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Abstract

Forecasting future world events is a challenging but valuable task. Forecasts of
climate, geopolitical conflict, pandemics and economic indicators help shape policy
and decision making. In these domains, the judgment of expert humans contributes
to the best forecasts. Given advances in language modeling, can these forecasts be
automated? To this end, we introduce Autocast, a dataset containing thousands of
forecasting questions and an accompanying news corpus. Questions are taken from
forecasting tournaments, ensuring high quality, real-world importance, and diver-
sity. The news corpus is organized by date, allowing us to precisely simulate the con-
ditions under which humans made past forecasts (avoiding leakage from the future).
Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g.
global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numer-
ical questions and metrics for calibration. We test language models on our forecast-
ing task and find that performance is far below a human expert baseline. However,
performance improves with increased model size and incorporation of relevant in-
formation from the news corpus. In sum, Autocast poses a novel challenge for large
language models and improved performance could bring large practical benefits.

1 Introduction

Forecasting plays a crucial role in the modern world. Climate forecasts shape the policies of
governments and companies (Gillingham et al., 2018). Economic forecasts influence investment
and employment (Christensen et al., 2018). In 2020, forecasts about the spread of COVID-19 led to
national lockdowns and border closures (Adam, 2020), slowing the spread of the virus. Consequently,
machine learning (ML) models that make accurate forecasts across a broad range of topics could
enable more informed decision making at scale and improve ML safety (Hendrycks et al., 2021c).

Two main approaches to forecasting are described in the forecasting literature: statistical and judgmen-
tal forecasting (Webby and O’Connor, 1996; Armstrong, 2001). In statistical forecasting, forecasts
are made by traditional statistical models for time-series prediction such as autoregression (Makri-
dakis et al., 2008) or by ML time-series models (Makridakis et al., 2020; Triebe et al., 2021). Humans
create and tune the models but do not tweak individual forecasts. This works well when there are
many past observations of the variable being forecast and minimal distribution shift. By contrast,
in judgmental forecasting human forecasters use their own judgment to determine forecasts. The
forecasters may use statistical models, but often integrate information from various sources including
news, accumulated knowledge, and a priori reasoning. This enables forecasting for questions where
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Jan 18, 02:41 
North Korea tested  

tactical guided missiles  
in fresh sign of  

evolving arsenal.

Feb 22, 00:00 
North Korea boasts of  
'shaking the world' by  

testing missiles that can  
strike the US.

Mar 14, 10:34 
North Korea seen  

preparing for another 
imminent ICBM system 

test.

…

Question: 
Before 1 January 2023, will 

North Korea launch an ICBM 
with an estimated range of at 

least 10,000 km?

Description: 
North Korea has not launched an 

Intercontinental Ballistic Missile (ICBM) 
since 2017… 

Start Time:  
Jan 14, 2022, 13:00 

Resolution Time: 
Mar 23, 2022, 10:19 

Resolution:  
YES

NEWS NEWS NEWS

Figure 1: Example from the Autocast dataset, including the question, the resolution of the question,
and the timeseries of aggregate human expert forecasts (Crowd) from the start date to the time the
question resolves. We train a language model to generate forecasts at each timestep, using only news
articles available at that timestep (i.e. without allowing any leakage of information from the future).

past data is scarce or subject to distribution shift (Tetlock and Gardner, 2016). For brevity, we refer to
judgmental forecasting as “forecasting” in the rest of the paper.

Because it relies on scarce human expertise, forecasting is only used for a small number of questions.
This motivates using ML to automate forecasting, e.g. by automating human information retrieval
(finding news sources), reasoning (to decide if some evidence bears on a forecast), and quantitative
modeling. ML models may also have some advantages over human forecasters. Models can read
through text or data much faster than humans and can discern patterns in noisy high-dimensional
data that elude humans. When it comes to learning, humans cannot be trained on past data in manner
simulating actual forecasting (e.g. How likely was the Soviet Union’s collapse from the viewpoint of
1980?) because they know the outcomes – but past data can be used for ML models.

