
A Proofs of Main Results

A.1 Proof of Proposition 1
Proposition 1 (rare d-separation). Suppose variables follow random measurement error model
defined in Equation (1). For disjoint sets of observed variables Z,Y,S and their respective latent
ones Z̃, Ỹ, S̃, d-separation Z ⊥⊥dY|S holds, only when marginally Z̃ ⊥⊥dỸ, and Z̃ ⊥⊥dỸ|S̃ hold.

Proof of Proposition 1. The whole graph we consider is the graph G̃ among latent variables X̃ and
measurement edges X̃i → Xi. Consider observed variables Xi, Xj and subset S. Denote by “des”
the descendants of some vertices on graph. By definition of d-separation, if Xi ⊥⊥dXj |S, then for
every undirected path p linking Xi and Xj (if there is any), p is blocked by S, i.e., either 1) there
exists a collider W , s.t. W ̸∈ Z and des(W )∩S = ∅, or 2) there exists a non-collider W s.t. W ∈ S.
Since observed variables are all leaf nodes of their respective latent nodes, for every undirected
path p linking Xi and Xj , p must be in form of Xi − X̃i − · · · − X̃j − Xj . Hence, W must be
in latent nodes, and only case 1) is possible, which means that there exists a collider on every p
linking Xi and Xj , and thus Xi and Xj is also d-separated by ∅ (conclusion 1). Specifically on
case 1), W ̸∈ S is obvious (since W ∈ X̃ and S ∈ X). And, by des(W ) ∩ S = ∅, we have W ̸∈ S̃

and des(W ) ∩ S̃ = ∅ (easy to show since S ⊆ des(S̃)), and thus among latent nodes, there is
X̃i ⊥⊥dX̃j |S̃ (conclusion 2). Combining conclusion 1 and 2, let S := ∅, we further have marginally
X̃i ⊥⊥dX̃j holds.

Remark 1. Roughly speaking, the d-separation patterns among X̃ usually do not hold among X
(except for rare marginal ones), since the observed variables are all leaf nodes, which are not causes
of any other (though the latent variables they intend to measure might be). By a similar proof
procedure, we shall have a full version of Proposition 1: for observed variables Xi, Xj and subset S,

1. If Xi ⊥⊥dXj |S, then among latent variables, marginally X̃i ⊥⊥dX̃j , and X̃i ⊥⊥dX̃j |S̃ holds.
2. If Xi ̸⊥⊥dXj |S, which means that there exists a path p from Xi to Xj unblocked by Z. And,

a) If on p there is a non-collider W ∈ S̃, then X̃i ⊥⊥dX̃j |S̃;
b) Otherwise (on p there is no non-collider W ∈ S̃), X̃i ̸⊥⊥dX̃j |S̃.

A.2 Proof of Theorem 1
Theorem 1 (Characterization of ΩZ;Y). For two variables subsets Z and Y, ΩZ;Y satisfies:

ΩZ;Y = null(B⊺
Y,nzcol(BZ,:)

). (4)

where null(·) denotes nullspace. BY,nzcol(BZ,:) denotes the submatrix of mixing matrix B, with rows
indexed by Y and columns indexed by nzcol(BZ,:). nzcol(BZ,:) denotes the column indices where
the submatrix BZ,: has non-zero entries. nzcol(BZ,:) actually corresponds to the exogenous noises
that constitute Z. Particularly, if assuming “if i⇝ j then Bj,i ̸= 0”, then, nzcol(BZ,:) = Anc(Z).

Proof of Theorem 1. We write variables in terms of linear combination of exogenous noises,
X = BE. For variables set Z = BZ,:E = BZ,nzcol(BZ,:)Enzcol(BZ,:), where nzcol(BZ,:)
denotes the column indices where the submatrix BZ,: has non-zero entries, i.e., Z contains
and only contains noise terms Enzcol(BZ,:). For a vector ω ∈ R|Y|, ω⊺Y = ω⊺BY,:E =
ω⊺BY,nzcol(BZ,:)Enzcol(BZ,:) + ω⊺BY,∼nzcol(BZ,:)E∼nzcol(BZ,:) (“∼” denotes complement set). By
the Darmois–Skitovich theorem [21], ω⊺Y ⊥⊥ Z if and only if ω⊺Y shares no common non-Gaussian
noise terms with Z, i.e., ω⊺BY,nzcol(BZ,:) = 0. Moreover, if assuming “if i⇝ j then Bj,i ̸= 0” (a
weaker faithfulness assumption, see Appendix F.1), then, nzcol(BZ,:) = Anc(Z), i.e., variables set
Z contains and only contains exogenous noises w.r.t. its ancestors set.

A.3 Proof of Theorem 2
Theorem 2 (Graphical criteria of ΩZ;Y). Let Z,Y be two subsets of variables (vertices), we have:

|Y| − dim(ΩZ;Y) = min{|S| | S is a vertex cut fromAnc(Z) to Y}. (7)

where dim(ΩZ;Y) denotes the dimension of the subspace ΩZ;Y, i.e., the degree of freedom of ω.
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To prove Theorem 2 we mainly use the Lindström-Gessel-Viennot theorem [25, 13] in algebraic
combinatorics, which gives a combinatorial interpretation of the determinants of certain matrices:
Theorem 6 (Lindström-Gessel-Viennot theorem [25, 13]). Let G be a directed acyclic graph with
vertex set [n]. Each directed edge i → j is assigned with a weight e(i, j). For each directed path
P from vertices i to j, let wt(P ) := Πm→l∈P e(m, l), the product of the weights of the edges of the
path. For any two vertices i, j, denote P(i, j) the set of all directed paths from i to j. Write an
n× n matrix M , with entries defined as Mi,j =

∑
P∈P(i,j) wt(P ), the sum of path weights over all

paths from i to j. For two subsets S, T ⊆ [n] with |S| = |T | = k (letters “S” means source and “T”
means sink), we have:

det(MS,T ) =
∑

P=(P1,...,Pk) : S→T

sign(σ(P))

k∏
i=1

wt(Pi). (A.1)

where the sum is taken over all k-tuples P = (P1, . . . , Pk) of non-intersecting paths from S to T ,
and σ(P) is the sign of the corresponding permutation of elements in P. “non-intersecting” means
that for any two paths Pi, Pj ∈ P with i ̸= j, Pi and Pj have no two vertices in common (not even
endpoints). In particular, det(MS,T ) = 0 if and only if there exists no such k-tuple non-intersecting
paths, i.e., for every system of k paths from S to T , there exists two paths that share a vertex.

Based on Theorem 6, we can readily give proof to Theorem 2. Note that in our setting where
X = AX+E = BE with B = (I−A)−1, we know that Aj,i is the e(i, j) above, and B is exactly
M⊺, with Bj,i =

∑
P∈P(i,j)

∏
k→l∈P Al,k, the total causal effect from i to j.

Proof of Theorem 2. From Theorem 1 and Assumption 1 and the rank-nullity theorem, |Y| −
dim(ΩZ;Y) is equal to rank(BY,Anc(Z)). By the max-flow min-cut theorem (vertex version, known
as Menger’s theorem) [9, 3, 26], the maximum amount of non-intersecting paths from source to sink
is equal to the size of the minimum vertex cut from source to sink. Hence, if the minimum vertex
cut from Anc(Z) to Y is of size k, then there exists a k-tuples of non-intersecting paths from some
subset of Anc(Z) to some subset of Y, and this is the largest possible non-intersecting paths system
from Anc(Z) to Y. By Theorem 6 and Assumption 1 (no parameter coupling to make coincidental
low rank), this means that all (k + 1)× (k + 1) minors of BY,Anc(Z) is zero and at least one k × k
minor of BY,Anc(Z) is non-zero. Hence rank(BY,Anc(Z)) = k.

Interestingly, we find that our defined vertex cut has connection with trek-separation [47], i.e. “S
is a vertex cut from Anc(Z) to Y” is equivalent to “(∅,S) t-separates (Z,Y)” (see Appendix C).
Trek-separation theorem states that:
Theorem 7 (Trek-separation for directed graphical models, Theorem 2.8 in [47]). For two vertices
sets W,Y, the variance-covariance matrix cov(W,Y) has rank less than or or equal to k for all
covariance matrices consistent with the graph G if and only if there exists subsets SW,SY ⊆ V (G)
with |SW|+ |SY| ≤ k such that (SW,SY) t-separates (W,Y). Consequently,

rank(cov(W,Y)) ≤ min{|SW|+ |SY| | (SW,SY) t-separates (W,Y)} (A.2)

and equality holds for generic covariance matrices (i.e., no coincidental low rank in variance-
covariance matrix) consistent with G.

We now show that Theorem 2 can also be proved by trek-separation theorem:

Proof of Theorem 2 (another version). From Theorem 1 and Assumption 1 and the rank-nullity the-
orem, |Y| − dim(ΩZ;Y) is equal to rank(BY,Anc(Z)). Then, what is rank(BY,Anc(Z))? Let us
consider two variables sets Anc(Z) and Y and their respective variance-covariance matrix. We write
Anc(Z) as mixed noise components Anc(Z) = BAnc(Z),Anc(Z)EAnc(Z), where BAnc(Z),Anc(Z) is
a square matrix which can be simultaneously permuted to lower triangular with diagonals one,
and thus is full rank. Then write Y = BY,:E = BY,Anc(Z)EAnc(Z) + BY,∼Anc(Z)E∼Anc(Z),
where the second part are Y’s noise components that is not shared in Anc(Z), so is indepen-
dent to Anc(Z) and can be dropped in calculating covariance. From above, cov(Anc(Z),Y) =
BAnc(Z),Anc(Z)Φ(EAnc(Z))B

⊺
Y,Anc(Z), where Φ(EAnc(Z)) is a diagonal matrix with diagonal entries

being variance of exogenous noise terms in EAnc(Z). Since both BAnc(Z),Anc(Z) and Φ(EAnc(Z))
are full rank square matrices, rank(BY,Anc(Z)) is equal to rank(cov(Anc(Z),Y)).
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According to Theorem 7 and Assumption 1, rank(cov(W,Y)) is equal to min{|SW| + |SY||
(SW,SY) t-separates (W,Y)}. Further we obtain a lemma: if W = Anc(W), i.e., ancestors are
self-contained in W, then rank(cov(W,Y)) = min{|S| | (∅,S) t-separates (W,Y)}. This can be
proved by that, for self-contained W, for any (SW,SY) that t-separates (W,Y), (∅,SW ∪ SY)
also t-separates (W,Y). Another lemma is that, (∅,S) t-separates (Anc(Z),Y) if and only if (∅,S)
t-separates (Z,Y) (see Appendix C).

With lemmas above, we immediately have that rank(BY,Anc(Z)) is equal to the size of the minimum
vertices set S s.t. (∅,S) t-separates (Z,Y), i.e., the size of the minimum vertex cut from Anc(Z) to
Y.

