
A Appendix

A.1 Proof of Theorem 1

In this proof, we adopt a simplified version of our message-passing function that ignores the skip-
connection:

Message(l)(i, j) = M
(l)

ϕ(i,j)h
(j)
i . (11)

The HGNN trained in the experimental results shown in Figure 2 also does not use skip-connections
and hence represents a theoretically-exact KTN component. In the real experiments, we use (1)
skip-connections, exploiting their usual benefits (12), and (2) the trainable version of KTN.

Proof. Without loss of generality, we prove the result for the case where R = {(s, t) : s, t ∈ T },
meaning the type of an edge is identified with the (ordered) types of the neighbor nodes. In other
words, there is only one edge modality possible, such as a social networks with multiple node types
(e.g. “users", “groups") but only one edge modality (“friendship"). In the case of multiple edge
modalities (e.g. “friendship" and “message"), the result is extended trivially (through with more
algebraically-dense forms of ats and qts).

Throughout this proof, we use the following notation for the set of all j-adjacent edges of relation
type r:

Er(j) := {(i, j) : i ∈ V, (i, j) = r}. (12)

We write Ax1x2 to denote the sub-matrix of the total nx1 × nx2 adjacency matrix A corresponding to
node types x1, x2 ∈ T , and Āx1x2

to denote the same matrix divided by its column sum. H(l)
x is the

(row-wise) nx × dl embedding matrix of x-type nodes at layer l.

We first compute the l-th output g(l)j of the Aggregate step defined for HGNNs in Equation 3, for any
node j ∈ V such that τ(j) = s. The output of Aggregate is a concatenation of edge-type-specific
aggregations (see Equation 3). Note that at most T = |T | elements of this concatenation are non-zero,
since the node j only participates in T out of T 2 relation types in R. Thus we can write g

(l)
j as

g
(l)
j = ∥

r∈R

1
|Er(j)|

∑
e∈Er(j)

Message(l)(e)

= ∥
x∈T

1
|Exs(j)|

∑
e∈Exs(j)

Message(l)(e)

= ∥
x∈T

1
|Exs(j)|

∑
(i,j)∈Exs(j)

M (l)
xs h

(l−1)
i

= ∥
x∈T

1
|Exs(j)|M

(l)
xs

∑
(i,j)∈Exs(j)

h
(l−1)
i

= ∥
x∈T

M (l)
xs

(
H(l−1)

x

)′
Ā(j)

xs ,

where Ā
(j)
xs denotes the j-th column of Āxs. Notice that

h
(l)
j = Transform(l)(j) = W (l)

s g
(l)
j , (13)

and (again) at most T elements of the concatenation g
(l)
j are non-zero. Therefore let W (l)

xs be the

columns of W (l)
s that select the concatenated element of g(l)j corresponding to node type x. Then we

can write

h
(l)
j =

∑
x∈T

W (l)
xs M

(l)
xs

(
H(l−1)

x

)′
Ā(j)

xs . (14)

14

Algorithm 3 Training step for one minibatch (indirect version)

Require: heterogeneous graph G = (V, E , T ,R), node feature matrices X , adjacency matrices Axy where
∀(x, y) ∈ R, source node type s, target node type t, source node label matrix Ys.

Ensure: HGNN f, classifier g, KTN tKTN

1: H
(L)
s , H

(L)
t = f(H(0) = X,G), H∗

t = 0
2: for each meta-path p = t → s do
3: x = t, Z = H

(L)
t

4: for each node type y ∈ p do
5: Z = AxyZTxy

6: x = y
7: end for
8: H∗

t = H∗
t + Z

9: end for
10: LKTN =

∥∥∥H(L)
s −H∗

t

∥∥∥
2

11: L = LCL(g(H(L)
s), Ys) + λLKTN

12: Update f, g, tKTN using ∇L

Algorithm 4 Test step for a target domain (indirect version)
Require: pretrained HGNN f, classifier g, KTN tKTN
Ensure: target node label matrix Yt

1: H
(L)
t = f(H(0) = X,G), H∗

t = 0
2: for each meta-path p = t → s do
3: x = t, Z = H

(L)
t

4: for each node type y ∈ p do
5: X = ZTxy

6: x = y
7: end for
8: H∗

t = H∗
t + Z

9: end for
10: return g(H∗

t)

Defining the operator Q(l)
xs :=

(
W

(l)
xs M

(l)
xs

)′
, this implies that

H(l)
s =

∑
x∈T

ĀxsH
(l−1)
x Q(l−1)

xs

= [Āx1s, . . . , ĀxT s]

H(l−1)
x1 0 0
0 . . . 0

0 0 H
(l−1)
xT

Q(l−1)
x1s

. . .