As a step towards automating human forecasting, we introduce Autocast, a new dataset for measuring
ML models’ forecasting ability. Autocast includes thousands of forecasting questions collected
from human forecasting tournaments. The questions vary in the forecasting horizon from days to
decades, in the topic (including politics, economics and science), and in the answer format (e.g.
multiple-choice vs. predicting a number). The questions are pre-selected for public interest, and there
is a strong human baseline (the crowd aggregate of many competitive forecasters). The questions
in Autocast are about past events (e.g. the US 2020 election) and so ML models could answer them
simply by memorizing what happened. To test forecasting ability, we need to simulate the state of
information before the past events (“retrodiction”). To this end, we curate a corpus of news items
from Common Crawl (Nagel, 2016) that is organized by date. This means a model can be exposed
only to news from before the outcomes being forecast, allowing for a rigorous test of retrodiction.

We implement a number of baseline models on Autocast, and demonstrate how language models can
be trained on past forecasting questions by retrieving from our news corpus. We find that performance
improves with model size and that information retrieval helps. However, all baselines are substantially
worse than aggregate human forecasts. On forecasting binary outcomes, the best ML model achieves
65% accuracy vs. 92% for humans (and 50% for random). The same ML model (Raffel et al., 2020)
is close to the human ceiling when fine-tuned on other NLP benchmarks (e.g. SQuAD from Rajpurkar
et al. (2016)), which shows that Autocast is a challenging, real-world test for ML. Experiment code
and the dataset are available at github.com/andyzoujm/autocast.

Contributions.

1. We introduce Autocast, a dataset for forecasting that covers diverse topics (e.g. politics, economics,
society, science) and varying time horizons.

2

 https://github.com/andyzoujm/autocast


Question Summary Category Answer Type Resolution
Will a Tesla car demonstrate fully

autonomous capability before the end of 2021? Science & Tech T/F No

What will be Putin’s approval rating value 3
months after the potential invasion of Ukraine? Politics Numerical 83

When will the US-Canada border reopen? Social Numerical Nov 8, 2021

How many vacancies will arise on the U.S. Supreme
Court in 2021? (A) 0 (B) 1 (C) 2 (D) 3 or more Economy MCQ A

Table 1: Examples from the Autocast dataset. For brevity, we do not depict the full question
specification, which often includes context, definitions, and detailed resolution criteria.

2. Part of our dataset is a large news corpus organized by date, allowing us to rigorously evaluate
model performance on historical forecasts.

3. We show that forecasting is challenging for current language models, with accuracy and calibration
far below a strong human baseline.

2 Related Work
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Figure 2: The number of questions in Autocast
by publish date. Unresolved questions are about
events after 2022 (e.g. the 2024 US Election). They
are not included in the test set but can be used as
auxiliary training data. Note that the number of
questions is accelerating. Future questions will be
added to Autocast, improving it over time.

Forecasting. A recent experiment
(Kirk Bonde, 2022) tested GPT-3 in the
few-shot setting on true/false questions col-
lected from Metaculus (one of the sources for
Autocast). However, since questions were not
filtered by date, some answers would have ap-
peared in GPT-3’s training data. Similar to our
work, ForecastQA (Jin et al., 2021) is a dataset
of forecasting questions that covers a range of
topics. However, ForecastQA’s questions were
written by crowdworkers without forecasting
experience. Consequently, the questions are
often nonsensical or ambiguous given the lack
of additional context, e.g. “To how many people
will the Representative of an internet speak
to by September 2019?”, or “In July 2019,
will an article say there were no volunteers
in 2016?”. We found that a high percentage
of ForecastQA questions suffer from these
issues. By contrast, our questions were written
by experienced forecasters and are always
unambiguous given the full question description.
Finally, ForecastQA’s human baseline was done
retrospectively (making it unrealistic) whereas our dataset contains expert human forecasts from real
forecasting questions.