A.4 Proof of Theorem 3
Theorem 3 (Equivalence of TIN over latent and observed variables). For two disjoint observed
variables subsets Z,Y, and their respective underlying latent variables subsets Z̃, Ỹ,

TIN(Z,Y) = TIN(Z̃, Ỹ). (10)

Proof of Theorem 3. Theorem 3 can either be proved by the graphical criteria (where observed
variables are all leaf nodes), or by mathematically showing how rank of submatrices of B preserves
among latent and observed variables. Consider the latent X̃ in LiNGAM:

X̃ = ÃX̃+ Ẽ; X̃ = B̃Ẽ; variance-covariance matrix Σ̃ = B̃ΦẼB̃
⊺ (A.3)

when Xi = X̃i + Ei, write latent and observed variables together, we have:[
X̃

X

]
= A

′
·

[
X̃

X

]
+

[
Ẽ

E

]
, where A

′
=

[
Ã 0

I 0

]
,[

X̃

X

]
= B

′
·

[
Ẽ

E

]
, where B

′
=

[
B̃ 0

B̃ I

]
,

Σ
′
= cov

([
X̃

X

])
=

[
Σ̃ Σ̃

Σ̃ Σ̃+ΦE

]
, where ΦE = diag(var(E)).

(A.4)

More generally, when observations are measured with Xi = ciX̃i+Ei, let C = diag([c1, · · · , cn]⊺):

A
′
=

[
Ã 0

C 0

]
, B

′
=

[
B̃ 0

CB̃ I

]
, Σ

′
=

[
Σ̃ Σ̃C⊺

CΣ̃ CΣ̃C⊺ +ΦE

]
(A.5)

For two disjoint sets Z,Y, consider BY,Anc(Z), a submatrix in [CB̃ | I]. Anc(Z) = Anc(Z̃) ∪ Z,
where for the second Z parts, its indexed columns in BY,: must be all zero (since Y and Z are
disjoint indices in I), and thus can be dropped. For the first Anc(Z̃) part, BY,Anc(Z̃) is BỸ,Anc(Z̃)

with rows scaled by C, and thus the rank holds. Consequently, for two disjoint vertices sets Z,Y,
TIN(Z,Y) = TIN(Z̃, Ỹ).

A.5 Proofs of Other Results
For other lemmas and theorems in this paper: GIN, IN as special cases of TIN and Lemma 1 follows
directly from the graphical criteria in Theorem 2. Theorem 4 can be proved in a similar way as
the proof to Theorem 2, where the subsets and subdeterminants are considered. For ranks stopped
increasing in Theorem 5, please refer to Appendix E.1.

B Using GIN Condition-Based Algorithm Under 2-Measurements Model

As is illustrated in §2, when each latent variable X̃i has two pure measurements Xi1 , Xi2 (by “pure”
it means that each of Xi1 , Xi2 has only one latent parent X̃i and no observed parents), graph structure
G̃ over latent variables is fully identifiable by GIN (a simpler case). This is already a breakthrough
comparing to existed methods [42, 46, 23], which only identify a partial graph.
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Here is an illustrating example: consider a simple 2-variables example, X̃ → Ỹ , with their re-
spective measurements X1, X2 and Y1, Y2. One may check the entailed vanishing correlations:
ρX1,Y1ρX2,Y2 = ρX1,Y2ρX2,Y1 , ρX1,X2ρY1,Y2 ̸= ρX1,Y1ρX2,Y2 , and ρX1,X2ρY1,Y2 ̸= ρX1,Y2ρX2,Y1 ,
where ρ denotes correlation coefficient. These (in)equations exhibit no asymmetry between X̃ and Ỹ .
Indeed, for the inverse direction X̃ ← Ỹ , all the Tetrad constraints among X1, X2, Y1, Y2 hold the
same. Therefore, the direction between X̃ and Ỹ is unidentifiable.

However, the GIN condition can identify an asymmetry: GIN(X1, Y1,2) holds, while GIN(Y1, X1,2)
is violated, and thus the direction X̃ → Ỹ is identified. One can see this from the definition of GIN
(Definition 2).

Below we give the general algorithm of using GIN to fully identify G̃. Note that here by “GIN
condition”, it is actually a bit different from the original paper [50]: it takes into account one more
thing than the original definition: the degeneration of ω (see Appendix D for details). Here is the
procedure:

Given 2n measured variables (where n is the number of vertices in G̃), let two variables be Y and the
rest 2n− 2 variables be Z, GIN(Z,Y) if and only if these two variables are the two measurements of
a same latent variable. Following this, the 2n measured variables can first be pairwise clustered, and
labeled as {Xi1 , Xi2}i=1,··· ,n. One may also obtain this pairwise labeling by prior knowledge (e.g.,
in survey questions design, one already knows which two questions indicate a same latent factor).

Then, find the graph structure G̃ over n latent variables:

Algorithm 1 Identifying graph structure of G̃ in 2-measurements case
Input: Labeled 2n measurements X = {Xi1 , Xi2}i=1,··· ,n and corresponding data samples
Output: Graph structure of G̃
1: Initialize ordered list K := ∅, remaining indexes U := {1, · · · , n}, parents dictionary P := {};
2: Denote a half of measurements X1 = {Xi1}i=1,··· ,n;
3: while there are more than one remaining index in U do
4: Find one j ∈ U with GIN(Z,X1), where Z := {Xi2 |i ∈ K ∪ {j}}; //pick from another half
5: Append j to the end of K. Let U := U\{j};
6: end while
7: Append the only one remaining index in U to the end of K;
8: for vertex index j in causal ordering list K do
9: Let A := {i|i earlier than j in K}, Z := {Xi1 |i ∈ A}, Y := {Xi2 |i ∈ A ∪ {j}};

10: GIN(Z,Y) must hold, with solution ω. Let P [j] := {i ∈ A|ω on Xi2 is non-degenerated};
11: end for
12: Return: Graph structure G̃ where each vertex j has direct parents P [j]

Algorithm 1 follows a similar procedure as Direct-LiNGAM [40]: Lines 3-5 sorts the vertices by
causal ordering, where there is no edge from later ones to earlier ones. Then according to degeneration
graphical criteria in Appendix D, Line 10 identifies the direct parents set of each vertex from its
causally earlier vertices set.

Further consider the coefficients. Denote the linear coefficients of latent variable X̃i to two mea-
surements Xi1,2 as αi1,2 respectively. The ratio αi1/αi2 is accessible when testing GIN for pairwise
clusters. Then, in Line 10, to identify parents set for each vertex j, we find from A, the vertices
earlier than j in ordered list K. We write a scaling vector s := {αj2/αi2 |i ∈ A}, and denote the
coefficients vector from A to j as c (zero if no direct edge). Note that here ω must only have a free
degree of one (according to Theorem 2 and Appendix D.1, critical vertex cut is A). So set the value
of ω on Xj2 as −1, then the value of ω on other Xi2s is exactly the point-wise multiplication of s and
c. If we further assume that linear coefficients from latent variables to measurements are all same
(e.g., one, Xi1,2 = X̃i + Ei1,2), or equivalently, the measurement errors are uni-variance, then the
coefficients among G̃ is also fully identifiable.
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C Elaboration on Vertex Cut and Graph Definitions

We first give more detailed definitions to the concepts in §3.

Definition 9 (Directed paths). A directed path P = (i0, i1, · · · , ik) in G is a sequence of vertices of
G where there is a directed edge from ij to ij+1 for any 0 ≤ j ≤ k − 1. We use notation i⇝ j to
show that there exists a directed path from vertex i to j.

Remark 2. Note that a single vertex is also a directed path, i.e., i⇝ i holds true.

Definition 10 (Directed paths without passing through S). Let S be a subset of vertices. We use
notation i⇝��[S]

j to show that there exists a directed path from vertex i to j without passing through
S, i.e., there exists a directed path P = (i,m0, · · · ,mk, j) in G s.t. i, j ̸∈ S and ml ̸∈ S for any
0 ≤ l ≤ k.

Remark 3. Note that when S is empty, i⇝ j is equivalent to i⇝��[S]
j.

Definition 11 (Ancestors). Let W be a subset of vertices. Ancestors Anc(W) := {j|∃i ∈W, j ⇝
i}.
Remark 4. Note that W ⊆ Anc(W). Under faithfulness assumption (no parameter coupling),
Anc(W) means all noise components that W carries, i.e., writing the corresponding variables set
{Xi|i ∈W} as linear combination of noises, it contains and only contains exogenous noises from
{Ei|i ∈ Anc(W)}.
Definition 12 (Ancestors outside S). Let W,S be two subsets of vertices. We denote ancestors of W
that has directed paths into W without passing through S as Ancout(S)(W) := {j|∃i ∈W, j ⇝��[S]

i}.
Remark 5. According to definitions above,

1. Ancout(∅)(W) = Anc(W). Ancout(W)(W) = ∅.
2. S ∩Ancout(S)(W) = ∅. W\S ⊆ Ancout(S)(W).
3. For overlapped S,W, Ancout(S)(W) = Ancout(S)(W\S).
4. Roughly speaking, Ancout(S)(W) means all noise components that can contribute to W

without passing S. With slight notation abuse, we can write variables W as W = AS+EW,
where AS is a linear transformation to S, and EW is a linear transformation to exogenous
noises set that contains and only contains {Ei|i ∈ Ancout(S)(W)}.

Definition 13 (Existence of causal effect from W1 to W2). Let W1,W2 be two subsets of vertices.
We say there exists causal effect from W1 to W2 if and only if there exists a directed path i ⇝ j
with i ∈W1 and j ∈W2.

Remark 6. According to definitions above,
1. Note that if W1 and W2 are not disjoint, then there must exist causal effect from W1 to

W2.
2. An equivalent definition is that, Anc(W2) ∩W1 ̸= ∅.

Definition 14 (Existence of causal effect from W1 to W2 without passing through S). Let
W1,W2,S be three subsets of vertices. We say there exists causal effect from W1 to W2 without
passing through S if and only if there exists a directed no-passing path i ⇝��[S]

j with i ∈ W1 and
j ∈W2.

Remark 7. According to definitions above,
1. An equivalent definition is that, Ancout(S)(W2) ∩W1 ̸= ∅.
2. There exists no causal effect from S to W1 without passing S, i.e., S∩Ancout(S)(W) = ∅.
3. This definition shows whether S chokes all directed paths from W1 to W2.
4. By Definition 4, the following statements are equivalent: 1) there exists no causal effect

from W1 to W2 without passing through S; 2) S is a vertex cut from W1 to W2; 3)
∀i ∈W1, j ∈W2, i ⇝��

[S]
j does not hold; 4) Ancout(S)(W2) ∩W1 = ∅; 5) S’s removal

from G ensures there is no directed paths from W1\S to W2\S.

Now we have complete our graphical definitions. Let us also review trek-separation [47].

Definition 15 (Trek). A trek in G from i to j is an ordered pair of directed paths (P1, P2) where P1

has sink i, P2 has sink j, and both P1 and P2 have the same source k. Note that one or both of P1

and P2 may consist of a single vertex, e.g., ((i), (i)) is a trek from vertex i to i.
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Definition 16 (t-separation). Let W,Y,SW,SY be four subsets of V (G) which need not be disjoint.
We say that the pair (SW,SY) trek separates (or t-separates) W from Y if for every trek (P1, P2)
from a vertex in W to a vertex in Y, either P1 contains a vertex in SW or P2 contains a vertex in
SY.

The above two definitions are directly from [47]. By the “ancestors” related definitions introduced
above and in §3, we can immediately get an equivalent restatement of t-separation as:

Theorem 8 (Restatement of t-separation). Let W,Y,SW,SY be four subsets of V (G) which need
not be disjoint. The pair (SW,SY) t-separates W from Y, if and only if there exists no causal effect
from Ancout(SW)(W) to Y without passing passing SY (see Definition 14).

