥ e

1
N I(c;T ). And

with I(c; T ) ≥
∑N
i=0 I (ui; T ), specificly, the the amount K of data could be reduced from K ≥

e
∑N
i=0 I(ui;T ) to K ≥ e 1

N

∑N
i=0 I(ui;T ).

B Pseudo-code

B.1 Combination with model-based methods

We provide the pseudo-code of DOMINO combined with model-based methods. Firstly, the past state-
action pairs are encoded into the disentangled context vectors by the context encoder. According to the
learned context, the transition prediction network predicts the future states of different actions. Then,
the context encoder is optimized by maximizing the mutual information between the disentangled
context vectors and historical trajectories while minimizing the state transition prediction error. In
particular, we use the cross entropy method (CEM) [4], a typical neural model predictive control
(MPC) [5] method, to select actions, in which several candidate action sequences are iteratively
sampled from a candidate distribution, which is adjusted based on best-performing action samples.
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Algorithm 1 Training DOMINO with context-aware world model

Inputs: learning rate α,maximum number of iteration P , batch size B, the number of past
observations Hpast, maxium rollout step max_step and the number of future observations Hfuture.
Initialize parameters of prediction network ϕ, context encoder φ.
Initialize replay buffer D ← ∅.
for P iterations do

// COLLECT TRAINING SAMPLES
step = 0
V = 0
while step ≤max_step do

Sample uV ∼ putrain
(u).

V = V + 1
for t = 1 to TaskHorizon do
step = step+ 1
Get context latent vectors ct0 , ct1 , . . . , ctN = g (τt;φ) , τt = {sl, al}t−1

l=t−Hpast

Collect samples {(st, at, st+1, rt, τt)} from the environment using the planning algorithm
based on CEM with the context vectors

end for
Update DuV ← DuV ∪ {(st, at, st+1, rt, τt)}

end while
// UPDATE DYNAMICS MODELS AND ENCODER
Initialize batch B ← ∅.
for i = 1 to B do

sample V∗ from [0,Vmax]
Sample {st, at, st+1, rt, τt} from DuV∗

Sample positive trajectories τ+ from DuV∗

Sample negative trajectories
{
τ−k

}K
k=2

from DuV!=V∗

Get context latent vectors ct0 , ct1 , . . . , ctN = g (τt;φ)
Update B ← B ∪ {(st, at, st+1, rt, τt)}

end for
Lpred ← Eτ∗∼B

[
− 1
H

∑t+Hfuture−1
λ=t log fϕ (sλ+1 | sλ, aλ, (c0λ , . . . , cNλ))

]
LNCE ←

∑N
i INCE (ci; T )−

∑N
j

∑N
i=0,i̸=j INCE (ci; cj)

Update φ← φ− α∇φLNCE
Update φ← φ− α∇φLpred
Update ϕ← ϕ− α∇ϕLpred

end for

B.2 Combination with model-free methods

We provide the pseudo-code for the combination between DOMINO and the model-free method,
which uses the context encoder learned by DOMINO as a plug-and-play module to extract accurate
context. We concatenate the disentangled context encoded by a pre-trained context encoder from
DOMINO and the current state-action pairs, and learn a conditional policy π (at|st, c0, . . . , cN ). We
choose the Proximal Policy Optimization (PPO) method [6] to train the agents.

C Details about the testing environments

1 def change_env(self):
2 mass = np.copy(self.original_mass)
3 damping = np.copy(self.original_damping)
4 mass *= self.mass_scale
5 damping *= self.damping_scale
6 self.model.body_mass [:] = mass
7 self.model.dof_damping [:] = damping

Listing 1: PyTorch-style pseudo-code for dynamics change based on Mujoco engine.
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Algorithm 2 Proximal Policy Optimization with disentangled context encoder learned by DOMINO

Inputs:Maximum number of iteration P , number of actor updates M , number of critic updates B,
the KL regular coefficient λ, scaling coefficient α and the learning rate β.
Initialize parameters of policy network θ, value network ξ, and context encoder φ.
for P iterations do