Information Retrieval. Information retrieval is crucial for forecasting, as good forecasts depend on
up-to-date, specialized information drawn from multiple sources (Tetlock and Gardner, 2016). Recent
work has used information retrieval to improve question-answering in large language models (Lewis
et al., 2020; Nakano et al., 2021; Shuster et al., 2021) or to address time-sensitive questions (Chen
et al., 2021). This has been applied to tasks that are related to forecasting, such as fact checking and
truthful question-answering. In forecasting, it is useful to read and compare multiple news articles
daily, in order to build an accurate picture of the current state, and then to iterate this process. We
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Figure 3: Autocast contains questions about locations across the world. The questions in the dataset
mention over 500 cities, spanning six continents.

design an architecture for this purpose (albeit with limits on article length and time horizon), drawing
inspiration from Wang and McAllester (2020).

Calibration. Calibration is important in forecasting (Tetlock and Gardner, 2016). Even expert
forecasters will be highly uncertain about some outcomes of interest. Such forecasts will be more
useful in the form of calibrated probabilities than as point estimates. Thus forecasters are evaluated
with proper scoring rules, which incentivize calibration. There is an extensive literature on improving
the calibration of deep learning models (Guo et al., 2017; Nguyen and O’Connor, 2015; Lin et al.,
2022; Minderer et al., 2021; Kull et al., 2019), mostly for classification with a fixed set of classes.
One part of Autocast requires models to forecast continuous quantities varying over multiple orders
of magnitude, which has not been explored in prior work.

Truthful question-answering. Current language models often generate falsehoods when answering
questions (Shuster et al., 2021; Lin et al., 2021), and they also achieve poor calibration when
giving probabilistic answers (Hendrycks et al., 2021a) to human knowledge questions. However,
for questions with a known ground truth answer, we expect models to improve as a result of scale,
fine-tuning, and information-retrieval from reliable sources (Bai et al., 2022; Nakano et al., 2021;
Hadfield-Menell et al., 2016; Turner et al., 2020; Wainwright and Eckersley, 2019). Yet humans also
want models to give calibrated and truthful answers to questions that are too difficult or costly for
us to answer ourselves (Irving et al., 2018; Evans et al., 2021; Leike et al., 2017; Hendrycks et al.,
2021d; Reddy et al., 2020; Nahian et al., 2021). Forecasting is useful for this purpose. Forecasting
questions are challenging but eventually become easy to evaluate. By contrast, it may be difficult for
humans to evaluate superior answers to open problems in fundamental philosophy or science.

3 The Autocast Dataset

Forecasting Questions. We collected all available forecasting questions from three public fore-
casting tournaments (Metaculus, Good Judgment Open, and CSET Foretell), which resulted in 6,707
questions total. These questions tend to have broad public interest (e.g., national rather than local
elections) and clear resolution criteria. Most questions are not already covered well by specialized
forecasts (such as weather forecasts). The questions are either true/false, multiple-choice, or involve
forecasting a numerical quantity or date (see Table 1 for examples). In these forecasting tournaments,
participants begin forecasting a question on a given day (the “start date”) and update their forecasts
multiple times up until the “close date.” At some later time, the forecast is resolved and participants
are scored based on all their forecasts. (Note the resolution date is often just after the closing date but
not always. The resolution can also happen before the planned closing date: e.g. when forecasting
when an event will occur.) Thus the “crowd” forecast (which aggregates over participants) is a
time-series of forecasts from the start to close date.
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Figure 4: Illustration of our FiD Temporal model. Forecasts are made each day (from start date
to resolution) by GPT-2. The input to GPT-2 is the top-1 daily news article retrieved by BM25,
which is encoded by FiD Static (a T5 model). In training, GPT-2’s target is the average of daily
crowd predictions (denoted ‘F c

t ’ for day t) and the resolved outcome. Like human forecasters, GPT-2
accumulates news information over time and updates its predictions.

