
A Appendix

A.1 Stochastic Rounding

In this paper, stochastic rounding for a variable x where x1 < x < x2 is defined as

x̂ =

(
x1 with probability x2�x

x2�x1

x2 with probability x�x1
x2�x1

(13)

it is easy to see that x̂ is an unbiased estimator of x:

E{x̂} = x1
x2 � x
x2 � x1

+ x2
x� x1

x2 � x1
= x (14)

and if we relate x and x̂ using an error term � (i.e. x̂ = x+ �), then E{�} = 0.

24-bit mantissa

bits[23:17]

bits[16:0]

17-bit random
number

generator

>?

Round
(r=true) Down
(r=false) Up

7-bit Result

r

Figure 4: An implementation of stochastic rounding.

A realization of the stochastic rounding is shown in Figure 4. Here, a 24-bit single floating-point mantissa
(including implicit hidden bit) is rounded stochastically to a 7-bit value. In this figure, the direction of rounding
is determined by comparing a random number that is generated on-the-fly with the lower 17-bit of the mantissa.

A.2 Representation mapping increases the gradients variance: Linear layer example

A linear layer is essentially a matrix multiplication. Let us denote X as inputs, W as weights and Y as the
output of a linear layer where Y = XW . Following the notation of this paper, we also denote our fixed-point
version of this layer as Ŷ = X̂Ŵ .

In our proposed integer back-propagation, the layer receives the upstream gradient Ĝ := @L̂
@Ŷ

. Using the
chain-rule, the gradient with respect to weights is

@L̂

@Ŵ
=

@Ŷ

@Ŵ

@L̂

@Ŷ
= X̂> @L̂

@Ŷ
= X̂>Ĝ. (15)

13

V{Ĉij} = V

(
KX

k=1

X̂>
ikĜkj

)
=

KX

k=1

V

n
X̂>

ikĜkj

o
+

KX

k=1

KX

k0=1
k 6=k

COV

⇣
X̂>

ikĜkj , X
>
ik0Ĝk0j

⌘

=
KX

k=1

n
E{(X̂>

ik)
2}E{(Ĝkj)

2}� E
2{(X̂>

ik)}E2{(Ĝkj)}
o
+

KX

k=1

KX

k0=1
k 6=k

COV

⇣
X̂>

ikĜkj , X
>
ik0Ĝk0j

⌘

=
KX

k=1

n
E{(X>

ik + �Xik)
2}E{(Gkj + �Gkj)

2}� E
2{(X>

ik + �Xik)}E2{(Gkj + �Gkj)}
o

+
KX

k=1

KX

k0=1
k 6=k

COV

⇣
X>

ikGkj , X
>
ik0Gk0j

⌘

6
KX

k=1

n
V{X>

ikGkj}+ �2
XE{G2

kj}+ �2
GE{X> 2

ik }+ �2
X�2

G

o
+

KX

k=1

KX

k0=1
k 6=k

COV

⇣
X>

ikGkj , X
>
ik0Gk0j

⌘

= V

(
KX

k=1

X>
ikGkj

)
+ �2

GE{||X>
i, ||22}+ �2

XE{||G,j ||22}+K�2
X�2

G

= V{Cij}+ �2
GE{||X>

i, ||22}+ �2
XE{||G,j ||22}+K�2

X�2
G.

(16)

Note that in inequality (16), �2
G = max(V{�Gi,j}) knowing that error terms �Gi,j have essentially similar

distributions. Likewise, �2
X = max(V{�Xi,j}). Also note that X and G are matrices of random variables in the

back-propagation and ||X>
i, ||22 denotes the norm-2 of the ith

row of X> and ||G,j ||22 denotes the norm-2 of the
j th

column of G. Also, X̂>
ik denotes ikth element of the matrix X̂>.

By having the following definitions

(
Mq := �2

GE{||X>
i, ||22}+K�2

X�2
G

Mq
V := �2

X
(17)

we can re-organize the inequality (16) as

V{Ĉij} 6 V{Cij}+Mq
V E{||G,j ||22}+Mq

Assumption 2.(iii,a)���������! V{Ĉij} 6 (MV +Mq
V)E{||G,j ||22}+ (M +Mq).