Q
(l−1)
xT s

= Ā·sH

(l−1)
· Q

(l−1)
·s

Similarly we have H
(l)
t = Ā·tH

(l−1)
· Q

(l−1)
·t . Since H

(l)
s and H

(l)
t share the term H

(l−1)
· , we can

write
H(l)

s = Ā·sĀ
−1
·t H

(l)
t (Q

(l−1)
·t)−1Q(l−1)

·s , (15)
where X−1 denotes the pseudo-inverse. ■

A.2 Indirectly Connected Source and Target Node Types

When source and target node types are indirectly connected by another node type x, we can simply
extend tKTN(H

(L)
t) to (Axs(AtxH

(L)
t Ttx)Txs) where TtxTxs becomes a mapping function from

target to source domains. Algorithms 3 and 4 show how to extend KTN. For every step (x → y)
in a meta-path (t → · · · → s) connecting target node type t to source node type s, we define a
transformation matrix Txy , run a convolution operation with an adjacency matrix Axy , then map the
transformed embedding to the source domain. We run the same process for all meta-paths connecting
from target node type t to source node type s, and sum up them to match with the source embeddings.
In the test phase, we run the same process to get the transformed target embeddings, but this time,
without adjacency matrices. We run Algorithm 3 and 4 for transfer learning tasks between author and
venue nodes which are indirectly connected by paper nodes in OAG graphs (Figure 5(b)). As shown

15

Table 4: Open Academic Graph on Computer Science field. The gain column shows the relative gain of our
method over using no domain adaptation (Base column). o.o.m denotes out-of-memory errors.

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

P-A (L1)

NDCG 0.399 0.452 0.405 0.292 0.262 0.261 0.26 0.178 0.425 0.623 (56)
std 0.010 0.012 0.032 0.009 0.021 0.014 0.021 0.000 0.006 0.004
MRR 0.297 0.361 0.314 0.179 0.129 0.111 0.138 0.041 0.363 0.629 (112)
std 0.024 0.006 0.041 0.011 0.032 0.031 0.033 0.000 0.005 0.004

A-P (L1)

NDCG 0.401 0.566 0.598 0.294 0.364 0.246 0.195 0.153 0.557 0.733 (83)
std 0.003 0.012 0.014 0.034 0.049 0.046 0.025 0.000 0.002 0.007
MRR 0.318 0.508 0.544 0.229 0.27 0.09 0.047 0.022 0.507 0.711 (123)
std 0.001 0.029 0.028 0.093 0.117 0.037 0.029 0.000 0.003 0.009

A-V (L1)

NDCG 0.459 0.457 0.47 0.382 0.346 0.359 0.403 0.207 0.461 0.671 (46)
std 0.030 0.033 0.036 0.015 0.029 0.109 0.024 0.000 0.002 0.004
MRR 0.364 0.413 0.458 0.341 0.205 0.253 0.327 0.011 0.389 0.698 (92)
std 0.079 0.08 0.093 0.05 0.098 0.143 0.044 0.000 0.004 0.003

V-A (L1)

NDCG 0.283 0.443 0.435 0.242 0.372 0.418 0.272 0.153 0.154 0.584 (107)
std 0.045 0.012 0.007 0.004 0.048 0.039 0.004 0.000 0.006 0.005
MRR 0.133 0.365 0.345 0.094 0.241 0.444 0.144 0.006 0.006 0.586 (340)
std 0.074 0.027 0.017 0.011 0.103 0.115 0.018 0.007 0.010

P-A (L2)

NDCG 0.229 0.23 o.o.m 0.239 o.o.m o.o.m 0.168 o.o.m 0.215 0.282 (23)
std 0.005 0.003 - 0.006 - - 0.007 - 0.004 0.002
MRR 0.121 0.118 o.o.m 0.14 o.o.m o.o.m 0.02 o.o.m 0.143 0.2248 (86)
std 0.019 0.004 - 0.01 - - 0.006 - 0.003 0.003

A-P (L2)

NDCG 0.197 0.162 o.o.m 0.204 0.158 0.161 0.132 o.o.m 0.208 0.287 (46)
std 0.006 0.009 - 0.006 0.019 0.022 0.012 - 0.004 0.001
MRR 0.095 0.052 o.o.m 0.106 0.032 0.045 0.017 o.o.m 0.132 0.242 (155)
std 0.009 0.022 - 0.016 0.018 0.027 0.008 - 0.005 0.002

A-V (L2)

NDCG 0.347 0.329 0.295 0.325 0.288 0.273 0.289 o.o.m 0.297 0.402 (16)
std 0.003 0.034 0.014 0.013 0.011 0.058 0.011 - 0.002 0.003
MRR 0.310 0.296 0.198 0.223 0.128 0.097 0.11 o.o.m 0.227 0.399 (29)
std 0.004 0.109 0.047 0.065 0.003 0.096 0.034 - 0.001 0.015