Autocast includes the question, the start and close dates, the answer (if the question has resolved),
and the time-series of crowd forecasts (Figure 1). Half of the questions have not yet resolved and
correspond to ongoing tournaments. Some of these questions concern events decades in the future,
requiring reasoning over long time horizons. These questions can still be used as training data by
using the crowd forecast as the target (as a high-quality proxy for the ground truth). However, the test
set only includes resolved questions. Our dataset also includes metadata that is helpful for forecasting.
There is detailed background information about the question (including precise terms of resolution)
and also links to relevant information posted by tournament participants. We include more details in
the appendix.

Train and test split. It is standard in ML for the test set to be drawn from the same distribution as
the train set. However, randomly splitting our questions into train and test without considering the
date would not simulate the conditions of forecasting. For example, a test question (“Will Trump
win the 2020 election?”) could come from an earlier date than a related training question (“Will
President Biden pass the stimulus?”). Thus, we split our questions using a date cut-off of mid-2021,
which means that questions in the test set resolve from mid-2021 to mid-2022. Note that if a model is
pre-trained on data from after mid-2021, this will also not simulate forecasting faithfully. In both
train and test sets, we implement dataset balancing for the true/false questions. To flip a label, we
negate the question using OpenAI’s GPT-3-175B Edit model (Brown et al., 2020) and manually check
for correct negation.

Contemporaneous news as context for forecasts. When a human is making a forecast at time
t, they use past and present (≤ t) information sources but are not exposed to any information from
the future (> t). If they forecast again at t+ 1, they will have updated on new information that was
generated from t to t+ 1. These conditions can be simulated for ML models by (a) pre-training on
text generated before time t, and (b) providing the model with new information generated between
t and t + 1. To this end, we provide a corpus of news articles scraped from CommonCrawl news
(Nagel, 2016; Hamborg et al., 2017) that is organized by publish date. The articles were derived from
diverse sources between 2016 to mid-2022 and total more than 200GB of data.
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Model Parameters T/F MCQ Numerical Score Average
Random – 50.0 22.1 34.5 18.8 18.8

UnifiedQA
0.2B 45.4 23.5 34.5 17.2

19.50.8B 48.2 23.5 34.5 18.6
2.8B 54.9 25.1 34.5 22.8

T5
0.2B 61.3 24.0 20.5 32.4

32.90.8B 60.0 29.1 21.7 33.7
2.8B 60.0 26.8 21.9 32.5

FiD Static
0.2B 62.0 29.6 24.5 33.5

37.20.8B 64.1 32.4 21.8 37.4
2.8B 65.4 35.8 19.9 40.6

FiD Temporal
0.6B 62.0 33.5 23.9 35.8

37.81.5B 63.8 32.4 21.0 37.6
4.3B 62.9 36.9 19.5 40.1

Human Crowd – 92.4 81.0 8.5 82.5 82.5

Table 2: Model accuracy on the Autocast dataset for each question type: true/false (T/F), multiple-
choice question (MCQ), and numerical (Numerical). For Numerical, lower is better. For other metrics,
higher is better. The model FiD Static (based on T5) retrieves the top 10 news articles over the period,
while FiD Temporal (based on GPT-2 with T5 encoder) retrieves the top 1 article each day. Averaging
over all model sizes, we find that the FiD Temporal achieves the best average.

3.1 Dataset Analysis

Distribution of Questions. The questions in Autocast cover a very wide variety of topics. We
divide the questions into five main categories: Economy, Politics, Science, Social, and Other. Each
category contains numerous subcategories for a total of 44 subcategories ranging from foreign policy
to AI. We list all subcategories in the Supplementary Material. The questions also cover a wide
geographical distribution, as shown in Figure 3. Overall, Autocast tests both breadth of subject matter
and depth (since questions ask for quantitative predictions about a specific, operationalized variable).

