
A Proofs

A.1 Proof of Theorem 3.4

Proof. With Assumption 3.1, we have
LMAE(h) = Ex1,x2

∥h(x1)− x2∥2

= Ex1,x2∥h(x1)− x2∥2 + ε− ε

≥ Ex1,x2
∥h(x1)− x2∥2 + ∥x2 − hg(x2)∥2 − ε (∥x2 − hg(x2)∥2 ≤ ε)

≥ 1

2
Ex1,x2

∥h(x1)− hg(x2)∥2 − ε (∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2)

= −Ex1,x2h(x1)
⊤hg(x2)− ε+ 1. (h(x) and hg(x) are normalized)

We formulate the features as two matrices H ,Hg. We denote H(x1) =
√
dx1h(x1) as the x1-th

column of the matrix H and Hg(x2) =
√
dx2h(x2) as the x2-th row of the matrix Hg. As defined

before, (AM )x2,x1
is the joint distribution of x1 and x2, i.e., (AM )x2,x1

= wx1,x2
. We denote

the normalized form of AM as ĀM , i.e., (ĀM )x2,x1
=

wx1,x2√
dx1

√
dx2

. Then we can reformulate the

reconstruction loss,

LMAE(h) ≥ −
∑
x1,x2

wx1,x2√
dx1dx2

√
dx1

h(x1) ·
√

dx2
hg(x2)− ε+ 1

= − tr(ĀMHH⊤
g )− ε+ 1

≥ −1

2
(∥ĀMH∥2 + ∥Hg∥2)− ε+ 1.

As the output of decoder is normalized, i.e., ∥Hg∥2 = 1. we obtain

LMAE(h) ≥ −1

2
(tr(Ā⊤

M ĀMHH⊤) + 1)− ε+ 1 = −1

2
tr(Ā⊤

M ĀMHH⊤)− ε+
1

2
. (16)

Then we element-wise compute Ā⊤
M ĀM and HH⊤, we have

(Ā⊤
M ĀM )x1,x

+
1
=

∑
x2

wx1,x2
wx1,x

+
2

dx2

√
dx1dx+

1

. (17)

(HH⊤)x+
1 ,x1

=
√
dx1d x+

1
h(x1)

⊤h(x+
1 ). (18)

As the trace is the sum of the diagonal value of the matrix, we consider x1-th diagonal value of
(Ā⊤

M ĀMHH⊤), i.e.,

(Ā⊤
M ĀMHH⊤)x1,x1 =

∑
x+
1

(A⊤
MAM )x1,x

+
1
(HH⊤)x+

1 ,x1
=

∑
x+
1

∑
x2

wx1,x2wx+
1 ,x2

dx2

h(x1)
⊤h(x+

1 ).

(19)
With that, we can element-wise expand Eq. (16),

LMAE(h) ≥ −1

2
Ex1,x

+
1 ∼p̂(x,x+)h(x1)

⊤h(x+
1 )− ε+

1

2
,

where p̂(x1, x
+
1 ) =

∑
x2

wx1,x2
w

x
+
1 ,x2

dx2
. Similarly, we define a matrix Hg, where (Hg)x2

=√
dx2hg(x2). We let (ĀM )x2,x1

=
wx1,x2√
dx1

√
dx2

and we obtain

LMAE(h) ≥ − tr(HH⊤
g ĀM )− ε+ 1

≥ −1

2
(∥H∥2 + ∥Ā⊤

MHg∥2)− ε+ 1 (tr(AB) ≤ 1

2
∥A∥2 + ∥B∥2)

= −1

2
(tr(ĀM Ā⊤

MHgH
⊤
g ) + 1)− ε+ 1 (Hg is normalized)

≥ −1

2
Ex+

2 ∼p̄(x2,x
+
2 )hg(x2)

⊤hg(x
+
2 )− ε+

1

2
,
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where p̄(x2, x
+
2 ) =

∑
x1

wx1,x2wx1,x
+
2

dx1
.

A.2 Proof of Corollary 3.5

With Theorem 3.4, we know that

LMAE(h) ≥ −1

2
Ex1,x

+
1 ∼p̂(x,x+)h(x1)

⊤h(x+
1 )− ε+

1

2
.

As the decoder is L-bi-Lipschitz, we obtain

∀ (x1, x2), 1/L · ∥x1 − x2∥2 ≤ ∥g(x1)− g(x2)∥2 ≤ L · ∥x1 − x2∥2. (20)

So,

LMAE(h) ≥ −1

2
Ex1,x

+
1 ∼p̂(x1,x

+
1 )h(x1)

⊤h(x+
1 )− ε+

1

2

=
1

4
Ex1,x

+
1 ∼p̂(x1,x

+
1 )∥h(x1)− h(x+

1 )∥2 − ε (h(x) is normalized)

=
1

4
Ex1,x

+
1 ∼p̂(x1,x

+
1 )∥g(f(x1))− g(f(x+

1 ))∥2 − ε

≥ 1

4L
Ex1,x

+
1 ∼p̂(x1,x

+
1 )∥f(x1)− (f(x+

1 )∥2 − ε (Equation (20))

= − 1

2L
Ex1,x

+
1 ∼p̂(x1,x

+
1 )f(x1)

⊤f(x+
1 )− ε+

1

2
.