V-A (L2)

NDCG 0.235 0.249 0.251 0.214 0.197 0.205 0.217 o.o.m 0.119 0.252 (7)
std 0.002 0.002 0.006 0.004 0.008 0.004 0.002 - 0.001 0.007
MRR 0.130 0.157 0.161 0.09 0.044 0.068 0.085 o.o.m 0.000 0.166 (28)
std 0.010 0.011 0.009 0.015 0.007 0.009 0.005 - 0.000 0.012

in Tables 4, 6, and 7, we successfully transfer HGNN models between author and venue nodes (A-V
and V-A) for both L1 and L2 tasks.

Will lengths of meta-paths affect the performance? We examine the performance of KTN varying
the length of meta-paths between source and target node types. In Table 8, accuracy decreases with
longer meta-paths. When we add additional meta-paths than the minimum path, it also brings noise
in every edge types. Note that author and venue nodes are indirectly connected by paper nodes; thus
the minimum length of meta-paths in the A-V (L1) task is 2. The accuracy in the A-V (L1) task with
a meta-path of length 1 is low because KTN fails to transfer anything with a meta-path shorter than
the minimum. Using the minimum length of meta-paths is enough for KTN.

A.3 More results for Zero-shot Transfer Learning in Section 6.3

We show the zero-shot transfer learning results with error bars on OAG-computer science and Pubmed
in Tables 4 and 5. We also present the results with error bars on OAG-computer networks and OAG-
machine learning in Tables 6 and 7, respectively. Across all tasks and graphs, our proposed method
KTN consistently outperforms all baselines.

A.4 Analysis for Baselines in Section 6.3

Among baselines, MMD-based models (DAN and JAN) outperform adversarial based methods
(DANN, CDAN, and CDAN-E) and optimal transport-based method (WDGRL), unlike results
reported in (19; 27). These reversed results are a consequence of HGNN’s unique feature extractors
for source and target domains. When fs and ft denote feature extractors for source and target
domains, respectively, DANN and CDAN define their adversarial losses as a cross entropy loss
(E[log fs] − E[log ft]) where gradients of the subloss E[log fs] are passed only back to fs, while
gradients of the subloss E[log ft] are passed only back to ft. Importantly, source and target feature
extractors do not share any gradient information, resulting in divergence. This did not occur in their
original test environments where source and target domains share a single feature extractor. Similarly,
WDGRL measures the first-order Wasserstein distance as an adversarial loss, which also brings the
same effect as the cross-entropy loss we described above, leading to divergent gradients between
source and target feature extractors. On the other hand, DAN and JAN define a loss in terms of
higher-order MMD between source and target features. Then the gradients of the loss passed to

16

Table 5: PubMed

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

D-G

NDCG 0.587 0.629 0.615 0.614 0.624 0.646 0.604 0.601 0.571 0.700 (19)
std 0.004 0.013 0.028 0.008 0.078 0.015 0.022 0.000 0.004 0.005
MRR 0.372 0.425 0.414 0.397 0.428 0.443 0.388 0.389 0.336 0.499 (34)
std 0.003 0.007 0.054 0.013 0.066 0.027 0.035 0.000 0.003 0.006

G-D

NDCG 0.596 0.599 0.577 0.599 0.581 0.606 0.578 0.576 0.580 0.662 (11)
std 0.007 0.020 0.032 0.011 0.054 0.019 0.019 0.000 0.011 0.003
MRR 0.354 0.362 0.332 0.356 0.337 0.362 0.340 0.351 0.353 0.445 (26)
std 0.005 0.015 0.019 0.008 0.023 0.031 0.015 0.000 0.008 0.002

Table 6: Open Academic Graph on Computer Network field

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

P-A (L2)

NDCG 0.331 0.344 o.o.m 0.335 o.o.m o.o.m 0.287 0.221 0.270 0.382 (16)
std 0.004 0.005 - 0.004 - - 0.012 0.000 0.003 0.004
MRR 0.250 0.277 o.o.m 0.280 o.o.m o.o.m 0.199 0.130 0.270 0.360 (44)
std 0.024 0.012 - 0.007 - - 0.004 0.000 0.003 0.010

A-P (L2)

NDCG 0.313 0.290 o.o.m 0.250 0.234 0.168 0.266 0.114 0.319 0.364 (17)
std 0.002 0.023 - 0.021 0.041 0.025 0.030 0.000 0.004 0.003
MRR 0.250 0.233 o.o.m 0.130 0.116 0.051 0.212 0.038 0.296 0.368 (47)
std 0.015 0.039 - 0.051 0.069 0.037 0.061 0.000 0.005 0.004

