
















Figure 4: Learning curves of averaged total cost (terms associated with human influence removed)
during evaluation (left), peak angle error (middle) and symmetry of step length (right) for benchmark
(w/human, COMA) and ablation (w/human, wout/human) studies. Each (smoothed) learning curve is
averaged over 5 different random seeds and shaded by their respective 95% confidence interval.

from the problem formulation. This only leaves the kinematics and symmetry measurements in the
stage cost. Similar to the benchmark study, the ablation study has a training session and evaluation
session. For comparable results, the total cost in evaluation is obtained as U = ( x)T (Rx ) x + uT Ru u.
Figures 3 and 4 show that with an estimated human control influence accounted for in the robot
control design, our cMARL solution (the green curves) outperforms the one without it (orange curves).
Treating human and robot as collaborating agents toward a shared performance goal, our cMARL
solution approach achieves increased success rate and accelerated learning speed (Figure 2). This
result makes sense as an estimated human control provides a predictive signal to the robot control
which aims at duplicating the intact human joint movement. Additional information on the quality of
estimated human control is given in Appendix B.2.

Reliability study. To make the proposed cMARL method practical and useful in real life, we setup
two new walking tasks: (1) slope walking (11.5 degree ramp) and (2) walking at an increased pace
(1.12m/s). They will result in different walking patterns from those used in the baseline study, and
thus different knee joint profiles. For slope walking, knee flexion will be more pronounced during the
stance phase since it walks inclined. In the case of faster pace, stance time will be compressed. To
carry out the tests, the same training procedure is used as in benchmark and ablation studies.

Figure. 5 shows the performance of cMARL during slope walking and increased pace walking tasks.
Performance of the two new tasks follow the same trend as that of the level ground walking at a
nominal pace. These results again validate our design approach of using the intact knee movement
trajectory as the target for the robotic knee to copy. By doing so, we have removed a major control
design barrier in the way of performing different walking tasks by automatic control.

Figure 5: Learning curves of stage cost during training (Left), peak angle error (Middle) and symmetry
of step length (Right) for different walking tasks (level ground walking at increased pace and ramp
walking). Each learning curve is averaged over 16 different random seeds and shaded by their
respective 95% confidence interval.
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Limitations of This Study. Here we conduct an in-depth simulation-based analyses as an important
first step to evaluate this novel cMARL solution to the HPC problem. Simulations are critically
important as exploration of problem formulation, control algorithm design, and systematic evaluation
are necessary to be performed prior to human experiment due to factors such as human fatigue,
human safety, human loss of interest/confidence caused by repeated trial-and-error, time spent, and
significant cost associated with testing amputee subjects. However, our framework is still to be
tested in human experiment. Based on several important works in the literature [37, 40, 68, 69],
extensive simulation studies followed by real life human test studies [41, 17, 70] have proven a highly
successful development procedure for human/robot control. This will be the next step of this study.

For scenarios in which the terrain or task has changed significantly, a task planner will become
necessary, making the problem a planning and control problem (as opposed to automatic control,
the focus of this work). This expanded automatic control algorithm must be extensively verified in
simulation and then in human tests before it can be integrated into a real-world planning framework
for daily use cases. Such planning frameworks constitute intended future works.

6 Conclusion and discussion

1) In the US, approximately 1.7 million people live with limb loss. The amputee population is
expected to double by 2050 as the population ages and incidence of dysvascular disease increases. As
most lower limb amputees use prosthetic legs to restore basic bipedal locomotion, our solution to the
prosthesis control problem can potentially help improve the function and quality of life of lower limb
amputees. 2) In this work, we develop a novel cMARL framework towards systematically integrating
the human and robot as collaborative agents to achieve normative walking toward solving real world
problems. With reaching symmetric locomotion as shared control performance goal, we demonstrate
improved walking performance. 3) Symmetry is selected as the shared goal for the collaborating
agents because asymmetric walking has been linked to secondary health complications including
back pain and osteoarthiritis [71, 72, 73]. Although human-robot walking performance goals are
difficult to systematically catalogue, additional considerations such as embodiment of the robot into
the human will be considered in future works. 4) By breaking apart the shared cost for the human and
the robot (cf. Section 5.1), the symmetrical walking task is treated and evaluated by MADDPG and
COMA, respectively. Simulation results show that the factorization-based CTDE paradigm struggles
to address the human-robot problem. The observed performance issues with factorization likely stem
from the intrinsic coupling between the human and robot agents. 5) While ensuring human user safety
has been carefully considered during control design, additional analysis of important properties such
as convergence of learning, (sub)optimality of control policy, and human-robot closed-loop stability
is still needed for this framework. Encouragingly, previous related works [74, 75, 76, 77] indicate
that these theoretical results are very likely to be provable.
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