Encode disentangled context vectors ct0 , ct1 , . . . , ctN by the learned context encoder gφ(·)
Run policy πθ for T timesteps, collecting {{st, ct0 , ct1 , . . . , ctN , at, rt}}Tt=1

Estimate advantages Ât =
∑
t′>t γ

t′−trt′ − Vξ(st, ct0 , ct1 , . . . , ctN )
πold ← πθ
for M updates do
JPPO(θ)← −

{∑T
t=1

πθ(at|st,ct0 ,ct1 ,...,ctN )

πold(at|st,ct0 ,ct1 ,...,ctN ) Ât − λKL[πold|πθ]
}

θ ← θ − β∇θJPPO
end for
for B updates do
LBL(ξ)←

∑T
t=1(

∑
t′>t γ

t′−trt′ − Vξ(st, ct0 , ct1 , . . . , ctN ))2
ξ ← ξ − β∇ξLBL

end for
if KL[πold|πθ] > βhighKLtarget then
λ← αλ

else if KL[πold|πθ] < βlowKLtarget then
λ← λ/α

end if
end for

1 def reset_model(self):
2 c = 0.01
3 self.set_state(
4 self.init_qpos + self.np_random.uniform(low=-c, high=c, size=self.model.

nq),
5 self.init_qvel + self.np_random.uniform(low=-c, high=c, size=self.model.

nv ,)
6 )
7 pos_before = mass_center(self.model , self.sim)
8 self.prev_pos = np.copy(pos_before)
9

10 random_index = self.np_random.randint(len(self.mass_scale_set))
11 self.mass_scale = self.mass_scale_set[random_index]
12
13 random_index = self.np_random.randint(len(self.damping_scale_set))
14 self.damping_scale = self.damping_scale_set[random_index]
15
16 self.change_env ()
17 return self._get_obs ()
18

Listing 2: PyTorch-style pseudo-code for multi-confounded environments initialization.

For CartPole environments, we use open-source implementation of CartPoleSwingUp-v22, which
is the modified version of original CartPole environments from OpenAI Gym. The objective of
CartPole task is to swing up the pole by moving a cart and keep the pole upright. For our experiments,
we modify the push force f and the pole length l simultaneously. As for Pendulum, we scale the
pendulum mass by scale factor m and modify the pendulum length l. For Pendulum environments,
we use the open-source implementation of from the OpenAI Gym. The objective of Pendulum is to
swing up the pole and keep the pole upright within 200 timesteps. We scale the pendulum mass by
scale factor m and modify the pendulum length l.

As for Hopper, Half-cheetah, Ant, and Slimhumanoid, we use the environments from MuJoCo
physics engine 3, and scale the mass of every rigid link by scale factor m, and scale damping of
every joint by scale factor d. As for Crippled Ant and Crippled Half-cheetah, we scale the mass
of every rigid link by scale factor m, scale damping of every joint by scale factor d, and randomly

2We use implementation available at https://github.com/0xangelo/gym-cartpole-swingup
3We use implementation available at https://github.com/iclavera/learning_to_adapt
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Table 3: Environment parameters used for the multi-confounded experiments.

Train Test

CartPole
f ∈

{5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
11.0, 12.0, 13.0, 14.0, 15.0}

f ∈ {3.0, 3.5, 16.5, 17.0}

l ∈ {0.40, 0.45, 0.50, 0.55, 0.60} l ∈ {0.25, 0.30, 0.70, 0.75}

Pendulum
m ∈

{0.75, 0.80, 0.85, 0.90, 0.95,
1.0, 1.05, 1.10, 1.15, 1.20, 1.25}

m ∈ {0.50, 0.70, 1.30, 1.50}

l ∈
{0.75, 0.80, 0.85, 0.90, 0.95,
1.0, 1.05, 1.10, 1.15, 1.20, 1.25}

l ∈ {0.50, 0.70, 1.30, 1.50}

Half-cheetah
m ∈ {0.75, 0.85, 1.0, 1.15, 1.25} m ∈ {0.40, 0.50, 1.50, 1.60}
d ∈ {0.75, 0.85, 1.0, 1.15, 1.25} d ∈ {0.40, 0.50, 1.50, 1.60}