A.3 Proof of Theorem 3.6

Proof. When the encoder fully collapses, the encoder f maps all the features to the same point c, i.e.,

∀x ∈ X1, f(x) = c. (21)

Then,
LMAE(h) = Ex1,x2∥g(f(x1))− x2∥2

= Ex2
∥g(c)− x2∥2

(22)

We then select a g(c) to make Equation (22) minimal. According to KKT conditions, it has a
closed-form solution q⋆, satisfying

2Ex2
(q⋆ − x2) = 0. (23)

i.e., Q⋆ = Ex2
x2. Then

LMAE(h) = Ex2
∥g(c)− x2∥2

≥ Ex2
∥Ex′

2
x′
2 − x2∥2

= Var(x2).

A.4 Proof of Theorem 3.7

With Corollary 3.5, we have

LMAE(h) ≥ −1/(2L) · Ex1,x
+
1
f(x1)

⊤fg(x
+
1 )− ε+ const. (24)

Then we set λ = 1
4L and we obtain

LU-MAE(h) = LMAE(h) + 1/(4L) · Lunif (f)

≥ 1/(2L) · Lalign(f) + 1/(4L) · Lunif (f)− ε+ const

= 1/(4L) · LSCL(f)− ε+ const.

(25)
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A.5 Proof of Theorem 4.1

Proof. We compose the marginal distribution of x1 as a matrix D and Dx1
= dx1

is the x1-th row of
D. And we denote U as the matrix composed of encoder features, i.e., Ux1

=
√
dx1

f(x1). Recall

that Ax1,x
+
1
= A(x1, x

+
1 ) and Ā is the normalized form of A, i.e., Ax1,x

+
1
=

A(x1,x
+
1 )√

dx1 ·dx
+
1

. Then we

reformulate the downstream error,

Ex,y∥y −Wff(x)∥2 =
∑

(x1,yx1
)

dx1∥yx1 −Wff(x1)∥2

= ∥D1/2Y − UWf∥2

= ∥D1/2Y − ĀC + ĀC − UWf∥2,

where Cx1,j =
√
(di)1yx1

=j . Then we consider the relationship between the downstream error and

the augmentation graph, we element-wise consider the matrix (D1/2Y − ĀC),

(D1/2Y )x1,j =
√
(dx1)1yx1

=j , (ĀC)x1,j =
∑
x+
1

wx1,x
+
1√

dx1
·
√
dx+

1

√
(dx+

1
)1y

x
+
1
=j . (26)

So when j = yx1
,

(D1/2Y − ĀC)x1,j =
√

(dx1)1yx1
=j −

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

=
√

dx1
−

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

=
∑
x+
1

A(x1, x
+
1 )√

dx1

−
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

=
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=j

=
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

.

(27)

When j ̸= yx1
,

(D1/2Y − ĀC)x1,j =
√
(dx1)1yx1

=j −
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

= 0−
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

= −
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j .

(28)
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We define βx1 =
∑
x+
1

A(x1, x
+
1 )1y

x
+
1
̸=yx1

, and we have

∥(D1/2Y − ĀC)x1
∥2 = (

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 +
∑

j ̸=yx1

(
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j)

2

≤ (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 + (
∑

j ̸=yx1

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j)

2

≤ (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 + (
∑
x+
1

A(x1, x
+
1 )√

dx1

∑
j ̸=yx1

1y
x
+
1
=j)

2

= (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 + (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2

=
2β2

x1

dx1

.

(29)

With that, we obtain ∥D1/2Y − ĀC∥ =
∑
x1

2β2
x1

dx1
. As we assume that Ex̄∼Pd

(A(x1|x̄)1yx1 ̸=ȳ) ≤ α,

so ∑
x1,x

+
1

A(x1, x
+
1 )1y

x
+
1
̸=yx1

=
∑
x1,x

+
1

Ex̄(A(x1|x̄)A(xx+
1
|x̄)1y

x
+
1
̸=yx1

)

≤
∑
x1,x

+
1

Ex̄(A(x1|x̄)A(xx+
1
|x̄)(1yi ̸=ȳ + 1y

x
+
1
̸=ȳ))

= 2Ex̄∼Pd
(A(x1|x̄)1yx1

̸=ȳ)

≤ 2α.