A-V (L2)

NDCG 0.539 0.521 0.519 0.510 0.467 0.362 0.471 0.232 0.443 0.567 (5)
std 0.012 0.031 0.008 0.022 0.008 0.045 0.024 0.000 0.002 0.008
MRR 0.584 0.528 0.461 0.510 0.293 0.294 0.365 0.000 0.406 0.628 (8)
std 0.042 0.015 0.011 0.054 0.013 0.088 0.019 0.000 0.004 0.016

V-A (L2)

NDCG 0.256 0.343 0.345 0.265 0.328 0.316 0.263 0.133 0.119 0.341 (33)
std 0.006 0.012 0.005 0.005 0.005 0.003 0.003 0.000 0.001 0.005
MRR 0.117 0.296 0.286 0.151 0.285 0.275 0.147 0.000 0.000 0.281 (141)
std 0.020 0.009 0.004 0.009 0.006 0.008 0.009 0.000 0.000 0.014

each feature extractor contain both source and target feature information, resulting in a more stable
gradient estimation. This shows again the importance of considering different feature extractors in
HGNNs.

JAN, CDAN, and CDAN-E often show out of memory issues in Tables 4, 6, and 7. These baselines
consider the classifier prediction whose dimension is equal to the number of classes in a given task.
That is why JAN, CDAN, and CDAN-E fail at the L2 field prediction tasks in OAG graphs where the
number of classes is 17, 729.

LP performs worst among the baselines, showing the limitation of relying only on graph structures.
LP maintains a label vector with the length equal to the number of classes for each node, thus shows
out-of-memory issues on tasks with large number of classes on large-size graphs (L2 tasks with
17, 729 labels on the OAG-CS graph). EP performs moderately well similar to other DA methods,
but lower than KTN up to 60% absolute points of MRR, showing the limitation of not using target
node attributes.

A.5 More results for Generality of KTN in Section 6.4

We show KTN performance on 6 different types of HGNN models across 4 different zero-shot
domain adaptation tasks on the OAG-computer science dataset in Table 9. Descriptions of each
HGNN model can be found in Appendix A.10. While KTN consistently improves all HGNN models’
performance on zero-labeled node types using labels rooted at other node types, the magnitude of
improvements varies. While HAN sees up to 4958% (V-A (L1) task in Table 9), MAGNN is improved
by up to 47% (P-A(L1) task) or sees no improvement (A-V(L1) task). This gap stems from how many
parameters each HGNN model shares across node types. HAN does not share any parameters during
message-passing operations (every parameters are specialized to each meta-path), while MAGNN
shares the transformation matrices across all node types at every layer. By sharing more parameters
with other node types, the gradients are more likely passed to target node type-specific parameters,
leaving less room for improvement by KTN. However, KTN is still necessary for any HGNN models.
MPNN who shares all parameters except the projection matrices that map different input attributes
into the same embedding space at the beginning still sees improvements by up to 311%. Again, these
experimental results show the impact of having different feature extractors for each node type in
HGNN models.

17

Table 7: Open Academic Graph on Machine Learning field

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain%)

P-A (L2)

NDCG 0.268 0.290 o.o.m 0.291 o.o.m 0.249 0.232 0.272 0.215 0.318 (19)
std 0.002 0.009 - 0.004 - 0.005 0.004 0.000 0.002 0.004
MRR 0.134 0.220 o.o.m 0.222 o.o.m 0.095 0.098 0.195 0.143 0.269 (102)
std 0.006 0.020 - 0.026 - 0.003 0.037 0.000 0.003 0.006

A-P (L2)

NDCG 0.261 0.225 o.o.m 0.234 0.228 0.241 0.241 0.119 0.267 0.319 (22)
std 0.002 0.009 - 0.004 0.005 0.011 0.002 0.000 0.001 0.005
MRR 0.207 0.127 o.o.m 0.155 0.152 0.095 0.182 0.035 0.214 0.287 (39)
std 0.018 0.042 - 0.008 0.009 0.003 0.017 0.000 0.012 0.011

A-V (L2)

NDCG 0.465 0.493 0.463 0.477 0.408 0.422 0.393 0.224 0.424 0.538 (16)
std 0.006 0.004 0.003 0.003 0.006 0.013 0.005 0.000 0.005 0.004
MRR 0.469 0.542 0.537 0.519 0.412 0.240 0.213 0.001 0.391 0.632 (35)
std 0.039 0.008 0.005 0.003 0.015 0.008 0.009 0.000 0.021 0.006

V-A (L2)

NDCG 0.252 0.293 0.292 0.237 0.242 0.255 0.250 0.137 0.119 0.302 (20)
std 0.006 0.011 0.009 0.004 0.003 0.002 0.004 0.000 0.003 0.007
MRR 0.131 0.212 0.199 0.086 0.085 0.129 0.118 0.000 0.000 0.227 (73)
std 0.016 0.023 0.013 0.005 0.021 0.007 0.012 0.000 0.000 0.015

Table 8: Meta-path length in KTN: increasing the meta-path longer than the minimum does not bring significant
improvement to KTN. Note that the minimum length of meta-paths in the A-V (L1) task is 2.