Note that the above graph condition also has an equivalent restatement:

· · · if and only if there exists no causal effect from Ancout(SY)(Y) to W without passing passing
SW.

Both mean that Ancout(SW)(W) ∩ Ancout(SY)(Y) = ∅, i.e., if some noise components can flow
into W without passing SW, then it cannot also flow into Y without passing SY, or vice versa.

Remark 8. Further, by definitions above and the rank constraints (in trek-separation theorem Theo-
rem 7), we have the followings:

1. rank(cov(W,Y)) ≥ |W ∩ Y|, since we must have W ∩ Y ⊆ SW ∪ SY if (SW,SY)
t-separates W from Y, otherwise some unblocked vertex is in Ancout(SW)(W) ∩
Ancout(SY)(Y).

2. rank(cov(W,Y)) ≤ min(|W|, |Y|), since (W,∅) and (∅,Y) always t-separates W
from Y, i.e., Ancout(W)(W) = ∅ or Ancout(Y)(Y) = ∅.

3. rank(cov(W,Y)) ≤ |Anc(W) ∩ Anc(Y)|, since (Anc(W) ∩ Anc(Y),∅) and
(∅,Anc(W) ∩Anc(Y)) always t-separates W from Y.

4. The pair (SW,SY) t-separates W from Y, if and only if the pair (SY,SW) t-separates Y
from W.

From above we have seen the interpretation of t-separation from the “ancestors” language set. Then
combining Definition 4 and Theorem 8, we know that the following statements are equivalent: 1) S is
a vertex cut from Anc(Z) to Y; 2) (∅,S) t-separates (Z,Y); 3) There exists no causal effect from
Anc(Z) to Y without passing through S; 4) There exists no causal effect from Ancout(S)(Y) to Z.

D More Properties of TIN Condition

D.1 Critical Vertex Cut
From the above §3 and Appendix C graphical criteria, we know that TIN(Z,Y) is equal to the size
of the minimum vertex cut from Anc(Z) to Y.

Remark 9. Following Definition 4, we first elaborate more on vertex cut:
1. For any Z,Y, any superset of Y (including Y) is a vertex cut from Anc(Z) to Y.
2. For any Z,Y, any superset of Anc(Z) (including Anc(Z)) is a vertex cut from Anc(Z) to

Y.
3. For any vertex cut from Anc(Z) to Y, Anc(Z) ∩Y ⊆ S (to choke single vertex paths).
4. Following point 3, for overlapped Z,Y in testing TIN condition, any vertex cut S must

contains (at least) Z ∩Y (the observed/testable intersection) as its subset.
5. Following point 4, if Y ⊆ Z, then there exists no non-zero ω s.t. ω⊺Y ⊥⊥ Z.
6. Note that though expressed as “S is a vertex cut from Anc(Z) to Y”, it never implicitly

implies a causal ordering of Z → S → Y. E.g., in graph D ← A → C ← B, consider
TIN(Z = {A},Y = {B,C}) = 1 where the minimum vertex cut is S = {C}, not causally
earlier than Y; TIN(Z = {B,C},Y = {A,D}) = 1 with the minimum vertex cut
S = {A}, but Z is neither causally earlier than Y nor than S.

7. Following point 6, roughly speaking, TIN tells size of the minimum vertex cut, but not
exactly the causal ordering. For the existence of non-zero ω s.t. ω⊺Y ⊥⊥ Z, there can be
some vertices in Y that are in or causally earlier than Z, i.e. Anc(Z) ∩Y ̸= ∅ - as long
as there are not “too many” (less than the cardinality of possible S).
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8. Note that the minimum vertex cut may not be unique. E.g., 1) Consider example in point 6,
both S = {C} and S = {A} are minimum vertex cuts in TIN(Z = {A},Y = {B,C}) = 1.
2) Consider a chain structure with TIN(Z = {X1},Y = {X2, · · · , Xn}) = 1, both
S = {X1} and S = {X2} are minimum vertex cuts.

Following point 6 of Remark 9, since the minimum vertex cut from Anc(Z) to Y may not be unique
in a TIN(Z,Y), to better use the graphical criteria, now we define the critical vertex cut:

Definition 17 (Critical vertex cut). Denote S(Z,Y) the collection of all sets S ⊆ V (G) s.t. S is a
minimum vertex cut from Anc(Z) to Y (“minimum” means that |S| = TIN(Z,Y)). For a vertex
cut S ∈ S(Z,Y), we say S is critical if and only if there exists no causal effect from all (other)
minimum vertex cuts to Y without passing through S, i.e. Ancout(S)(Y) ∩Anc(

⋃
S(Z,Y)) = ∅.

Remark 10. Roughly speaking, when there are multiple minimum vertex cuts, i.e., these multiple sets
can all cut from Anc(Z) to Y, then a critical one means a “last” one (furthest from Z, deepest to
Y): it not only cuts Anc(Z) to Y, but also cuts all other vertex cuts to Y. E.g., consider examples in
point 8 of Remark 9, 1) {C} is critical while {A} is not, because {C} can cut {A} to {B,C}, but
{A} cannot cut {C} to {B,C}. 2) {X2} is critical while {X1} is not.

Theorem 9 (Uniqueness of critical gin-separation set). For two vertices sets Z and Y and their
respective TIN(Z,Y), there exists one and only one corresponding critical vertex cut, denoted as
S∗
Z,Y.

D.2 Noise Components of Linear Transformation ω⊺Y

From above Appendix D.1 we defined the critical vertex cut S∗
Z,Y behind a TIN(Z,Y), with special

property on it. Now we analyze the linear transformation ω⊺Y:

Theorem 10 (Noise components of linear transformation ω⊺Y). For two vertices sets Z and Y and
their respective TIN(Z,Y), for generic choice of ω (i.e., no coincidental noise cancelling by ω), the
corresponding linear transformation ω⊺Y contains and only contains exogenous noises introduced
by vertices that has directed paths to Y without passing through the critical vertex cut S∗

Z,Y, i.e.,
E(ω⊺Y) = {Ei|i ∈ Ancout(S∗

Z,Y)(Y)}, where E(·) denotes the exogenous noises components set
that a variable · is constituted of, and Ei is the exogenous noise from vertex i.

Remark 11. A vertex cut S from Anc(Z) to Y yields that all noise components that Z carries (i.e.,
Anc(Z)) cannot flow into (causal affects / contribute to) Y without passing through S, then Y can
be written as Y = LS + E′

Y, where L denotes a linear transformation, and E′
Y denotes noise

components that can contribute to Y without passing through S (i.e., Ancout(S)(Y)) - so E′
Y ⊥⊥ Z,

but not necessarily E′
Y ⊥⊥ S.

Also, we define ΩZ;Y as {ω| ω⊺Y ⊥⊥ Z}, while actually for such ω, ω⊺Y is independent to more
variables:

Theorem 11 (Full version of ω⊺Y independence). For two vertices sets Z and Y and their respective
critical vertex cut S∗

Z,Y, for any variable Xi ∈ X (i.e., respective vertex i ∈ V (G)), ω⊺Y ⊥⊥ Xi

if and only if there exists no causal effect from Ancout(S∗
Z,Y)(Y) to {i}, i.e., Ancout(S∗

Z,Y)(Y) ∩
Anc({i}) = ∅.

Remark 12. With Definition 13 and Theorem 11, we can immediately get the following:
1. ω⊺Y ⊥⊥ Z - it can be derived from Theorem 11, Definition 11 and Definition 17.
2. ω⊺Y ⊥⊥ Anc(Z) - it can be derived from Theorem 11 and Definition 17.
3. Theorem 11 is straightforward by seeing ω⊺Y as a linear transformation of its noise sources
{Ei|i ∈ Ancout(S∗

Z,Y)(Y)}. Then any variable is independent to ω⊺Y if and only if it does
not carry noise from these sources (i.e., vertex has no ancestors in Ancout(S∗

Z,Y)(Y)), by
the Darmois–Skitovich theorem. With Theorem 11, after testing on TIN(Z,Y), one can do
more independence test over other variables (as long as they are observed/testable), and
may get more information about the whole graph structure and the location of critical vertex
cut.

Further, we notice that in the independent linear transformation subspace ΩZ;Y, some indices of
ω may be degenerated (i.e., fixed to zero). Consider following examples for an intuition: 1) On
a chain structure Figure 2a with TIN({X2}, {X1, X3, X4, · · · , Xn}) = 2, ω index on X1 must
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be zero (not include X1 in linear transformation) to make ω⊺Y ⊥⊥ Z, while in a fully connected
DAG Figure 2c with also TIN({X2}, {X1, X3, X4, · · · , Xn}) = 2, ω is not degenerated on any
indices. 2) On a chain structure Figure 2a or a chain structure with triangular head Figure 2b,
TIN({X1, X3}, {X2, X4, X5, · · · , Xn}) = 2 holds, while ω index on X2 must be zero. 3) in Fig-
ure 2d, TIN({X1}, {X2, X5}) = 1, while actually ω is degenerated on X5 index, which means that
the linear transformation actually does not include X5 and is just trivially X2 independent of X1

(here S∗
Z,Y is just X5).

Now, we would like to first give mathematical characterization for such ω indices degeneration:
Theorem 12. Since ΩZ;Y = null(B⊺

Y,Anc(Z)), ΩZ;Y degenerates on an index y ∈ Y if and only if:
remove the corresponding y-th column in B⊺

Y,Anc(Z) to get submatrix B⊺
Y\{y},Anc(Z), the rank of

submatrix is one less than the rank of full matrix B⊺
Y,Anc(Z).

Then we give the equivalent graphical criteria for such ω indices degeneration:

We already know that the vertex cut S∗
Z,Y cuts Anc(Z) to Y. Moreover, each part of S∗

Z,Y has its
“own indispensable work” in cutting, so we first define:
Definition 18 (Local cut scope). For each vertex s ∈ S∗

Z,Y, define its local choke scope as LC(s) :=
{y ∈ Y| there exists causal effect from Anc(Z) to {y} without passing through S∗

Z,Y\{s}}. Fur-
thermore, for each subset S ⊆ S∗

Z,Y, define LC(S) := {y ∈ Y| there exists causal effect from
Anc(Z) to {y} without passing through S∗

Z,Y\S}.
Remark 13. With Definition 18 we have the following:

1. S∗
Z,Y = ∅ if and only if Z,Y are marginally independent, i.e., BY,Anc(Z) are all zero (no

shared noise components).
2. LC(s) means the part of Y that would not be cut/choked, had there been no s. In other

word, the part of Y that s has its own indispensable work.
3. LC(S) = ∪s∈SLC(s). LC(S1 ∪ S2) = LC(S1) ∪ LC(S2).
4. S ⊆ Anc(LC(S)).
5. For any subset S, |LC(S)| ≥ |S| (so |LC(s)| ≥ 1 for any vertex s).
6. For any two different vertices s1, s2, it does not necessarily yield that LC(s1)∩LC(s2) = ∅

- they may work together to cut/choke a part and either is indispensable for this part.
7. LC(S∗

Z,Y) may not be the whole Y, but a proper subset. The rest Y\LC(S∗
Z,Y) is exactly

part of Y that is marginally independent to Z (i.e., no directed paths from Anc(Z) to that
part).