(18)

Remark. Inequality (18) supports our Assumption 2 (iii,b) i.e.

V⇠k{ĝ(wk, ⇠k)} 6 M +Mq + (MV +Mq
V)||rL(wk)||22

for considering the effect of our representation mapping method on gradients variance.

A.3 Proof of Theorem 1

The proof goes along the proof of Bottou et al. [14, Theorem 4.6] in the case that the gradient variance bound
increased as stated in Assumption 2 (iii, b).

A convex function satisfying the inequality (11) given w̄, w 2 R
d represents a quadratic model

q(w̄) := L(w) +rL(w)>(w̄ � w) +
1
2
c||w̄ � w||22, (19)

and has a unique minimizer at w⇤

w⇤ := w � 1
c
rL(w)

q(w⇤) = L(w)� 1
2c

||rL(w)||22

�! 2c(L(w)� L⇤) 6 ||rL(w)||22; 8w 2 R
d.

(20)

14

Also remember that the fixed learning rate in our integer back-propagation has the following constraint

0 < ↵̄ 6 1
L(MG +Mq

G)
. (21)

Starting from inequality (10) and using inequalities (20) and (21) we can write

E⇠k{L(wk+1)}� L(wk) 6� (1� 1
2
↵̄L(MG +Mq

G))↵̄||rL(wk)||22 +
1
2
↵̄2L(M +Mq)

6� 1
2
↵̄||rL(wk)||22 +

1
2
↵̄2L(M +Mq)

6� ↵̄c(L(wk)� L⇤) +
1
2
↵̄2L(M +Mq). (22)

By subtracting L⇤, rearrange, and taking total expectation from both sides of inequality (22) we have

E{L(wk+1)� L⇤} 6 (1� ↵̄c)E{L(wk)� L⇤}+
1
2
↵̄2L(M +Mq). (23)

Then by subtracting ↵̄L(M+Mq)
2c from both sides

E{L(wk+1)� L⇤}�
↵̄L(M +Mq)

2c
6 (1� ↵̄c)E{L(wk)� L⇤}+

1
2
↵̄2L(M +Mq)� ↵̄L(M +Mq)

2c

= (1� ↵̄c)

✓
E{L(wk)� L⇤}�

↵̄L(M +Mq)
2c

◆
.

(24)
Thus, Theorem 1 can be proven by applying inequality (24) repeatedly for k 2 N. Also note that using inequality
(21) it is easy to derive that 0 < (1� ↵̄c) < 1 because

0 < ↵̄c 6 c
L(MG +Mq

G)
6 c

L
6 1, (25)

hence, in Theorem 1, if k �! 1, then (1� ↵̄c)k �! 0 and the optimality gap of integer training algorithm using
inequality (12) is

E{L(wk)� L⇤} 6 ↵̄L(M +Mq)
2c

s.t. k �! 1.
(26)

A.4 Integer weight update

In the integer weight update, the equation (6) transforms to its fixed-point version with integer-only arithmetic

ŵk+1 = ŵk + ↵̂kĝ(wk, ⇠k). (27)

By expanding the error terms for the representation mapping and taking expatiation on both sides we can see the
weights are on the average updated equivalent to the true wights.

E{ŵk+1} = E{ŵk + ↵̂kĝ(wk, ⇠k)}
= E{wk + �wk + (↵k + �↵)(g(wk, ⇠k) + �g)}
= wk + ↵kg(wk, ⇠k)

= wk+1 (28)

We used stochastic rounding for our weight update operation, thus E{�} = 0 and using our proposed method, ĝ
is unbiased estimator of g.

A.5 Experimental setup

Computing resources: We ran our experiments using an in-house developed integer emulator to avoid common
floating-point quantization techniques. In our emulator, we perform the representation mapping within the GPU
memory. We further developed the integer deep learning modules using Pytorch autograd functionality on top of
our integer emulator. Experimental results of this paper are run using the following number of GPUs.