Task P-A (L1) A-V (L1)
Meta-path

length NDCG MRR NDCG MRR

1 0.623 0.621 0.208 0.010
2 0.627 0.628 0.673 0.696
3 0.608 0.611 0.627 0.648
4 0.61 0.623 0.653 0.671

A.6 Effect of trade-off coefficient λ

We examine the effect of λ on transfer learning performance. In Table 10, as λ decreases, target
accuracy decreases as expected. Source accuracy also sees small drops since LKTN functions as a
regularizer; by removing the regularization effect, source accuracy decreases. When λ becomes large,
both source and target accuracy drop significantly. Source accuracy drops since the effect of LKTN
becomes larger than the classification loss LCL. Even the effect of transfer learning become larger by
having larger λ, since the source accuracy which will be transferred to the target domain is low, the
target accuracy is also low. Thus we set λ to 1 throughout the experiments.

A.7 Synthetic Heterogeneous Graph Generator

Our synthetic heterogeneous graph generator is based on attributed Stochastic Block Models
(SBM) (32; 33), using blocks (clusters) as the node classes. In the attributed SBM, graphs ex-
hibit within-type cluster homophily at the edge-level (nodes most-frequently connect to other nodes
in the same cluster), and at the feature-level (nodes are closest in feature space to other nodes in the
same cluster). To produce heterogeneous graphs, we additionally introduce between-type cluster
homophily, which allows us to model real-world heterogeneous graphs in which knowledge can be
shared across node types.

The first step in generating a heterogeneous SBM is to decide how many clusters will partition
each node type. Assume within-type cluster counts k1, . . . , kT . We allow for between-type cluster
homophily with a KT := mint{kt}-partition of clusters such that each cluster group has at least one
corresponding cluster from other node types.

Secondly, edge-level homophily is controlled by signal-to-noise ratios σe = p/q where nodes within-
cluster are connected with probability p and nodes between-cluster are connected with probability
q. Additionally, edges within one cluster group across different types (see previous paragraph) is
controlled together with edges between different cluster groups across different types using some σe.
In Section 6.5, we describe the manipulation of multiple σe parameters within-and-between types.

Finally, node attributes are generated by a multivariate Normal mixture model, using the cluster
partition as the mixture groups. Thus feature-level homophily is controlled by increasing the
variance of the cluster centers σf , while keeping the within-cluster variance fixed. Cross-type feature

18

Table 9: KTN on different HGNN models: The Source column shows accuracy on source node types. Base
and KTN columns show accuracy on target node types without/with using KTN, respectively. The Gain column
shows the relative gain of our method over using no transfer learning.

P-A (L1) A-P (L1)
HGNN type Metric Source Base KTN Gain% Source Base KTN Gain%

R-GCN

NDCG 0.765 0.337 0.577 71.12 0.648 0.388 0.647 66.82
std 0.004 0.005 0.002 0.006 0.007 0.004
MRR 0.757 0.236 0.587 148.73 0.623 0.270 0.611 126.18
std 0.002 0.003 0.001 0.005 0.008 0.004

HAN

NDCG 0.476 0.179 0.520 190.56 0.515 0.182 0.512 181.33
std 0.004 0.006 0.003 0.004 0.009 0.011
MRR 0.416 0.047 0.497 960.55 0.509 0.055 0.527 850.90
std 0.001 0.002 0.002 0.005 0.004 0.005

HGT

NDCG 0.757 0.294 0.574 95.07 0.670 0.283 0.581 104.83
std 0.002 0.003 0.004 0.001 0.003 0.009
MRR 0.749 0.178 0.563 216.17 0.670 0.149 0.565 279.52
std 0.005 0.007 0.001 0.002 0.007 0.006

MAGNN

NDCG 0.657 0.463 0.574 24.01 0.676 0.557 0.622 11.68
std 0.003 0.001 0.003 0.001 0.001 0.003
MRR 0.631 0.378 0.556 47.33 0.680 0.509 0.592 16.14
std 0.003 0.002 0.004 0.001 0.002 0.005