Theorem 13 (Graphical criteria for degeneration). ΩZ;Y degenerates on on the indexes subset
Y ⊂ Y if and only if: there exists a subset S ⊂ S∗

Z,Y such that its local choke scope LC(S) = Y ,
and |Y | = |S| = |LC(S)|.
Remark 14. We already have Theorem 12 for math condition. And for graphical criteria Theorem 13:

1. A rough interpretation: in general we would expect a smaller S to choke a larger Y .
However, if for an S, its local choke scope Y is of the same size as S, then removing S will
only affect the same size Y (a feeling that this S is “wasted”). Then this part Y will be
degenerated.

2. From Y side, it means that this Y requires a same size of separation set S to choke (a feeling
that Y is “too expensive”).

3. TIN(Z,Y\Y ) = TIN(Z,Y) − |Y |, with critical vertex cut being S∗
Z,Y\S, and with no

degeneration.
4. Note that degeneration does not yield independence, i.e., if TIN(Z,Y) with ΩZ;Y degener-

ated on Yk, it does not necessarily yield that ω⊺Y ⊥⊥ Yk. Because ω is applied to variables,
not noise components. For example, the v-structure {A,B} → C, TIN(A,BC) = 1 with
C degenerated. But ω⊺BC, which is simply B, is not independent to variable C.

5. The inverse direction of 4. is also not sufficient: if for TIN(Z,Y) and some Yk ∈ Y,
there is also ω⊺Y ⊥⊥ Yk (ω⊺Y independent to not only to Z but also some part in Y), it
still does not necessarily yield that Yk is degenerated. E.g., in chain structure Figure 2a,
TIN({X̃1}, {X̃2, · · · , X̃n}) = 1 with ω⊺Y also independent to X̃2, but X̃2 index is not
degenerated in ΩZ;Y.

6. Note that while as a special case of point 5, in measurement error case, independence in
Y yields degeneration. Because each variable Yk ∈ Y is associated with measurement
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noise Ek which is only in Yk, not in any other variables (so cannot be cancelled). Then
to make ω⊺Y ⊥⊥ Yk, at least Ek must be removed, i.e., Yk degenerated. E.g., in chain
structure Figure 2a, TIN({X1}, {X2, · · · , Xn}) = 1 with no degeneration. So ω⊺Y is only
independent of X1, not any other in observed variables Y = {X2, · · · , Xn} - specifically,
ω⊺Y ⊥⊥ {X̃1, X̃2, X1}.

Table 2: Full version of Table 1 with more properties on TIN. Examples of TIN on different (Z,Y)
pairs over different graph structures in Figure 2.
(Z,Y) ({X1, X2}, {X3, X4, X5}) ({X1, X2}, {X4, X5}) ({X3}, {X1, X2, X4, X5}) ({X1, X4}, {X3, X4, X5})
Graph in Figure 2 (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

TIN(Z,Y) 1 1 2 1 1 1 2 1 3 2 3 1 2 2 3 2
GIN(Z,Y) TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
dim(ΩZ;Y) 2 2 1 2 1 1 0 1 1 2 1 3 1 1 0 1
rk(ΣZY) 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 2
Anc(Z) X1,2 X1,2,3 X1,2 X1,2 X1,2 X1,2,3 X1,2 X1,2 X1,2,3 X1,3 X1,2,3 X3 X1,2,3,4 X1,3,4 X1,2,3,4 X1,2,3,4

S∗
Z,Y X3 X3 X1,2 X4 X4 X4 X4,5 X4 X1,2,4 X1,3 X1,2,3 X3 X3,4 X3,4 X3,4,5 X3,4

Ao(S∗)(Y) X4,5 X4,5 X3,4,5 X3,5 X5 X5 ∅ X3,5 X5 X2,4,5 X4,5 X1,2,4,5 X5 X5 ∅ X5

E(ω⊺Y) E4,5 E4,5 E3,4,5 E3,5 E5 E5 ∅ E3,5 E5 E2,4,5 E4,5 E1,2,4,5 E5 E5 ∅ E5
ω⊺Y ⊥⊥ to X1,2,3 X1,2,3 X1,2 X1,2 X1,2,3,4 X1,2,3,4 const X1,2 X1,2,3,4 X1,3 X1,2,3 X3 X1,2,3,4 X1,2,3,4 const X1,2,3,4
ω degenerate \ \ \ \ \ \ ω4,5 \ ω1,2 \ \ \ ω3 ω3 ω3,4,5 \

Table 2 is a full version of Table 1, where we could use examples to better understand the above prop-
erties about TIN condition: e.g., different cases for GIN(Z,Y) to be violated (see rank of BY,Anc(Z)

and rank of cov(Z,Y)); noise components of ω⊺Y is exactly corresponding to Ancout(S∗
Z,Y)(Y);

the graphical criteria for some ω indices degeneration, etc.

D.3 Subsets Implications of the TIN Condition
In §5 we give Theorem 4 for estimation of ΩZ;Y, by tackling down Y to subsets:

Theorem 4 (TIN over Y subsets). For two variables sets Z,Y, TIN(Z,Y) = k (assume k > 0), iff
the following two conditions hold: 1) ∀Y′ ⊆ Y with |Y′| = k + 1 (if any), there exists non-zero ω
s.t. ω⊺Y′ ⊥⊥ Z; and 2) ∃Y′ ⊆ Y with |Y′| = k, there exists no non-zero ω s.t. ω⊺Y′ ⊥⊥ Z.

Remark 15. About how to use this “big to small” property, here are some notes:
1. Condition 1) can also be “|Y′| ≥ k + 1” (a weaker/stronger version).
2. This can be shown by that if a set S is a vertex cut from Anc(Z) to Y, then S is also a vertex

cut from any subset of Anc(Z) to any subset of Y.
3. It does not yield that all these TIN conditions on subsets Y′ has a same rank k, and even

with a same rank, not necessarily a same critical vertex cut S∗
Z,Y. E.g., consider a 3-v-

structure {A,B,C} → D, TIN(A,BCD) = 1 and S∗
Z,Y = D, while TIN(A,BC) = 0

(Y′ = BC) and S∗
Z,Y = ∅. TIN(A,ABD) = 1 with S∗

Z,Y = A, while TIN(A,BD) = 1
with S∗

Z,Y = D (though A is still a minimum vertex cut, it is not critical).
4. Any transformation vector ω ∈ ΩZ;Y′ is also in ΩZ;Y, with the other Y\Y′ indices set to

zero.
5. It does not yield that for Y′ with |Y′| ≤ k there exists no non-zero vector ω to make

ω⊺Y′ ⊥⊥ Z (so in condition 2) it is “∃Y′ ⊆ Y”).
6. Theorem 4 can help the estimation of ΩZ;Y (existence is easier to check than dimension of

all), and can also help the prunning process when we need to test over Y with size from big
to small (to find latent clusters).

Then, with a same Y but different Z, we also have the following properties:

Lemma 2 (Subset of whole independence set). For two variables sets Z and Y and their re-
spective TIN(Z,Y), denote IndZ,Y := {i|ω⊺Y ⊥⊥ Xi}. From Theorem 11 we have IndZ,Y =
{i|Ancout(S∗

Z,Y)(Y) ∩ Anc({i}) = ∅}. Then, ∀Z′ ⊆ IndZ,Y, TIN(Z′,Y) ≤ TIN(Z,Y). Specif-
ically, if Z ⊆ Z′, then TIN(Z′,Y) = TIN(Z,Y), and moreover, the independent linear transfor-
mation subspace is the same: ΩZ;Y = ΩZ′;Y, and the critical vertex cut over all such Z′ is also the
same as S∗

Z,Y.

More properties about subset implications (e.g., combination and expansion of Z and more inde-
pendent variables) can be derived from e.g., Theorem 11. Another interesting question is, except
for pruning in practical algorithms or for easier estimation, how to use these subset implication
relationships to help identify the graph structure?
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E Methods Details for Estimating ΩZ;Y

E.1 For TIN-rank: Stacked Cumulants
To estimate the subspace ΩZ;Y, we give a method named “ranks stopped increasing” in §5.3 based
on cumulants among variables. Now we give more details on this method.
Definition 19 (Cumulants [31]). Define cumulant among k variables Xi1 , . . . , Xik as:

cum (Xi1 , . . . , Xik) =
∑

(A1,...,AL)

(−1)L−1(L− 1)!E

 ∏
j∈A1

Xj

E

 ∏
j∈A2

Xj

 · · ·E
 ∏
j∈AL

Xj

 ,

(E.1)
where the sum is taken over all partitions (A1, . . . , AL) of the set {i1, . . . , ik}.
Remark 16. About cumulant defined in Definition 19:

1. Suppose variables are zero-meaned, then sum is taken over all partitions where each Ai has
size at least 2. For example, in the following:

2. cum(Xi) = 0.
3. cum(Xi1 , Xi2) = E[Xi1Xi2 ] = cov(Xi1 , Xi2).
4. cum(Xi1 , Xi2 , Xi3) = E[Xi1Xi2Xi3 ] = 3rd order moment of (Xi1 , Xi2 , Xi3).
5. cum(Xi1 , Xi2 , Xi3 , Xi4) = E[Xi1Xi2Xi3Xi4 ]− E[Xi1Xi2 ]E[Xi3Xi4 ]

− E[Xi1Xi3 ]E[Xi2Xi4 ]

− E[Xi1Xi4 ]E[Xi2Xi3 ].
6. As is shown above, the 4-th order cumulant is not equal to the 4-th order momentum. In

general, cumulant̸=momentum when order k ≥ 4. We use cumulant, for reason in point 7:
7. If variables Xi1 , . . . , Xik are mutually independent, then cum (Xi1 , . . . , Xik) = 0. Note

that it is zero cumulant, not zero momentum.
Definition 20 (Cross cumulant tensor). For a random vector X = [X1, · · · , Xm]⊺, denote its cross
cumulant tensor at order k as T (k)

X , an m× · · · ×m︸ ︷︷ ︸
k times

tensor, where each entry

T (k)
X i1,··· ,ik

:= cum(Xi1 , · · · , Xik). (E.2)

Now suppose these random variables follow a linear acyclic SEM model, with X = AX + E.
Because of acyclicity, we could also write X = BE, where B = (I −A)−1. Then we have the
following:
Theorem 14 (Cross cumulant tensor in linear acyclic SEM). k-th order cross cumulant tensor equals

T (k)
X = T (k)

E
•B • · · · •B︸ ︷︷ ︸

k times

, (E.3)

where T (k)
E is the k-th order cross cumulant tensor of E, and ‘•’ denotes the tensor dot, i.e.,

T (k)
X i1,··· ,ik =

∑
j1,··· ,jk

T (k)
E j1,··· ,jkBi1,j1 · · ·Bik,jk (E.4)

Since exogenous noises E are mutually independent, T (k)
E is a diagonal tensor. In this case, the above

equation needs not to be summed over all Cartesian product [m]k, but just over each j ∈ [m].
Remark 17. About cross cumulant tensor in Linear acyclic SEM in Theorem 14:

1. For example, in 2nd order case, T (2)
X is the cross covariance matrix Σ := cov(X,X). We

have Σ = BΦB⊺, where Φ is a diagonal matrix with entries Φi,i = var(Ei).
2. Proof to 1: for every two variables Xi, Xj , cov(Xi, Xj) =

∑
k BikBjk var(Ek).