Ant
m ∈ {0.75, 0.85, 1.0, 1.15, 1.25} m ∈ {0.40, 0.50, 1.50, 1.60}
d ∈ {0.75, 0.85, 1.0, 1.15, 1.25} d ∈ {0.40, 0.50, 1.50, 1.60}

SlimHumanoid
m ∈ {0.80, 0.90, 1.0, 1.15, 1.25} m ∈ {0.60, 0.70, 1.50, 1.60}
d ∈ {0.80, 0.90, 1.0, 1.15, 1.25} d ∈ {0.60, 0.70, 1.50, 1.60}

Crippled Ant
m ∈ {0.75, 0.85, 1.0, 1.15, 1.25} m ∈ {0.40, 0.50, 1.50, 1.60}
d ∈ {0.75, 0.85, 1.0, 1.15, 1.25} d ∈ {0.40, 0.50, 1.50, 1.60}

crippled leg:{0, 1, 2} crippled leg:{3}

Crippled Halfcheetah
m ∈ {0.75, 0.85, 1.0, 1.15, 1.25} m ∈ {0.40, 0.50, 1.50, 1.60}
d ∈ {0.75, 0.85, 1.0, 1.15, 1.25} d ∈ {0.40, 0.50, 1.50, 1.60}

crippled leg:{0} crippled leg:{1}

select one leg, and make it crippled. The objectives of these tasks are to move forward as fast as
possible while minimizing the action cost. The detailed settings are illustrated in Table 3. We provide
the pyTorch-style pseudo-code for multi-confounded environments in Listing 1 and Listing 2. We
implement these environments based on the publicly available code provide by [7, 8], and we also
open-source the code of the multiple-confounded environments4. For both the training and testing
phase, we sample the confounders at the beginning of each episode. During training, we randomly
select a combination of confounders from a training set. At test time, we evaluate each algorithm in
unseen environments with confounders outside the training range. We also provide the PyTorch-style
pseudo-code for the dynamics change based on Mujoco engine.

D Implementation details

D.1 Combination with Model-based RL

The context encoder is modeled as multi-layer perceptrons (MLPs) with 3 hidden layers and N
output heads which are single-layer MLPs. Every disentangled context vector is produced as a
10-dimensional vector by the 3 hidden layers and a specific output head. Then, the disentangled
context vectors are used as the additional input to the prediction network, i.e., the input is given
as a concatenation of state, action, and context vector. We use Hpast = 10 for the number of
past observations and Hfuture = 5 for the number of future observations. The prediction network
is modeled as multi-layer perceptrons (MLPs) with 4 hidden layers of 200 units each and Swish
activations. For each prediction head, the mean and variance are parameterized by a single linear
layer that takes the output vector of the backbone network as an input. To train the prediction network,
we collect 10 trajectories with 200 timesteps from environments using the MPC controller and train
the model for 50 epochs at every iteration. We train the prediction network for 10 iterations for every
experiment. We evaluate trained models on environments over 8 random seeds every iteration to
report the testing performance. The Adam optimizer [9] is used with a learning rate 1× 10−4. For

4We provide open-source environments at https://anonymous.4open.science/r/Multiple-confounded-Mujoco-Envs-01F3
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planning, we use the cross entropy method (CEM) with 200 candidate actions for all the environments.
The horizon of MPC is set as 30.

D.2 Combination with Model-free RL

We train the model-free agents for 5 million timesteps on OpenAI-Gym and MuJoCo environments
(i.e., Hopper, Half-cheetah, Ant, Crippled Half-cheetah, Crippled Half-Ant, Slim-Humanoid) and
0.5 million timesteps on CartPole and Pendulum. The trained agents are evaluated every 10,000
timesteps over 5 random seeds. We use a discount factor γ = 0.99, a generalized advantage estimator
[10] parameter λ = 0.95 and an entropy bonus of 0.01 for exploration. In every iteration, the agent
rollouts 200 timesteps in the environments with the learned policy, and then it will be trained for 8
epochs with 4 mini-batches. The Adam optimizer is used with the learning rate 5× 10−4.