MPNN

NDCG 0.602 0.443 0.590 33.11 0.646 0.307 0.621 101.92
std 0.002 0.002 0.001 0.005 0.013 0.004
MRR 0.572 0.319 0.575 80.10 0.660 0.145 0.595 311.42
std 0.001 0.003 0.005 0.002 0.024 0.003

H-MPNN

NDCG 0.789 0.399 0.623 56.14 0.671 0.401 0.733 82.88
std 0.001 0.005 0.001 0.003 0.005 0.009
MRR 0.777 0.297 0.629 111.86 0.661 0.318 0.711 123.30
std 0.003 0.001 0.002 0.007 0.004 0.008

V-A (L1) A-V (L1)
HGNN type Metric Source Base KTN Gain% Source Base KTN Gain%

R-GCN

NDCG 0.664 0.426 0.530 24.36 0.660 0.599 0.744 24.26
std 0.003 0.006 0.002 0.001 0.008 0.004
MRR 0.683 0.325 0.514 58.39 0.656 0.524 0.785 49.87
std 0.003 0.008 0.004 0.011 0.009 0.005

HAN

NDCG 0.618 0.153 0.510 232.35 0.515 0.546 0.689 26.21
std 0.005 0.007 0.003 0.008 0.003 0.005
MRR 0.634 0.010 0.516 4958.82 0.508 0.511 0.758 48.28
std 0.002 0.005 0.002 0.001 0.008 0.007

HGT

NDCG 0.615 0.234 0.536 128.95 0.694 0.367 0.735 100.22
std 0.002 0.005 0.002 0.006 0.007 0.009
MRR 0.638 0.095 0.537 464.88 0.699 0.267 0.772 189.21
std 0.006 0.002 0.005 0.002 0.005 0.012

MAGNN

NDCG 0.536 0.513 0.513 0.00 0.684 0.676 0.692 2.37
std 0.005 0.001 0.001 0.001 0.002 0.001
MRR 0.586 0.522 0.522 0.00 0.686 0.751 0.752 0.13
std 0.004 0.001 0.002 0.002 0.001 0.004

MPNN

NDCG 0.578 0.380 0.532 40.03 0.639 0.578 0.794 37.19
std 0.008 0.008 0.004 0.007 0.007 0.005
MRR 0.603 0.253 0.505 100.12 0.652 0.584 0.847 44.96
std 0.001 0.003 0.007 0.006 0.001 0.006

H-MPNN

NDCG 0.670 0.283 0.584 106.50 0.676 0.459 0.671 46.22
std 0.002 0.002 0.006 0.005 0.004 0.003
MRR 0.689 0.133 0.586 339.76 0.677 0.364 0.698 91.92
std 0.003 0.003 0.005 0.01 0.005 0.002

Table 10: Effect of λ

P-A (L1) A-V (L1)
Metric NDCG MRR NDCG MRR

λ Source Target Source Target Source Target Source Target
10−5 0.780 0.587 0.772 0.595 0.689 0.626 0.690 0.642
10−3 0.788 0.58 0.779 0.576 0.687 0.654 0.689 0.677
100 0.792 0.621 0.788 0.633 0.689 0.670 0.692 0.696
102 0.750 0.617 0.757 0.623 0.654 0.644 0.659 0.668
104 0.143 0.177 0.007 0.031 0.411 0.432 0.373 0.421

19

Table 11: Statistics of Open Academic Graph

Domain #papers #authors #fields #venues #institues

Computer Science 544,244 510,189 45,717 6,934 9,097
Computer Network 75,015 82,724 12,014 2,115 4,193
Machine Learning 90,012 109,423 19,028 3,226 5,455
Domain #P-A #P-F #P-V #A-I #P-P #F-F

Computer Science 1,091,560 3,709,711 544,245 612,873 11,592,709 525,053
Computer Network 155,147 562,144 75,016 111,180 1,154,347 110,869
Machine Learning 166,119 585,339 90,013 156,440 1,209,443 163,837

Table 12: Statistics of PubMed Graph

#gene #disease #chemicals #species

13,561 20,163 26,522 2,863
#G-G #G-D #D-D #C-G #C-D

32,211 25,963 68,219 31,278 51,324
#C-C #C-S #S-G #S-D #S-S

124,375 6,298 3,156 5,246 1,597

homophily is controlled by setting a center of cluster centers within-type with linear combinations of
centers (of cluster centers) of other types. Note that features of different types are allowed to have
different dimensions, as we generate different mixture-model cluster centers for each cluster within
each type.