3. Point 2 means that the covariance between Xi, Xj is contributed by all noise that is
contained in both Xi and Xj . By ‘common noise’, we mean ‘confounders’, ‘common
ancestors’, or the ‘top-node’ of each trek between (Xi, Xj) - and this is the start of the
proof to trek-separation.

4. In general, any order of the cumulant cum(Xi1 , · · · , Xik) is contributed by the ‘common
noise’ that Xi1 , · · · , Xik all share, i.e.,

⋂
l∈[k] Anc(Xil), the common ancestors.
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Since we only care the pairwise relationship between any two subsets Z,Y, we can take a 2D matrix
slice out from each order of cross cumulant tensors:
Definition 21 (2D slice of cross cumulant tensor). For a random vector X with k-th order cross
cumulant tensor T (k)

X , denote its 2D matrix slice of k-th order cross cumulant tensor as C(k), where

C(k)i,j := cum(Xi, · · · , Xi︸ ︷︷ ︸
k−1 times

, Xj) = T (k)
X i,··· ,i,j . (E.5)

Remark 18. About 2D slice of cross cumulant tensor defined in Definition 21:

1. For simplicity, here we omit the subscript X in C(k)X and just write as C(k).
2. In particular, when k = 2, C(2) is the variance covariance matrix ΣX.
3. C(k) is n× n matrix, and is not necessarily symmetric when k > 2.

Then similar to Theorem 14, we formulate 2D slice of cross cumulant tensor in linear acyclic SEM:

Theorem 15 (2D slice of cross cumulant tensor in linear acyclic SEM). C(k) equals

C(k) = Bk−1 · Φ(k)
E ·B⊺, (E.6)

where Bk−1 is the element-wise power (i.e., Bk−1 = B ◦ · · · ◦B︸ ︷︷ ︸
k−1 times

, ‘◦’ denotes element-wise product

(Hadamard product), and Φ
(k)
E is a diagonal matrix with entries Φ(k)

E i,i = cum(Ei, · · ·Ei︸ ︷︷ ︸
k times

).

Moreover, for two vertices sets Z,Y, similar to Theorem 1, we have

C(k)Z,Y = Bk−1
Z,: · Φ

(k)
E ·B⊺

Y,:

= Bk−1
Z,Anc(Z) · Φ

(k)
E ·B⊺

Y,Anc(Z),

(E.7)

where e.g., C(k)Z,Y denotes the submatrix of C(k) with rows indexed by Z and columns indexed by Y.

Proof to Theorem 15 is straightforward by plugging Definition 21 into tensor dot of Theorem 14.

Since independence yields zero cumulant, we have that for two vertices sets Z,Y and ω ∈ R|Y|, if
ω⊺Y ⊥⊥ Z, then C(k)Z,Yω = 0. In other words,

ΩZ;Y ⊆ null(C(k)Z,Y), for any k ≥ 2. (E.8)

This can be shown by two ways: one is that cum(Z, · · · ,Z, ω⊺Y) = cum(Z, · · · ,Z,Y)ω, another
is to use Equation (4) we build in Theorem 1: ω⊺Y ⊥⊥ Z⇔ B⊺

Y,Anc(Z)ω = 0.

We shall also recap the original GIN condition: first solve equation by cov(Z,Y), then check whether
any solution ω satisfies ω⊺Y ⊥⊥ Z (i.e., whether null(cov(Z,Y)) = ΩZ;Y). However, when GIN
is not satisfied (i.e., ΩZ;Y ⊊ null(cov(Z,Y))), it is not necessarily that ΩZ;Y = R0 - e.g., the rank
may just be limited by the size of Z. This is exactly the motivation why we need to further generalize
GIN to TIN: can we escape from the ‘unwanted restriction on rank’ (e.g., size of Z) and find exactly
the ΩZ;Y? Fortunately, by above implication from independence to zero cumulant, we could solve
equation not only by 2-nd order cov(Z,Y), but more (on any order) C(k)Z,Y.

Definition 22 (Stacked 2D slices of cumulants). For two vertices sets Z,Y and order k ≥ 2, define:

Ψ
(k)
Z;Y :=


C(2)Z,Y

...
C(k)Z,Y

 (E.9)

Ψ
(k)
Z;Y is a (k − 1)|Z| × |Y| matrix that vertically stacks 2D cumulants slices between Z,Y with

order from 2 to k. Since independence yields zero cumulant, similarly we have

ΩZ;Y ⊂ null(Ψ
(k)
Z;Y), for any k ≥ 2. (E.10)
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For example, a fully connected DAG with 4 variables {X1, X2, X3, X4}⊺, the edges parameters are:

A =

0 0 0 0
a 0 0 0
b d 0 0
c e f 0

 ;B =

 1 0 0 0
a 1 0 0

ad+ b d 1 0
a(df + e) + bf + c df + e f 1

 (E.11)

Denote cumulants of exogenous noises φ(k)
i := cum(Ei, · · · , Ei︸ ︷︷ ︸

k times

).

1) Let Z := {X1},Y := {X2, X3, X4}, we have:

Ψ
(2)
Z;Y =

[
aφ

(2)
1 (ad+ b)φ

(2)
1 (a(df + e) + bf + c)φ

(2)
1

]
;

Ψ
(3)
Z;Y =

[
aφ

(2)
1 (ad+ b)φ

(2)
1 (a(df + e) + bf + c)φ

(2)
1

aφ
(3)
1 (ad+ b)φ

(3)
1 (a(df + e) + bf + c)φ

(3)
1

]
; · · ·

(E.12)

The independence subspace

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null ([a ad+ b a(df + e) + bf + c]) , dimension=2. (E.13)

Observe that null(Ψ(2)
Z;Y) = ΩZ;Y, (and also = null(Ψ

(3)
Z;Y) = · · · ).

2) Let Z := {X2},Y := {X1, X3, X4}, we have:

Ψ
(2)
Z;Y =

[
aφ

(2)
1 a(ad+ b)φ

(2)
1 + dφ

(2)
2 a(a(df + e) + bf + c)φ

(2)
1 + (df + e)φ

(2)
2

]
;

Ψ
(3)
Z;Y =

[
aφ

(2)
1 a(ad+ b)φ

(2)
1 + dφ

(2)
2 a(a(df + e) + bf + c)φ

(2)
1 + (df + e)φ

(2)
2

a2φ
(3)
1 a2(ad+ b)φ

(3)
1 + dφ

(3)
2 a2(a(df + e) + bf + c)φ

(3)
1 + (df + e)φ

(3)
2

]
; · · ·

(E.14)
The independence subspace

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null

([
1 ad+ b a(df + e) + bf + c
0 d df + e

])
, dimension=1. (E.15)

Clearly null(Ψ
(2)
Z;Y) ̸= ΩZ;Y, since the rank of Ψ(2)

Z;Y is only 1. However, as long as there is no

parameter coupling in cumulants, or specifically, aφ
(3)
1

φ
(2)
1

̸= φ
(3)
2

φ
(2)
2

, then null(Ψ
(3)
Z;Y) = ΩZ;Y (with the

rank increasing to 2). We could verify the solution:

ω⊺Y =
cd− be

d
E1 +

df + e

d
((ad+ b)E1 + dE2 + E3)

− ((a(df + e) + bf + c)E1 + (df + e)E2 + fE3 + E4)

= contains only {EC , ED}, and thus ω⊺Y ⊥⊥ Z.

(E.16)

According to original GIN definition, there is only GIN({X1}, {X2, X3, X4}), and X2, X3, X4

cannot be distinguished. However here by using TIN, we could also identify X2.

3) Let Z := {X3} or {X4}, Y := X\Z, there is no non-zero ω s.t., ω⊺Y ⊥⊥ Z. Observe that:

ΩZ;Y = R0 = null(Ψ
(k)
Z;Y) = · · · = null(Ψ

(4)
Z;Y) ⊊ null(Ψ

(3)
Z;Y) ⊊ null(Ψ

(2)
Z;Y).

Above example gives us a motivation to use a sequence of stacked 2D cumulants {Ψ(i)
Z;Y}i=2,3,···.

Remark 19. About this sequence of stacked 2D cumulants, we have:

1. Ψ
(i+1)
Z;Y contains Ψ(i)

Z;Y as some-rows-indexed submatrix, so:

2. Rank does not drop, i.e., rank(Ψ(i+1)
Z;Y ) ≥ rank(Ψ

(i)
Z;Y).

3. Nullspaces null(Ψ(i+1)
Z;Y ) ⊆ null(Ψ

(i)
Z;Y).

4. Independent subspace ΩZ;Y ⊆ null(Ψ
(i)
Z;Y), for any k ≥ 2.
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5. rank(Ψ
(i)
Z;Y) ≤ |Y| − dim(ΩZ;Y), for any k ≥ 2.

Note that in above statements, no assumptions on edge parameters and noise components’ cumulants
are made, and they are purely by definition. Then, does there exist a finite integer K ∈ N+ where the
shrinking nullspaces stop hereafter at ΩZ;Y, i.e., ΩZ;Y = null(Ψ

(i)
Z;Y), for any i ≥ K? The answer

is yes, under the generic assumptions on edge parameters and noise components’ cumulants:
Assumption 2 (Generic edge parameters and noise components’ cumulants). On a LiNGAM instance
L = G(G,B,E) defined by graph structure G, edge parameters B and noise components E, assume
that for any two variables sets Z,Y and order k ≥ 2,

rank(Ψ
(k)
Z;Y;L) = max

B′,E′
{rank(Ψ(k)

Z;Y;L′) | L′ = G(G,B′,E′)}, (E.17)

where B′,E′ are traversed over the whole edge parameters and noise components space. This is
to assume that there is no coincidental low rank parameterized by the LiNGAM instance L. Note
that Assumption 2 is stronger than Assumption 1 in §3. Here Assumption 2 assumes not only generic
edge parameters, but also noise parameters.

Under Assumption 2 we have the following graphical criteria over stacked 2D cumulants:
Theorem 16. For two vertices sets Z,Y and order k ≥ 2, we define a new DAG associated
with G, denoted as Ĝ(k), which has kn vertices {1, 2, · · · , n} ∪ {1(2), 2(2), · · · , n(2)} ∪ · · · ∪
{1(k), 2(k), · · · , n(k)} with edges i→ j if i→ j is in G, {j(l) → i(l)}l=2,··· ,k if i→ j is in G, and
{i(l) → i}l=2,··· ,k for i ∈ [n]. Define a new vertices set Z′ := ∪{i(2), · · · , i(k)}i∈Z, then we have:

rank(Ψ
(k)
Z;Y) = min{|S| | S is a vertex cut from Z′ to Y on Ĝ(k)}. (E.18)

Note that the trek-separation theorem can be viewed as a special case of Theorem 16 with k = 2,
where “(SW,SY) t-separates (W,Y)” is equivalent to “S′

W ∪ SY vertex cuts W′ to Y”. The
proof to Theorem 16 also basically follow the proof to Theorem 2.8 in [47]: using the Lindström-
Gessel-Viennot theorem [25, 13], the max-flow min-cut theorem (vertex version, known as Menger’s
theorem) [9, 3, 26], and applying the Cauchy–Binet determinant expansion formula and Schur
properties repeatedly on the Hadamard products in Equation (E.6).