Adding new questions over time. The number of questions submitted to forecasting platforms is
rapidly increasing (Figure 2). If trends continue, in two years there will be twice as many questions
available. Autocast is a living dataset and will be updated periodically with new questions. This will
provide both more data for training and a new set of test questions (to assess overfitting).

Human forecasts. The human crowd forecast for a given question becomes more accurate from
the start to closing date, as shown in Figure 6. This is what we would expect if humans are updating
their forecasts as more information comes out. In contrast to most ML benchmarks, the human
crowd judgments are probabilistic. This allows us to evaluate their calibration. In the Supplementary
Material, we show that crowd forecasts are well-calibrated.

Distribution shift. We expect a distribution shift over time in both the questions being asked and in
the answers. For example, there will be fewer questions about Ukraine before 2022. This distribution
shift is inherent to forecasting and so it is crucial that models can manage it. We do find a shift in
the distribution of question categories. For example, the number of questions in the Social category
increased from 12.6% in the training set to 28.2% in the test set, possibly due the Covid-19 pandemic
(which is included in Social).

4 Experiments

4.1 Baselines

The Crowd baseline uses the final aggregate human forecast before the closing date. The Random
baseline uses the analytically computed random accuracy for true/false and multiple-choice questions.
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For numerical questions, random predictions are sampled uniformly from the bounded range of
possible answers specified in each question.

Models without retrieval. We evaluate UnifiedQA-v2 (Khashabi et al., 2022) and T5 (Raffel et al.,
2020) models of various sizes. These models are trained on a variety of tasks, enabling strong
generalization on many unseen language tasks. Using zero-shot prompting for UnifiedQA, we report
results on classification questions. The UnifiedQA models were not trained on numerical questions,
hence, we report random performance to enable comparison with other baselines. T5 is fine-tuned
using its original output head for true/false and multiple-choice questions. To output numerical
answers with T5, we add an additional linear output head.

"Philippines' Pacquiao says he is not to be
counted out of presidential race"

"Marcos Jr holds big lead in poll for
Philippines presidency'"

"Explainer: A guide to the Philippines 2022
elections"

Who will win the 2022 presidential election
in the Philippines?

?
Question

Retrieved Articles

(3/13/22)

(2/9/22)

(Resolves 5/9/22)

(4/8/22)

Figure 5: Articles retrieved by BM25 for a Politics
question in the Autocast dataset with publication
dates in parentheses. The articles are retrieved
from 200GB of news and are highly relevant to
making an informed forecast.

Retrieval-Based Methods. We investigate
whether retrieval models can improve perfor-
mance by selecting relevant articles from the
news corpus included with Autocast. Impor-
tantly, news articles after the close time or res-
olution time of a question are not available for
retrieval, so retrieved articles only include in-
formation about the past. For all retrieval meth-
ods, we use Fusion-in-Decoder or FiD (Izacard
and Grave, 2021) to encode articles retrieved
by BM25 (Robertson et al., 1994; Thakur et al.,
2021) with cross-encoder reranking. FiD uses
T5 to encode retrieved passages along with the
question and can be viewed as a minimal ex-
tension of T5 for incorporating retrieval. We
truncate retrieved articles to a maximum length
of 512 tokens.

The FiD Static baseline uses the top 10 retrieved
articles after reranking, which is the standard
method for retrieval-augmented prediction. The
FiD Temporal baseline leverages the interme-
diate crowd predictions (before the question is
resolved) as auxiliary supervision. The intuition is that crowd predictions will change based on
rational incorporation of new evidence, and these updates will not be captured by just training on the
final outcome. For each day between the question’s open and close date, we generate an embedding
of the top news article using the frozen fine-tuned FiD Static model. These embeddings are then
treated as input embeddings to an autoregressive model (GPT-2 (Radford et al., 2019)), which is
fine-tuned to predict the average of the daily crowd prediction and the ground truth outcome. We
illustrate this method in Figure 4. Figure 1 shows predictions from an FiD Temporal model over time
for an example question.