D.3 Details of InfoNCE

We provide detailed pseudocode for the calculation of InfoNCE bound. Specifically, the temperature
τ is set as 0.004 to the calculation of I(ci, T ) and is set as 0.1 to calculation of I(ci, cj).

Algorithm 3 Pseudocode of InfoNCE in a PyTorch-like style.

# x_q input vector
# x_k positive sample
# x_que negative samples
# f_q, f_k, f_que: encoder networks for query, key and queue
# m: momentum
# t: temperature

def InfoNCE(x_q,x_k,x_que):
q = f_q.forward(x_q) # queries: NxC
k = f_k.forward(x_k) # keys: NxC
k = k.detach() # no gradient to keys
queue = f_que.forward(x_que) # keys: Cx(K-1)

# positive logits: Nx1
l_pos = bmm(q.view(N,1,C), k.view(N,C,1))

# negative logits: Nx(K-1)
l_neg = mm(q.view(N,C), queue.view(C,K-1))

# logits: NxK
logits = cat([l_pos, l_neg], dim=1)

# contrastive loss, Eqn.(1)
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyLoss(logits/t, labels)

D.4 Details of the adaptive planning used in adaption process

The prediction model has 3 output head head0, head1, head2 which are used for selecting actions
by planning. The adaptive planning method selects the most accurate prediction head over a recent
experience. Given N past transitions, we select the prediction head h∗ by

argmin
head∈[Head]

t−2∑
i=t−N

ℓ (si+1, f (si+1 | si, ai, (c0λ , . . . , cNλ) ;ϕ, head))

where ℓ is the mean square error function. All the hyper-parameter is set as same as T-MCL[11].

E Additional Results

E.1 Prediction Error

As shown in Figure 1, DOMINO has a smaller prediction error compared to T-MCL and its ablation
version MINO (optimize MI with entangled context), indicating that the learned context can effectively
help predict the future state more accurately, which is the key to the performance of the model-based
planning.
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Figure 1: Comparison with the model-based methods of the Prediction Error. The results show the
mean and standard deviation of average returns averaged over 8 runs.
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Figure 2: Generalization performance comparison between DOMINO, RIA and TMCL over 5 runs
(DOMINO and T-MCL are with adaptive planning).

E.2 More results on the comparison with RIA

We provide the comparison between the DOMINO without adaptive planning and RIA in the main
paper. Here, we compare DOMINO and T-MCL with adaptive planning with RIA under multi-
confounded setting, the environments including Hopper-m-d, Halfcheetah-m-d, Slim-humanoid-m-d
and Pendulum-m-l. As shown in Figure 2, DOMINO also achieves better generalization performance
than RIA and the TMCL with adaptive planning.

E.3 Sensitivity Analysis of the hyper-parameter N

We compare the performance of DOMINO with different hyper-parameter N , which is equal or not
equal to the number of confounders in the environment. In this experiment, the confounder is the
damping, mass, and a crippled leg (number of confounders is 3), and we compare the performance
of DOMINO with different hyper-parameter N = 1, 2, 3, 4. As shown in Figure 3, even though the
hyper-parameter N is not equal to the ground truth value of the confounder number, DOMINO also
benefits the context learning compared to the baselines like TMCL.
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(a) Performance evaluation in seen environ-
ments

(b) Performance evaluation in unseen environ-
ments

Figure 3: The ablation of different N in Crippled-Ant-m-d domain(contains 3 confounders).

(a) Visualization of Context0 (b) Visualization of Context1

Figure 4: Visualization of disentangled context in with same damping scale d = 1.25 and different
mass scale m = 1.5,m = 0.5.