15

• ResNet18 on ImageNet requires 4⇥V100 GPUs when batch size is 512 and 2⇥V100 GPUs when
batch size is 256.

• MobileNetV2 on ImageNet requires 8⇥V100 GPUs when batch size is 512.

• ResNet18 on CIFAR10 runs on 1⇥V100 GPUs when batch size is 128.

• Semantic segmentation experiments require 2⇥V100 GPUs.

• Object detection experiments require 8⇥V100 GPUs.

• ViT-B fine-tuning experiment requires 8⇥V100 GPUs.

Classification: The hyper-parameters of our classification experiments are reported in Table 6. We used SGD
with momentum of 0.9 for conventional classification experiments and AdamW for ViT fine-tuning.

Table 6: Hyper-parameters for classification experiments
Dataset Model Training epochs Learning rate LR scheduling Weight decay Batch size

ImageNet
ResNet18 90 or 100 0.1 ⇥0.1 every 30 epochs 1e-4 512

MobileNetV2 70 0.1 Cosine with Tmax = 70 4e-5 512

CIFAR10
ResNet18 200 0.1 Cosine with Tmax = 90 5e-4 128

ViT-B fine-tuning 100 5e-5 Cosine with Tmax = 100 0.01 512

CIFAR100 ResNet18 200 0.1 Reduce at epochs 80 and 120 1e-4 128

Semantic segmentation: The hyper-parameters for the semantic segmentation experiments are provided in
Table7. For DeepLabV1 and DeepLabV2 one-scale and multi-scale loss was used respectively. Conditional
random field post-processing was used at the network’s output as proposed in Chen et al. [19]. In all the
experiments we use SGD with momentum of 0.9 and weight decay of 5⇥ 10�4.

Table 7: Hyper-parameters for semantic segmentation experiments

Model Dataset Training iterations Learning rate Batch size Data
Augmentation CRF

DeepLabV1/V2 VOC 20000 2.5e-4 16 X X
COCO 30000 2.5e-4 16 - X

Object detection: The hyper-parameters are provided in Table 8. All experiments use an SGD optimizer with a
momentum of 0.9 and a weight decay parameter of 10�5. The experiments indicated with LR Warmup use a
linear warm-up function with a ratio of 10�3 for the first 500 iterations. For the rest of training, the learning rate
is reduced by 0.1 at the epochs indicated in the LR Reduction Epochs column.

Table 8: Hyper-parameters for object detection experiments

Model Dataset Training epochs Learning rate Per GPU
Batch size

LR reduction
epochs

LR
Warmup

Faster R-CNN

COCO 12 0.2 1 8 and 11 X
VOC 12 0.1 2 9 -

Cityscapes 64 0.1 1 56 X
SSD COCO 24 0.2 1 16 and 22 X

A.6 Background on quantization methods

Symmetric uniform quantization is normally used in the literature of quantized back-propagation (see [2, 4, 3])
to convert the gradients to 8-bit integers. Suppose scale s = max(|x|), then

xquantized = round(127.
clamp(x, s)

s
),

with the clipping function clamp(x, s) defined as:

clamp(x, s) =

(
x |x| s

sign(x)s |x| > s
.

16

Furthermore, given the scale factor s, the de-quantization is performed as:

x̂float = xquantized ⇥ s
127

.

We further emphasize here that our method of representation mapping differs from this quantization method,
where we directly manipulate the floating point number format as mentioned in Section 3.1.

17

	Introduction
	Related works
	Methodology
	Linear fixed-point mapping
	Non-linear inverse mapping
	Integer layer computations
	 Understanding the representation mapping

	Theoretical analysis of SGD using the proposed method
	Fixed-point gradient noise
	Strongly convex and locally convex loss

	Experimental results
	Conclusion
	Appendix
	Stochastic Rounding
	Representation mapping increases the gradients variance: Linear layer example
	Proof of Theorem 1
	Integer weight update
	Experimental setup
	Background on quantization methods