4.2 Metrics

For true/false and multiple-choice questions, we evaluate models using percent accuracy. For
numerical questions, we use ℓ1 distance, bounded between 0% and 100%. We denote these question
types as T/F, MCQ, and Numerical, respectively. To evaluate aggregate performance, we use a
combined Score metric (T/F + MCQ − Numerical)/2, which has an upper bound of 100%. A score
of 100% indicates perfect prediction on all three question types. Note that since numerical question
responses are normalized between 0% and 100%, the combined Score metric is lower-bounded at
−50%. We also report the Average score, which averages the combined metric of all model sizes.

4.3 Forecasting Evaluation

Setup. We fine-tune the T5 baseline for 10 epochs with a batch size of 8, an initial learning rate
of 5× 10−5 with linear decay schedule, and a weight decay of 1× 10−2. The maximum sequence
length of the T5 model is set to 512. We train FiD Temporal models for 5 epochs with a constant
learning rate of 5 × 10−5. Hyperparameters are selected based on early experiments. Additional
details are in the Supplementary Material.
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Results. We show results in Table 2. Although UnifiedQA-v2 obtains strong performance on various
natural language benchmarks, it obtains close to random zero-shot performance on Autocast, showing
the difficulty of forecasting. Fine-tuned T5 performs better, but multiple-choice accuracy is still at
nearly random chance levels. Retrieval-based methods substantially outperform both UnifiedQA-v2
and T5, showing a relative increase in the Average score of 93% and 15%, respectively. Moreover,
retrieval-based methods become more effective as parameter count increases, which suggests that the
models learn to extract relevant information from retrieved articles.

Comparing the FiD Static and FiD Temporal baselines, we see that the Average score is slightly
higher for FiD Temporal. However, the largest FiD Static model has the highest individual score.
Thus, our temporal training strategy for incorporating the auxiliary crowd predictions neither harms
nor helps compared to the static retrieval baseline. Future work could develop more effective ways of
using these auxiliary training signals.

4.4 Model Analysis

60 50 40 30 20 10 0
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60
65
70
75
80
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e

Performance Over Time
Ensemble (Ours)
Crowd

Figure 6: For the crowd and an ensemble of the
two largest FiD Temporal models, prediction score
increases as the resolution date grows nearer. This
trend may be due to more relevant information
becoming available over time, which the model
can access through retrieval from the news corpus.

Relevance of Retrieved Articles. We find that
the retrieved articles are often highly relevant to
the question. In Figure 5, we show examples of
articles retrieved by BM25 from the news cor-
pus in Autocast. Baseline models have access to
the article text, but for brevity we only show the
article title. The articles give information that
is clearly relevant for making an informed fore-
cast. Note that the T5 backbone for the baselines
was pre-trained on data from before 2020, far
before the timeline of the question, so retrieval
provides vital information that models would
not otherwise have. This suggests that large im-
provements on Autocast could come from inte-
grating information from retrieved articles more
effectively. We expect that more sophisticated
retrieval methods would also improve perfor-
mance, although efficiency becomes a concern
when using large retrieval methods.

Detailed Performance. In the Supplementary
Material, we show the performance of baseline
methods on a more granular level. The per-
category results indicate that Science & Technol-
ogy is the most challenging category for models,
whereas human forecasters have relatively consistent performance across categories. Inspecting the
subset of questions that have been active for at least two months, we also find that the accuracy of the
human crowd forecast and a model ensemble steadily increases over time up to the resolution date
(Figure 6). This is to be expected, as more information about the eventual outcome is available closer
to the time (e.g. election polls become more accurate). For this plot, we show an ensemble of the two
largest FiD Temporal models, which has slightly higher final performance than the individual models
and a clearer trend over time.

5 Calibrated Prediction of Numerical Quantities

In our results, we evaluate baselines on the accuracy of their point estimates, rather than their
calibration. However, the eventual goal for Autocast is for models to achieve good calibration as well
as accuracy. Here we describe an auxiliary dataset that helps with this goal for the challenging case
of calibration on numerical questions.