With the graphical criteria stated in Theorem 16 and under generic Assumption 2, we could have a
method to implement TIN by ranks of stacked cumulants in sequence:
Theorem 17 (Use ranks’ stopped increasing to implement TIN). For two variables sets Z,Y, there
must exists a finite order k ≥ 2 s.t.

rank(Ψ
(k+1)
Z;Y ) = rank(Ψ

(k)
Z;Y). (E.19)

Moreover, this one-step-stop yields an infinite-steps-stop, i.e.,

rank(Ψ
(l)
Z;Y) = rank(Ψ

(k)
Z;Y), for any l > k. (E.20)

and, this stopped-increasing rank equals exactly to TIN(Z,Y), i.e., s.t.

rank(Ψ
(k)
Z;Y) = TIN(Z,Y) = |Y| − dim(ΩZ;Y). (E.21)

The original GIN condition using only covariance matrix can be viewed as a special case, which
could be implemented as “rank(Ψ(2)

Z;Y) = rank(Ψ
(3)
Z;Y)”.

Note that independence test is not used in this method. We could also use independence tests to test
whether null(Ψ(k)

Z;Y) is equal to ΩZ;Y, just like the 2-steps method in §5.4. Independence yields zero
cumulants, and also yields independence among functions of variables. Hence in term of solving
equations system, null(Ψ(k)

Z;Y) and cov(f(Z),Y)ω = 0 are both correct. However, the latter does
not have additional graphical criteria as Theorem 16. Empirically, the latter performs better, since
higher order cumulants yield higher order exponential, which is sensitive to outliers.

E.2 For TIN-2steps, TIN-subsets, and TIN-ISA

Implementation details for these three methods can be referred in Appendix G.1. Specifically,
TIN-ISA directly follows the Independent Subspace Analysis (ISA) from the original paper [48].
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F Discussions

F.1 Details on Assumptions
In this paper, except for the LiNGAM assumption for the causal model, we also give Assumption 1
in §3:

Assumption 1 (Rank faithfulness). Denote by B(G) the parameter space of mixing matrix B
consistent with the DAG G. For any two subsets of variables Z,Y ⊆ X, we assume that

rank(BY,Anc(Z)) = max
B′∈B(G)

rank(B′
Y,Anc(Z)). (6)

Roughly speaking, Assumption 1 assumes there are no edge parameter couplings to produce coinci-
dental low rank. Note that violation of Assumption 1 is of Lebesgue measure 0, and LiNGAM is
testable. Here we discuss more details on Assumption 1 by two examples of violation:

X1 X2 X3
a b

c (F.1)

Violation example 1: Consider the graph in Equation (F.1), if coincidentally the edge weights c =
−ab, then the noise components E1 will be cancelled from X3, and marginally X1 ⊥⊥ X3. In this
violation, graphically Anc(X3) = {X1, X2, X3}, but the column indices of BX3,: with non-zero
entries is just {X2, X3}.

X1

X2

X3 X4

a b

c d

e ; A =

0 0 0 0
0 0 0 0
c a 0 0
d b e 0

 ; B =

 1 0 0 0
0 1 0 0
c a 1 0

ce+ d ae+ b e 1

 (F.2)

Violation example 2: Consider the graph in Equation (F.2). Let Z := {X1, X2} and Y := {X3, X4},
by the graphical criteria we have TIN(Z,Y) = 2, with the critical vertex cut S∗

Z;Y = {X3, X4}.

Mathematically, BY;nzcol(BZ,:) =

[
c a

ce+ d ae+ b

]
, which has rank 2 under generic parameters

choice. However, if bc = ad, then coincidentally the rank will drop to 1, and thus Assumption 1 is
violated. Note that in this violation example, there is no noise cancelling (like violation example 1),
i.e., here nzcol(BZ,: is exactly Anc(Z), but there is still coincidental low rank by parameter coupling.

Now we further discuss an example where Assumption 1 is satisfied (and thus is a valid case in this
paper), but is not a valid case in the trek-separation paper [47] or the GIN paper [50]:

X1

X2

X3 X4

1

2

−1

1

; A =

0 0 0 0
1 0 0 0
2 −1 0 0
0 0 1 0

 ; B =

1 0 0 0
1 1 0 0
1 −1 1 0
1 −1 1 1

 (F.3)

Satisfaction example 3: Consider the graph in Equation (F.2). For every pair of Z,Y, there is no
coincidental low rank in BY,Anc(Z). Hence, Assumption 1 is satisfied. E.g., let Z := {X2},Y :=
{X3, X4}, by the graphical criteria TIN(Z,Y) = 1 (with S∗

Z;Y = {X3}), and BY,Anc(Z) is also
of rank 1. However, if we carefully choose noise components’ parameters so that the variance of
exogenous noise E1 and E2 are equal (var(E1) = var(E2)), then the variance-covariance matrix
cov({X2}, {X3, X4}) would be [0 0] (coincidentally dropped to rank 1). This coincidental low
rank is due to noise parameters, and will not affect our proposed method in this paper, because we
directly find ΩZ;Y. However, e.g., in GIN where ω is characterized by 2nd-order variance-covariance
matrix, by solving equation here, any w ∈ R2 is a solution. Then, not every linear combination of
X3 and X4 is independent to X2, so GIN will output ‘GIN(Z,Y) violated’ in this case, though
according to the graphical criteria, GIN(Z,Y) is satisfied here.
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F.2 More than Ordered Group Decomposition can be Identified
In this paper, we use the TIN condition to identify the ordered group decomposition of G̃ in the
measurement error model. Specifically, we only use a special type of TIN, one-and-others (Lemma 1).
However, actually by using the TIN condition over more general pairs of Z,Y, more information of
G̃ can be identified.

For example, in the chain structure (Figure 2a) and the fully connected DAG (Figure 2c), the ordered
group decomposition are both {X̃1} → {X̃2} → · · · → {X̃n−2} → {X̃n−1, X̃n}. However, the
two can actually be distinguished: In the fully connected DAG, TIN({X2}, {X3, · · · , Xn}) = 2,
while in the chain structure, TIN({X2}, {X3, · · · , Xn}) = 1. Even under a same pair of Z,Y, the ω
degeneration may be different. E.g., TIN({X2}, {X1, X3, X4, · · · }) = 2 in both graphs. However,
in the chain structure, ω is degenerated on the index X1 (i.e., the linear combination of Y cannot
include X1. If ω1X1 + ω3X3 + ω4X4 + · · · is independent to X2, then ω1 must be zero), while
there is no degeneration of ω in the fully connected DAG.

Generally speaking, our final objective is to identify an “equivalence class” of G̃ w.r.t. the TIN
condition. We have talked about the concept of “unidentifiable” in §2. Here, two graphs (either
non-isomorphic or isomorphic but with labelling permutation) are unidentifiable w.r.t. the TIN
condition, if and only if for any two pairs Z,Y, TIN(Z,Y) are same (with same degeneration).

About “equivalence class”, we already knew some features that an equivalence class should possess,
e.g., a variable is naturally unidentifiable with its pure leaf child in G̃ (see Definition 6). Apparently,
there are more such features to be discovered. Here are some of the examples:
Example 8 (Equivalence class for the chain structure). Consider a chain structure with 5 nodes
X̃1 → · · · → X̃5, and the following graphs with 5 nodes:

1. 5 edges: X̃1 → · · · → X̃5, with an additional X̃3 → X̃5.
2. 5 edges: X̃1 → · · · → X̃5, with an additional X̃2 → X̃4.
3. 5 edges: X̃1 → · · · → X̃5, with an additional X̃1 → X̃3.
4. 6 edges: X̃1 → · · · → X̃5, with additional X̃1 → X̃3 and X̃3 → X̃5.

For these five non-isomorphic graphs, with two equivalent permutations of each (swap the labeling of
X̃4 and X̃5) - these 10 graphs form an equivalence class. One might be curious: what if a graph with
one more edge, i.e.,

5. 7 edges: edges: X̃1 → · · · → X̃5, with additional X̃1 → X̃3, X̃2 → X̃4 and X̃3 → X̃5.
However, this graph is no longer in the equivalence class. For example, TIN(X3, X4,5) = 1 for the
chain structure (and its equivalence class), while TIN(X3, X4,5) = 2 for this graph.

Example 9 (An equivalence class with one unique graph). Consider a G̃ with 5 nodes and 7 edges:
X̃1 → {X̃2, X̃3, X̃4}, X̃2 → {X̃3, X̃5}, and X̃3 → {X̃4, X̃5}: surprisingly, its equivalence class
contains only one graph, itself. I.e., by TIN conditions this structure should be uniquely recovered.

With the equivalence class, the identifiability result could be improved, and constrained O-ICA may
be further applied to identify a final graph. It would be an interesting future work to characterize the
“equivalence class” w.r.t. TIN, and then design an algorithm to identify it.

F.3 More than Dimension of ΩZ;Y: Parameters
Currently we only care about the dimension of the independent subspace ΩZ;Y, but not the exact
parameters. If we have obtained exactly the ΩZ;Y, we could write its basis matrix MΩZ;Y

in shape
|Y| × dim(ΩZ;Y), with each column vector being a basis. Then, the subspace spanned by row
vectors of BY,Anc(Z), which reflects edge parameters, is exactly the left nullspace of MΩZ;Y

.

The degeneration of ω we discussed in Appendix F.3 and Theorem 13 is actually a special case of
recovering information from ΩZ;Y parameters. For edge parameters, it means that rank of BY,Anc(Z)

will drop one if deleting the respective degenerated columns in Y. More general exploitation of ΩZ;Y

parameters is an interesting future work.

F.4 More Possible Solutions for Estimation of ΩZ;Y

In §5 we propose four methods to estimate ΩZ;Y: tackling down to subsets of Y (§5.1), constrained
independent subspace analysis (ISA) (§5.2), stacked cumulants’ ranks stopped increasing (§5.3),
and TIN in two steps: solve equations, and then test for independence (§5.4). Generally, reliable
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estimation of ΩZ;Y can be formulated as an orthogonal research problem, and we believe that there
exists more solutions.

For example, if we only care about the dimension of ΩZ;Y, the following heuristic method might help.
The intuition is that, uniformly sample infinite many random points on the surface of a unit sphere
(centered on origin point) at Rn, denote d(k) the average distance from these points to a subspace in
Rn with dimension k (0 ≤ k ≤ n). Then this average distance is monotonic over k: d(k1) < d(k2)

if and only if k1 > k2. For example, on an 2D circle, d(0) = 1 (to center; radius), d(1) = 2/π
(to diameter), and d(2) = 0 (already on 2D); on a 3D sphere surface, d(0) = 1 (to center; radius),
d(1) = π/4 (to diameter), d(2) = 1/2 (to diameter plane), and d(3) = 0 (already on 3D).

If we assume the independence tests return a bool value (independent or not), then this method will not
help, because generally, the measure of ΩZ;Y relative to R|Y| is always zero. However, if we assume
that, for a unit vector ω ∈ R|Y|, there exists a monotonic relationship between the independence
strength of Ind(ω⊺Y;Z) (e.g., mutual information) and the distance to the subspace dist(ω; ΩZ;Y),
then we could have a non-parametric method to recover G̃: for each variable Xi, uniformly sample
many {ωl}l=1,··· from R(n−1) and calculate the average independence avgl Ind(ω

⊺
l [X\Xi];Xi),

then sort Xi by their respective average independence (i.e., dimensions of there respective ΩZ;Y) to
get an estimation of the group ordering.