A.7.1 Toy Heterogeneous Graph in Section 4.2

Using the synthetic graph procedure described above, we used the following hyperparameters to
simulate the toy heterogeneous graph shown in Figure 2. We generate the graph with 2 node types and
4 edge types as described in Figure 1(a), then we divide each node type into 4 classes of 400 nodes. To
generate an easy-to-transfer scenario, signal-to-noise ratio σf between means of feature distributions
are all set to 10. The ratio σe of the number of intra-class edges to the number of inter-class edges is
set to 10 among the same node types and across different node types. The dimension of features is
set to 24 for both node types.

A.7.2 Sensitivity test in Section 6.5

Figure 5(a) shows the structures of graphs we used in Section 6.5. The dimension of features are set
to 24 for both node types for the "easy" scenario, and 32 and 48 for types s and t, respectively, for the
"hard" scenario. Additionally, for the "hard" scenario, we divide the t nodes into 8 clusters instead of
4. The other hyperparameters σe and σf are described in Section 6.5. For each unique value of σ(·)
across the six (σ(·), r) pairs, we generate 5 heterogeneous graphs.

A.8 Real-world Dataset

Open Academic Graph (OAG) (28; 31; 44) is the largest publicly available heterogeneous
graph. It is composed of five types of nodes: papers, authors, institutions, venues, fields and their
corresponding relationships. Papers and authors have text-based attributes, while institutions, venues,
and fields have text- and graph structure-based attributes. To test the generalization of the proposed
model, we construct three field-specific subgraphs from OAG: the Computer Science (OAG-CS),
Computer Networks (OAG-CN), and Machine Learning (OAG-ML) academic graphs.

Papers, authors, and venues are labeled with research fields in two hierarchical levels, L1 and L2.
OAG-CS has both L1 and L2 labels, while OAG-CN and OAG-ML have only L2 labels (their L1
labels are all "computer science"). Transfer learning is performed on the L1 and L2 field prediction
tasks between papers, authors, and venues for each of the aforementioned subgraphs. Note that
paper-author (P-A) and paper-venue (P-V) are directly connected, while author-venue (A-V) are
indirectly connected via papers.

20

(a) Synthetic graph (b) OAG (c) PubMed

Figure 5: Schema of synthetic and real-world heterogeneous graphs

The number of classes in the L1 task is 275, while the number of classes in the L2 task is 17, 729. The
graph statistics are listed in Table 11, in which P–A, P–F, P–V, A–I, P–P, and F-F denote the edges
between paper and author, paper and field, paper and venue, author and institute, the citation links
between two papers, and the hierarchical links between two fields. The graph structure is described
in Figure 5(b).

For paper nodes, features are generated from each paper’s title using a pre-trained XLNet (36). For
author nodes, features are averaged over features of papers they published. Feature dimension of
paper and author nodes is 769. For venue, institution, and field node types, features of dimension 400
are generated from their heterogeneous graph structures using metapath2vec (5).

PubMed (39) is a novel biomedical network constructed through text mining and manual process-
ing on biomedical literature. PubMed is composed of genes, diseases, chemicals, and species. Each
gene or disease is labeled with a set of diseases (e.g., cardiovascular disease) they belong to or cause.
Transfer learning is performed on a disease prediction task between genes and disease node types.

The number of classes in the disease prediction task is 8. The graph statistics are listed in Table 12, in
which G, D, C, and S denote genes, diseases, chemicals, and species node types. The graph structure
is described in Figure 5(c).

For gene and chemical nodes, features of dimension 200 are generated from related PubMed papers
using word2vec (23). For diseases and species nodes, features of dimension 50 are generated based
on their graph structures using TransE (4).

A.9 Baselines

Zero-shot domain adaptation can be categorized into three groups — MMD-based methods, adver-
sarial methods, and optimal-transport-based methods. MMD-based methods (18; 20; 29) minimize
the maximum mean discrepancy (MMD) (11) between the mean embeddings of two distributions
in reproducing kernel Hilbert space. DAN (18) enhances the feature transferability by minimizing
multi-kernel MMD in several task-specific layers. JAN (20) aligns the joint distributions of multiple
domain-specific layers based on a joint maximum mean discrepancy (JMMD) criterion.

Adversarial methods (9; 19) are motivated by theory in (2; 3) suggesting that a good cross-domain
representation contains no discriminative information about the origin of the input. They learn
domain invariant features by a min-max game between the domain classifier and the feature extractor.
DANN (9) learns domain invariant features by a min-max game between the domain classifier and
the feature extractor. CDAN (19) exploits discriminative information conveyed in the classifier
predictions to assist adversarial adaptation. CDAN-E (19) extends CDAN to condition the domain
discriminator on the uncertainty of classifier predictions, prioritizing the discriminator on easy-to-
transfer examples.