F Visualization

F.1 Verifying whether the contexts is disentangled

We add an additional experiment to show that the context vectors inferred by DOMINO are dis-
entangled well. We vary only one of the confounders and observe the changes of N disentangled
vectors. In this experiment, we set up two different confounders: mass m and damping d. Under
the DOMINO framework, the context encoder inferred two disentangled context vectors: context 0
and context 1. As shown in Figure 5 and Figure 4, the context 1 is more related to damping. When
the confounders are set as the same mass but different damping, the visualization result of context
1 under different settings are separated clearly from each other, while under the same damping but
different mass settings, the visualization result of context 1 is much more blurred from each other.
Similarly, context 0 is more related to mass. When the confounders are set to the same damping
but different mass, the visualization result of context 0 under different settings is separated clearly
from each other, while under the same mass but different damping settings, the visualization result of
context 0 is less different from each other.

F.2 Visualization of the whole context

Visualization. We visualize the whole context which is a the concatenation of the disentangled
contexts learned by DOMINO via t-SNE [12] and compare it with the entangled context learned
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(a) Visualization of Context0 (b) Visualization of Context1

Figure 5: Visualization of disentangled context in with same mass scale m = 1.25 and different
damping scale d = 1.0, d = 1.5.

by T-MCL. We run the learned policies under 5 randomly sampled setups of multiple confounders
and collect 200 trajectories for each setting. Further, we encode the collected trajectories into
context in embedding space and visualize via t-SNE [12] and PCA [13]. As shown in Figure 6 and
Figure 7, we find that the disentangled context vectors encoded from trajectories collected under
different confounder settings could be more clearly distinguished in the embedding space than the
entangled context learned by T-MCL. This indicates that DOMINO extracts high-quality task-specific
information from the environment compared with T-MCL. Accordingly, the policy conditioned on
the disentangled context is more likely to get a higher expected return on dynamics generalization
tasks, which is consistent with our prior empirical findings.
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Figure 6: t-SNE [12] visualization of context vectors extracted from trajectories collected in various
environments. Embedded points from environments with the same confounders have the same color.
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Figure 7: PCA [12] visualization of context vectors extracted from trajectories collected in various
environments. Embedded points from environments with the same confounders have the same color.
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G Further discussion about the future works

G.1 Expand DOMINO into reward generalization

The reward generalization can be categorized as a kind of task generalization. The parameter of the
reward function, for example, the target speed of the robot, can also be considered as a confounder
that influences the reward transition. To address this problem under the DOMINO framework, we
provide the following solution. The context encoder maps the current sequence of state-action-reward
pairs {sτ , aτ , rτ}tt−H into disentangled contexts, which contains the information of the physical
confounders like mass and damping and the reward confounder. The historical trajectory also should
consider the reward part, i.e., st, at, rt, st+1. Then the proposed decomposed mutual information
optimization method can also be used in this situation to extract effective context. Moreover, the
prediction loss should also add the reward prediction term. Thus, with the above design, DOMINO
can address the reward generalization and dynamics generalization simultaneously.

G.2 Expand DOMINO to support related confounders

To further support the complex environment with confounders related to each other, we can explore
how to extract the information that is most useful for state transfer from each of the confounders
separately when they do have some correlation with each other. One possible option is to adjust the
penalty factor for mutual information between the context vectors in DOMINO, which can be set to
be dynamically adjustable.

G.3 Combined with VariBad and RIA

VariBad [14] introduces the VAE method and recurrent network to learn the context, which optimizes
the context learning from different perspectives from DOMINO and TMCL methods. We believe the
effective combination of DOMINO and Varibad will become a more powerful baseline for meta-RL.
RIA[15] doesn’t need to record if the two trajectories are collected in the same episode, since the
relational intervention approach could optimize the mutual information without environment labels
and even without the environment ID, which provides a promising direction of unsupervised dynamics
generalization. We believe that DOMINO and RIA are not in competition, on the contrary, their
effective combination will become a stronger baseline, for example, the decomposed MI optimization
can be expanded into the relational intervention approach proposed in RIA.
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