F.5 What if Causal Sufficiency is Not Satisfied in G̃?
In this paper we assumed causal sufficiency relative to X̃. Though it is reasonable to assume causal
sufficiency in this context (which, to the best of our knowledge, is indeed a common assumption in
the current literature of causal discovery with measurement error), this assumption itself, is a strong
one and is not testable. Thus, it would be interesting to investigate the case where causal sufficiency
is violated (in a sense of “latents of latents”): Will TIN-based method still output a correct ordering?
If not, by which correction rules or algorithm relaxations can the identifiability be still partially
preserved? We leave this as an interesting future work. For now, we try to provide some hints from
examples (where we still use the Lemma 1-based method in this paper):

Example 10 (A still (partially) identifiable case). Consider a chain structure X̃1 → X̃2 → · · · → X̃n

(or similarly, a fully connected DAG) with a common hidden confounder L̃ pointing to them all:
L̃ → {X̃i}ni=1. If L̃ is not measured and only measurements X = {X1, · · · , Xn} are available,
we have now: ord(X1) = TIN(X1,X\X1) = 2, ord(X2) = 3, · · · , ord(Xn−3) = n − 2, and
ord(Xn−2) = ord(Xn−1) = ord(Xn) = n− 1. We shall see that: 1) The causal ordering of all but
the last 3 variables is identifiable. While without L̃ (our previous result), this identifiability result is
all but the last 2 variables (see Example 6), and 2) the existence of hidden (root) confounder(s) will
also be reported, since there is no root (with ord = 1) found across measurements X.

Example 11 (A no-longer identifiable case). Consider a simple fork X̃2 ← X̃1 → X̃3, with a hidden
confounder L̃: L̃→ X̃1 and L̃→ X̃2. Then, ord(X1) = TIN(X1,X\X1) = 2, ord(X2) = 1, and
ord(X3) = 2. Sorting by ord, we have the group decomposition as {X̃2} → {X̃1, X̃3}, while this
is incorrect: there exists directed edge(s) from later groups to earlier groups, X̃1 → X̃2.

F.6 What if some Measurements are Caused by Multiple Latent Variables?
In this paper, we consider the measurement error model, where each measurement is caused by only
one latent variable. For GIN, it can generally handle the cases where measurements are caused by
multiple latent variables, as long as each latent variable has enough pure indicators. Interestingly
however, we find that this may also be relaxed for our case (where there are not enough pure
indicators), and our TIN-based method may still work (in identifying the correct group ordering).
See below for some simple examples:

Consider a 3-nodes chain structure Ã→ B̃ → C̃, and their respective measurements A,B,C. We
have the ordered group decomposition {Ã} → {B̃, C̃}, with ord being 1 and 2. Then, what if we
add an edge from a latent variable to another measured variable? There are 3× 2 = 6 ways of adding
an edge. Surprisingly, among these 6 ways, there are 5 which preserves exactly the same TIN results
over A,B,C. The only one difference is by adding C̃ → A, where TIN(A,BC) = 2, instead of 1.
It would be interesting to generalize this observation: What if more nodes? What if more edges?
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G Implementation and Evaluation
G.1 Implementation Details
In this section we provide the information required to reproduce our results reported in the main text.
We also commit to making our implementations of TIN public.

Simulation setup In simulation we consider specifically two cases: fully connected DAG (Fig-
ure 2c) and chain structure (Figure 2a), of which the ordered group decomposition are both
X̃1 ) ··· ) X̃n−2, X̃n−1,n. We consider G̃ with the number of vertices n = 3, ··· , 10. Edges
weights (i.e., the nonzero entries of matrix A) are drawn uniformly from [−0.9,−0.5] ∪ [0.5, 0.9].
Exogenous noises Ẽ are sampled from uniform ∪[0, 1] to the power of c, c ∼ ∪[5, 7], and measure-
ment errors are sampled from Gaussian N (0, 1) to the power of c, c ∼ ∪[2, 4]. Sample size is 5, 000.
Observations are generated by Xi = X̃i +Ei. To show the effect of measurement error, we simulate
with noise-to-signal ratio NSR := var(Ei)/ var(X̃i) in {0.5, 1, 2, 3, 4}. On each configuration
(under a graph type, measurement noise scaling, and the number of vertices), 50 random graphs are
generated for repeated experiments.

PC We use the implementation from the causal-learn package5. Kernel-based conditional
independence test [52] is used. For speed consideration, datasets are downsampled to 1, 000 on PC
runs. The significance level alpha is set to 0.05. to Definition 7.

GES We use the implementation from the causal-learn package6. The score used is
local-BIC-score [37].

Direct-LiNGAM and ICA-LiNGAM We use the implementation from the lingam package7.
Note that for Direct-LiNGAM, actually the method used is based on pairwise likelihood ratios [20].

CAMME-OICA We use the implementation from LFOICA8 (Likelihood-Free Overcomplete ICA).
It estimates the mixing matrix by first transforming random noise into components, and then mimic
the mixing procedure from components to noise with MMD score as a metric.

Below we give details on implementations of TIN. Specifically,

Independence test We use the HSIC (Hilbert-Schmidt independence criterion) test [14] with the
implementation from lingam package 9. The kernel width is set to 0.1 times the standard deviation
of the data samples. The significance level alpha of p-value is set to 0.05. Note that when the
noise-to-signal ratio is large (e.g. > 3), usually observed variables are already ‘independent enough’
(i.e., with p-value given by HSIC test on raw data samples already > 0.05). In this case, we use the
difference of 1000∗severity

sample size between Z;Y and Z;ω⊺Y to show how much independence is ‘gained’ by
linear transformation. The threshold for this criterion is set to 0.5.

TIN-ISA We implement the constrained ISA where the de-mixing matrix is masked to only update
the lower-right |Y| × |Y| block WYY, with upper-left |Z| × |Z| block fixed as the identity and
elsewhere fixed as zero. We follow [29] for the estimation of conditional score function. Independence
between Z and ω⊺Y for each row of WYY is then tested by HSIC test, as is described aboce.

TIN-rank Numerical rank of a 2D matrix is calculated by SVD (singular value decomposition),
with tolerance ϵ set to 0.005. Singular values below threshold T are considered zero, where T =
ϵ ∗max(S) ∗max(M,N). S is all singular values, and M,N are shape of the 2D matrix. According
to Theorem 5, we use the rank where stacked 2D slices of cumulants stops increasing rank as the
output of TIN.

5https://github.com/cmu-phil/causal-learn/blob/main/causallearn/search/ConstraintBased/PC.py
6https://github.com/cmu-phil/causal-learn/blob/main/causallearn/search/ScoreBased/GES.py
7https://github.com/cdt15/lingam
8https://github.com/dingchenwei/Likelihood-free_OICA
9https://github.com/cdt15/lingam/blob/master/lingam/hsic.py
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TIN-2steps To solve euqations system {cov(f(Z),Y)ω = 0}, functions f contain: Z, Z2, Z3,
|Z|, eZ, log(|Z|), sin(Z), cos(Z), sigmoid(Z), tanh(Z). Nullspace is calculated by SVD, while we
do not set a hard threshold of singular value to determine its space (like TIN-rank). Instead, we test
HSIC between Z and ω⊺Y for each ω in the |Y| × |Y| unitary matrix V, and count the number of
independence achieved.

TIN-subsets The core to find the existence of transformed independence is similar to TIN-2steps.
Then, for the part of traversing over Y’s subsets, “all Y′ ...” and “exists a Y′ ...” are characterized by
90% and 10% percentile of the independence statistics (e.g., p-value of HSIC test) respectively.

Noise synthesis Edges weights (i.e., the nonzero entries of matrix A) are drawn uniformly from
[−0.9,−0.5] ∪ [0.5, 0.9]. Exogenous noises Ẽ of the latent variables are sampled from uniform
∪[0, 1] to the power of c, c ∼ ∪[5, 7], and measurement errors are sampled from GaussianN (0, 1) to
the power of c, c ∼ ∪[2, 4]. Sample size is 5, 000. Below we show a synthetic dataset with G̃ being a
fully connected DAG with n = 7, and the noise-to-signal ratio being 3 (Figures 6 and 7):

Figure 6: The scatter plot matrix for seven observed variables in X. From the first column we could
see that, though X̃1 is a root variable in G̃, regressing neither of {X2, · · · , X7} on X1 will make the
regression residual independent to the regressor X1, due to the presence of measurement error.
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Figure 7: The histogram plot and Q-Q plot to Gaussian distribution of seven observed variables in X.
We could see the non-Gaussianity of data.
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G.2 Evaluation Details
To evaluate the output group ordering, we use Kendall tau distance [22] to the ground-truth (in
range [0, 1], the lower the better). Kendall tau distance counts the number of pairwise disagreements
between two orderings. Specifically, for two variables i, j and a grouped ordering τ , we define:

cmp(i, j, τ) =


1 in τ, i is in an earlier group than j

0 in τ, i is in a same group with j

−1 in τ, i is in a later group than j

(G.1)

Then, for the n variables [n] and two ordered group decompositions τ1, τ2 on them, the Kendall tau
distance is defined as:

ktdist(τ1, τ2) =
2

n(n− 1)

∑
i,j∈[n], i<j

sign(cmp(i, j, τ1) ̸= cmp(i, j, τ2)) (G.2)

For algorithms returning DAG/PDAG, its ordering is first extracted according to Definition 7. Specifi-
cally, for PDAG, a vertex’s ancestors is defined as all vertices that has mixed paths (no directed edges
backward) to it.

For intuition, here we give some typical examples: if the true ordering is
{{X1}, {X2}, {X3}, {X4, X5}}, the following group orderings have the respective distances:

1. {{X5}, {X4}, {X3}, {X2, X1}}: 1.0;
2. {{X5}, {X4, X3, X2, X1}}: 1.0;
3. {{X1, X2, X3, X4, X5}}: 0.9;
4. {{X2, X4}, {X1, X3, X5}}: 0.8;
5. {{X1, X4}, {X2, X3, X5}}: 0.7;
6. {{X1, X2, X4}, {X3, X5}}: 0.6;
7. {{X2}, {X1, X4}, {X3, X5}}: 0.5;
8. {{X1, X3}, {X2, X4, X5}}: 0.4;
9. {{X1, X2}, {X3, X4, X5}}: 0.3;

10. {{X1, X2}, {X3}, {X4, X5}}: 0.1;

H Detailed Elaboration on Examples

To explain the TIN condition’s definition, characterization, and graphical criteria, in this section we
provide some step-by-step derivation of typical examples.