Optimal transport-based methods (27) estimate the empirical Wasserstein distance (25) between two
domains and minimizes the distance in an adversarial manner. Optimal transport-based method are
based on a theoretical analysis (25) that Wasserstein distance can guarantee generalization for domain
adaptation. WDGRL (27) estimates the empirical Wasserstein distance between two domains and
minimizes the distance in an adversarial manner.

21

A.10 HGNN models

We briefly describe 6 heterogeneous graph neural networks (HGNN) models we used in the exper-
iments. MPNN (message passing neural networks) (10) is originally designed for homogeneous
graphs. We extend MPNN to process heterogeneous graphs by adding projection matrices that project
input attributes of different node types into the same feature space before running the original MPNN.
R-GCN (26) extends MPNN by specializing message matrices in each edge type, while HMPNN
specializes all transformation and message matrices in each node/edge type in MPNN. HGT (15)
extends HMPNN by adding attention modules. The attention modules have node-type-specific
key/query projection matrices and edge-type-specific key-query similarity matrices, following the
transformer architecture.

HAN (35) is a meta-path-based model who specializes parameters in each meta-path. HAN exploits
meta-path-specific attention modules to aggregate features of neighboring nodes connected by each
meta-path. Then HAN aggregates embeddings of different meta-paths with semantic-level attention
modules. MAGNN (8) is another meta-path-based HGNN model. MAGNN aggregates features of
all nearby nodes sitting on each meta-path using intra-meta-path attention modules. Then MAGNN
aggregates features of different meta-paths using inter-meta-path attention modules.

All HGNN models we describe above have layer-wise parameters. As all HGNN models have
parameters specialized in either node/edge/meta-path types, they all have distinct feature extractors
for each node types, thus, they will suffer from the under-trained target node phenomena we showed
in Section 4.2. Also, because the core intuition in KTN — namely that embeddings of any node types
at the last layer are computed using the same set of the previous layer’s intermediate embeddings (see
Section 4.3) — holds across all HGNN models, KTN can be applied to any HGNN models and show
greatly increased target-type accuracy.

A.11 Experimental Settings

All experiments were conducted on the same p2.xlarge Amazon EC2 instance. Here, we describe the
structure of HGNNs used in each heterogeneous graph.

Open Academic Graph: We use a 4-layered HGNN with transformation and message parameters
of dimension 128 for KTN and other baselines. Learning rate is set to 10−4.

PubMed: We use a single-layered HGNN with transformation and message parameters of dimen-
sion 10 for KTN and other baselines. Learning rate is set to 5× 10−5.

Synthetic Heterogeneous Graphs: We use a 2-layered HGNN with transformation and message
parameters of dimension 128 for KTN and other baselines. Learning rate is set to 10−4.

We implement LP, EP and KTN using Pytorch. For the domain adaptation baselines (DAN, JAN,
DANN, CDAN, CDAN-E, and WDGRL), we use a public domain adaptation library ADA 3. We
match the numbers of layers and dimensions of hidden embeddings across all HGNN models. We
implement MPNN and HMPNN using Pytorch. For other HGNN models (R-GCN, HAN, HGT, and
MAGNN), we use an open-source toolkit for Heterogeneous Graph Neural Network (OpenHGNN) 4.
Our code is publicly available 5.

3https://github.com/criteo-research/pytorch-ada
4https://github.com/BUPT-GAMMA/OpenHGNN
5https://github.com/minjiyoon/KTN

22

https://github.com/criteo-research/pytorch-ada
https://github.com/BUPT-GAMMA/OpenHGNN
https://github.com/minjiyoon/KTN

	Introduction
	Related Work
	Preliminaries
	Heterogeneous graph
	Heterogeneous Graph Neural Networks (HGNN)
	Problem definition

	Cross-Type Feature Extractor Transformations in HGNNs
	Feature extractors in HMPNNs
	Empirical gap between fs and ft
	Relationship between feature extractors in HMPNNs
	Generalized cross-type transformations for HGNNs

	KTN: Trainable Cross-Type Transfer Learning for HGNNs
	Algorithm

	Experiments
	Datasets
	Baselines
	Zero-shot transfer learning
	Generality of KTN
	Sensitivity analysis

	Conclusion
	Acknowledgement
	Appendix
	Proof of Theorem 1
	Indirectly Connected Source and Target Node Types
	More results for Zero-shot Transfer Learning in Section 6.3
	Analysis for Baselines in Section 6.3
	More results for Generality of KTN in Section 6.4
	Effect of trade-off coefficient
	Synthetic Heterogeneous Graph Generator
	Toy Heterogeneous Graph in Section 4.2
	Sensitivity test in Section 6.5

	Real-world Dataset
	Baselines
	HGNN models
	Experimental Settings