The IntervalQA Dataset. In the Autocast training set, numerical quantities range over many
orders of magnitude. Furthermore, Autocast has fewer than 1,000 numerical training questions. This
problem of making calibrated predictions for quantities over many orders of magnitude using text
inputs has not been addressed in work on calibration for language models. To this end, we curate

8



Parameters Point Estimate Distance Conf. Interval Length RMS Calibration Error
22M 20.8 2072.4 19.1
44M 20.3 1115.7 16.6
86M 19.6 763.1 16.9
304M 18.1 305.4 13.5

Table 3: Results for DeBERTa-v3 models trained to output confidence intervals on our dataset of
numerical predictions. The high dynamic range of the targets leads to large confidence intervals, but
median interval size decreases with larger models as does RMS Calibration Error.

IntervalQA, an auxiliary dataset of numerical estimation problems and provide metrics to measure
calibration. The problems in the dataset are not forecasting problems but instead involve giving
calibrated predictions for fixed numerical quantities. The questions were sourced from NLP datasets
covering diverse topics and with answers varying across orders of magnitude: SQuAD, 80K Hours
Calibration (80k, 2013), Eighth Grade Arithmetic (Cobbe et al., 2021), TriviaQA (Joshi et al., 2017),
Jeopardy, MATH (Hendrycks et al., 2021b), and MMLU (Hendrycks et al., 2021a). We filtered these
datasets for questions with numerical answers, which yielded about 30,000 questions.

5.1 Metrics

We evaluate whether confidence intervals are calibrated. Concretely, if a method outputs 80%
confidence intervals on each test example, we would like the true prediction target to fall inside of
these intervals 80% of the time. Additionally, we would like for models to be calibrated across their
entire dynamic range of outputs. To measure this, we compute RMS Calibration Error similarly
to Nguyen and O’Connor (2015) and Hendrycks et al. (2019), but with fixed confidence levels
c ∈ {50%, 55%, . . . , 95%} and such that calibration is sensitive to dynamic range. We describe this
metric in detail in the Supplementary Material. Low RMS Calibration Error indicates that models are
calibrated across their entire dynamic range. We also compute the median prediction error between
the predicted point estimate and the ground-truth target (Point Estimate Distance) and the median
interval length averaged across all confidence levels (Conf. Interval Length).

5.2 Experiments

We fine-tune DeBERTa-v3 models (He et al., 2020) to predict a point estimate and a set of confidence
intervals corresponding to the confidence levels in the RMS calibration error metric. On a high level,
we use a loss with three components: (1) MSE loss between the predicted point estimate and the
ground-truth target, (2) MSE loss between the boundaries of the predicted confidence intervals and
the ground-truth target for boundaries that are on the wrong side of the target, (3) a penalty on the
length of the predicted intervals to encourage finer predictions. The models are trained for 5 epochs
with a batch size of 100. A detailed description is in the Supplementary Material. We show results in
Table 3. All three metrics decrease with model size.

6 Conclusion

We introduced Autocast, a dataset for measuring the ability of neural networks to forecast future
world events. The dataset contains thousands of forecasting questions from public forecasting
tournaments, including ground truth outcomes and aggregated human predictions. We also curated
a large corpus of news items from the Common Crawl news corpus, enabling rigorous evaluations
without information leakage. We evaluated numerous baseline algorithms and demonstrated that
model size and information retrieval can improve forecasting performance. To better evaluate
calibration for numerical prediction, we introduced IntervalQA, a large collection of numerical
prediction questions with a wide dynamic range of prediction targets, and evaluated state-of-the-art
language models. Our results show significant room for future improvement.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] We use an internal compute cluster.
Most baselines required a single GPU, but the largest models required 4 GPUs. In total,
we use approximately 200 GPU-hours to train all baselines.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See the Supplementary Materials
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] There is no personally identifiable information;
crowd predictions are anonymized and aggregated

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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