H.1 Motivation Examples
We first give an example of GIN to show our motivation (§2):
Example 12 (GIN on chain structure Figure 2a). Let Z := {X1},Y := {X2, X3, X4, X5}. Calcu-
late cov(X1, X2) = cov(X̃1 +E1, X̃2 +E2) = cov(X̃1, X̃2) = cov(X̃1, aX̃1 + Ẽ2) = a var(X̃1).
Similarly, we get the covariance matrix

cov(Z,Y) =
[
a var(X̃1) ab var(X̃1) abc var(X̃1) abcd var(X̃1)

]
(H.1)

Solve the linear homogeneous equations cov(Z,Y)ω = 0, we have ω = [−bx−bcy−bcdz, x, y, z]⊺,
x, y, z ∈ R. Plug ω into ω⊺Y:

ω⊺Y = (−��bx−��bcy −���bcdz)(��̃X2 + E2) + x(b��̃X2 + Ẽ3 + E3)

+ y(c(b��̃X2 + Ẽ3) + Ẽ4 + E4) + z(d(c(b��̃X2 + Ẽ3) + Ẽ4) + Ẽ5 + E5)

= does not contain {Ẽ1, Ẽ2, E1}, thus ω⊺Y ⊥⊥ X1, by the Darmois–Skitovich theorem [21].
(H.2)

By above we have GIN({X1}, {X2, · · · , Xn}) satisfied.
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H.2 Examples of Ordered Group Decomposition
In Definition 7 we define the ordered group decomposition of a graph. Actually there is slight
difference between Definition 7 and Definition 2 in [54]. According to Definition 7, when the graph
has only one subroots at each step, the two definitions are the same. However, when there are multiple
subroots at some step, Definition 7 takes all such subroots (and their pure leaf children) as a new
group, while in [54], each group has one and only one non-leaf node, and thus only one subroot
(and its pure leaf children) is taken (and removed from graph) as a new group, which yields multiple
ordered group decompositions. Here we only return one ordered group decomposition mainly for
simplicity. To obtain the multiple ordered group decompositions defined in [54] from our result, we
could do the following: for each pair of Xi, Xj in a new group with multiple variables, test TIN with
Z being Xi and Y being Xj and all variables in the previous groups, to see whether Xi, Xj are in a
same cluster. Below we give an example to show this slight difference between two definitions:
Example 13 (Ordered group decomposition with multiple subroots). Consider the graph D ←
A→ C ← B. The ordered group decomposition we defined in Definition 7 is {A,B,D} → {C},
while Definition 2 in [54] will give two ordered group decompositions: {A,D} → {B,C}, and
{B} → {A,C,D}.

H.3 A Concrete Example of Using TIN on Fully Connected DAG
Consider a fully connected DAG (Figure 2c) with 4 variables {X1, X2, X3, X4}⊺ (suppose we have
access directly to the measurement-error-free variables and directly test TIN over them), the edges
parameters are:

A =

0 0 0 0
a 0 0 0
b d 0 0
c e f 0

 ;B =

 1 0 0 0
a 1 0 0

ad+ b d 1 0
a(df + e) + bf + c df + e f 1

 (H.3)

1) Let Z := {X1},Y := {X2, X3, X4}, we have the independent subspace:

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null ([a ad+ b a(df + e) + bf + c]) , dimension=2. (H.4)

Two basis of ΩZ;Y are:
ω1 =

[
− b+ad

a 1 0
]⊺

,

ω2 =
[
− c+ae+bf+adf

a 0 1
]⊺ (H.5)

For any ω = k1ω1 + k2ω2, k1, k2 ∈ R, ω⊺Y does not contain noise E1, so ω⊺Y ⊥⊥ Z. We
have TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3 − 2 = 1. Graphically, the minimum vertex cut from
Anc({X1}) = {X1} to {X2, X3, X4} is {X1}, with size 1. And, |Anc(X1)| = 1.

2) Let Z := {X2},Y := {X1, X3, X4}, we have the independence subspace:

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null

([
1 ad+ b a(df + e) + bf + c
0 d df + e

])
, dimension=1. (H.6)

One basis of ΩZ;Y is:
ω1 =

[
cd−be

d
df+e
d −1

]⊺
(H.7)

For any ω = k1ω1, k1 ∈ R, ω⊺Y does not contain noise E1, E2, so ω⊺Y ⊥⊥ Z. We have
TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3 − 1 = 2. Graphically, the minimum vertex cut from
Anc({X2}) = {X1, X2} to {X1, X3, X4} is {X1, X2}, with size 2. And, |Anc(X2)| = 2.

3) Let Z := {X3},Y := {X1, X2, X4}, we have the independence subspace:

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null

([
1 a a(df + e) + bf + c
0 1 df + e
0 0 f

])
, dimension=0. (H.8)

B⊺
Y,Anc(Z) is full column rank, so that there exists no non-zero ω s.t. ω⊺Y ⊥⊥ Z, i.e., ΩZ;Y contains

only origin point R0, with dimension 0. We have TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3 − 0 = 3.
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Graphically, the minimum vertex cut from Anc({X3}) = {X1, X2, X3} to {X1, X2, X4} is
{X1, X2, X3} or {X1, X2, X4}, with size 3. And, |Anc(X3)| = 3.

4) Let Z := {X4},Y := {X1, X2, X3}, we have the independence subspace:

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null


1 a ad+ b
0 1 d
0 0 1
0 0 0


 , dimension=0. (H.9)

B⊺
Y,Anc(Z) is full column rank, so that there exists no non-zero ω s.t. ω⊺Y ⊥⊥ Z, i.e., ΩZ;Y contains

only origin point R0, with dimension 0. We have TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3 − 0 = 3.
Graphically, the minimum vertex cut from Anc({X4}) = {X1, X2, X3, X4} to {X1, X2, X3} is
{X1, X2, X3}, with size 3. And, |Anc(X4)| = 4. Since X4 is a leaf node, TIN(Z,Y) = 4− 1 = 3.

By above, we obtain the ordered group decomposition {{X1}, {X2}, {X3, X4}}.
H.4 A Concrete Example of Using TIN on the Chain Structure
To align with Appendix H.3, here we consider a chain structure with 4 variables {X1, X2, X3, X4}⊺.
The edges parameters are:

A =

0 0 0 0
a 0 0 0
0 b 0 0
0 0 c 0

 ;B =

 1 0 0 0
a 1 0 0
ab b 1 0
abc bc c 1

 (H.10)

1) Let Z := {X1},Y := {X2, X3, X4}, we have the independent subspace:
ΩZ;Y = null(B⊺

Y,Anc(Z)) = null ([a ab abc]) , dimension=2. (H.11)

Two basis of ΩZ;Y are:
ω1 = [b −1 0]

⊺
,

ω2 = [bc 0 1]
⊺

(H.12)

We have TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3− 2 = 1. Analysis is similar to that of Appendix H.3.

2) Let Z := {X2},Y := {X1, X3, X4}, we have the independence subspace:

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null

([
1 ab abc
0 b bc

])
, dimension=1. (H.13)

One basis of ΩZ;Y is:
ω1 = [0 c −1]⊺ (H.14)

We have TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3− 1 = 2. Analysis is similar to that of Appendix H.3.

3) Let Z := {X3},Y := {X1, X2, X4}, we have the independence subspace:

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null

([
1 a abc
0 1 bc
0 0 c

])
, dimension=0. (H.15)

We have TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3− 0 = 3. Analysis is similar to that of Appendix H.3.

4) Let Z := {X4},Y := {X1, X2, X3}, we have the independence subspace:

ΩZ;Y = null(B⊺
Y,Anc(Z)) = null


1 a ab
0 1 b
0 0 1
0 0 0


 , dimension=0. (H.16)

We have TIN(Z,Y) = |Y| − dim(ΩZ;Y) = 3− 0 = 3. Analysis is similar to that of Appendix H.3.

By above, we get the group ordering {{X1}, {X2}, {X3, X4}}. Recall the chain structure with
triangular head example, we could distinguish it from the chain structure with ordered group decom-
position {{X1}, {X2, X3, X4}}.
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H.5 Experiments on another Real-world Dataset: Teacher Burnout
Except for Sach’s dataset discussed in §6.2, we also conduct experiments on another real-world dataset,
Teacher Burnout [4]. It is from a sociology survey conducted by Barbara Byrne to investigate the
influence on the three facets (emotional exhaustion, depersonalization, and personal accomplishment)
of full-time elementary teachers’ burnout from factors including: organizational (role ambiguity, role
conflict, work overload, classroom climate, decision making, superior support, peer support) and
personality (self-esteem, external locus of control) variables. Please see chapter six of [4] for more
details about the dataset (Page 161), and the structure (Page 191).

While in the raw dataset, each (latent/target) variable has more than one measurements/indicators,
in this experiment we pick only one measurement for each to demonstrate the measurement error
situation. Specifically, we pick ten variables (according to the ten latent variables in Figure 6.10
of [4]): RA1, RC1, CC1, DM1, SS1, SE1, ELC1, EE1, DP1, and PA1. Though for a thorough study of
the dataset, one could try other combinations of measurements, e.g., RA2, RC3, ..., in this experiment
we only study one combination as above for illustration.

According to Figure 6.10 of [4], the ordered group decomposition of the ground-truth underlying
causal graph is {RA, RC, CC, DM, SS} ) {SE, ELC} ) {EE} ) {DP, PA}. Result given by
TIN-subsets is {DM, SE} ) {CC, SS} ) {RA, ELC} ) {RC, EE, DP} ) {PA} (with the one-
over-others TIN being 5, 6, 7, 8, 9 respectively). This is similar to Byrne’s conclusion (the true
ordering) according to the domain knowledge. For example, 1) the three facets of burnout (emotional
exhaustion, depersonalization, and personal accomplishment) are caused by other factors and are
at the end of the ordered groups, 2) decision making, classroom climates and superior support are
root causes (in the first two groups), and 3) self-esteem and role conflict influences external locus
of control. Interestingly, some of the ordering inconsistent with the ground-truth might also be
reasonable to some extent. For example, 1) self-esteem is among the first group (though should be in
the second), maybe because it is “root-like”: it is only caused by two root causes and causes another
four variables, 2) decision making and superior support are in the first and second groups respectively
(though should both be in the first, as two root causes for self-esteem), maybe because there exists
difference in their impact on others, and 3) role ambiguity is in the third group (though should be
in the first), maybe because that though it is a root, it has only one child, personal accomplishment,
which is a leaf node in the graph; the same may applies to role conflict: though being a root, it is even
among the second to last group, which is also echoed by other methods.

Here is an overview of the distance scores and ordered groups returned by all methods:
1. TIN-2steps: 0.49, {CC, SE, ELC} ) {RA, DM, SS} ) {EE, PA} ) {RC, DP}.
2. TIN-subsets: 0.47, {DM, SE} ) {CC, SS} ) {RA, ELC} ) {RC, EE, DP} ) {PA}.
3. TIN-ISA: 0.56, {RA, DM, SE} ) {SS, ELC} ) {RC, CC, EE, DP, PA}.
4. TIN-rank: 0.60, {CC, SE} ) {RA, RC, DM, ELC, DP} ) {SS, EE, PA}.
5. ICA-LiNGAM: 0.56, {CC} ) {SE} ) {ELC} ) {RA} ) {SS} ) {EE} ) {RC, PA} ) {DM,

DP}.
6. Direct-LiNGAM: 0.73, {DP} ) {SE} ) {SS} ) {RA} ) {RC, PA} ) {CC} ) {EE} ) {DM,

ELC}.
7. CAMME-OICA: 0.78, {CC, SS, EE, DP, PA} ) {RA, RC, DM, SE, ELC}.
8. PC: 0.73, {RA, RC, CC, DM, SS, SE, ELC, EE, DP, PA}.
9. GES: 0.73, {CC, DM, EE, DP} ) {RA} ) {SS, SE, PA} ) {RC, ELC}.

10. NOTEARS: 0.82, {CC, SE, ELC, PA} ) {RA, EE, DP} ) {RC} ) {DM, SS}.
11. SCORE: 0.76, {SE} ) {SS} ) {RA, CC, DM, ELC, EE, DP, PA} ) {RC}.
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