(30)

Then we have

∥D1/2Y − ĀC∥ =
∑
x1

2β2
x1

dx1

≤
∑
x1

2βx1
(dx1

=
∑
x+
1

A(x1, x
+
1 ) ≥

∑
x+
1

A(x1, x
+
1 )1yx1

̸=y
x
+
1

)

= 2
∑
x1,x

+
1

A(x1, x
+
1 )1yx1

̸=y
x
+
1

(definition of βx1)

≤ 4α. (Equation (30))

Then we obtain

Ex,y∥y −Wff(x)∥2

= ∥D1/2Y − ĀC + ĀC − UWf∥2

≤ 2∥ĀC − UWf∥2 + 8α (∥A+B∥2 ≤ ∥A∥2 + ∥B2∥)
= 2∥(Ā− UUT + UUT )C − UWf )∥2 + 8α

= 2∥(Ā− UUT )C + U(UTC −Wf )∥2 + 8α

≤ 4(∥(Ā− UUT )C∥2 + ∥U(UTC −Wf )∥)2 + 8α (∥A+B∥2 ≤ 2(∥A∥2 + ∥B∥2))
≤ 4(∥(Ā− UUT )∥2∥C∥2 + ∥U∥2∥(UTC −Wf )∥2) + 8α (∥AB∥ ≤ ∥A∥∥B∥)

≤ 4(∥(Ā− UUT )∥2 + ∥(UTC −Wf )∥2) + 8α (∥C∥ = 1, ∥U∥ = 1)

= 4LSCL(f) + const+ ∥(UTC −Wf )∥2 + 8α (Lemma B.8 in [13])

≤ 16L · LU-MAE(h) + 8Ey[Ex|yf(x)− by]
2 + 8α+ 16Lε+ const. (Theorem 3.7)

≤ 16L · LU-MAE(h) + 8α+ 16Lε+ const. (Wf is a mean classifier)
(31)
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In the next step, we analyze the prediction error. We denote ȳ as the ground-truth label of original data
x̄. We first define a ensembled linear predictor c′f . For an original sample, the predictor ensembles
the results of all different views and choose the label predicted most. With the definition, ȳ ̸= c′f (x̄)
only happens when more than half of the views predict wrong labels. So

Pr(ȳ ̸= c′f (x̄))

≤ 2Pr(ȳ ̸= cf (x))

≤ 4Ex̄∼Pd(x),x∼M1(x|x̄)∥ȳ −Wff(x)∥2 (Claim B.9 in [13])

≤ 8(Ex,y∥y −Wff(x)∥2 + Ex̄∼Pd(x),x∼M1(x|x̄)∥y − ȳ∥2) (∥A+B∥2 ≤ ∥A∥2 + ∥B2∥)
≤ 8(Ex,y∥y −Wff(x)∥2 + 2α) (definition of α)
≤ 32LSCL(f) + 64α+ 16α+ const

≤ 128L · LU-MAE(h) + 64α+ 16α+ 128Lε+ const

≤ 128L · LU-MAE(h) + 80α+ 128Lε+ const.

A.6 Proof of Theorem 4.2

Proof. With Equation (31), we have

LU-MAE(h) ≥
1

4L
∥A− UU⊤∥2 − ε+ const. (32)

We set Lmf (U) = ∥(Ā−UUT )∥2. When U⋆ is the minimizer of Lmf (U), according to the analysis
in [11], we obtain

∥(Ā− U⋆(U⋆)T )∥ =

N1∑
i=k+1

λ2
i , (33)

where λk+1 · · ·λN1
are the N1 − k largest eigenvalues of matrix Ā. We denote h⋆ is the minimizer

of LU-MAE and f⋆ is the corresponding encoder. Then Uf⋆ is composed of the features encoded by
f⋆, i.e., (Uf⋆)x1

=
√
dx1

f⋆(x1). So for all h ∈ H, we have

LU-MAE(h) ≥ LU-MAE(h
⋆) ≥ 1

4L
∥A− Uf⋆(Uf⋆)

⊤∥2 − ε+ const

≥ 1

4L
∥A− U⋆(U⋆)⊤∥2 − ε+ const

=
1

4L
(

N1∑
i=k+1

λi)
2 − ε+ const.

(34)

B Additional Experiment

B.1 Experiment Details of Computing Effective Rank

We conduct experiments on ImageNet-100 and use ViT-Base as the backbone. We compare two
kinds of pretrained encoders: 1) the encoder trained with original MAE loss, 2) the encoder trained
with U-MAE loss (λ = 0.0001). Then we store the normalized encoded features. We construct
a feature matrix A with n (n=100) random samples and compute its singular values σ1, . . . , σn.
Then, we compute the effective rank [24] of the feature matrix as follows. We first compute the
distribution of sigular values, i.e., pk = σk

∥σ∥1
. Then we can obtain the effective rank with that:

Erank(A) = exp(−
n∑

k=1

pk log(pk)).
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Table 4: Online linear accuracy of MAE and U-MAE loss.

CIFAR-10 ImageNet-100 ImageNet-1K
Method ViT-Tiny ViT-Base ViT-Base ViT-Large ViT-Base ViT-Large

MAE 52.9 59.5 37.5 39.5 39.7 43.4
U-MAE 69.4 72.0 56.3 61.4 46.5 52.1

B.2 Experiment Details of Section 4.2

We conduct the verification experiment of Section 4.2 on ImageNet-100. We set patch size to 16
and use random masking. When computing the distance, we compute the max l2 distance between
the patches of two images and denote it as the distance between two images. Then we compute the
average distance of different images. When computing the distance of intra-class samples, we only
compute the distance between the samples in the same class. While for inter-class distance, we only
compute the distance between the samples of different classes. To reduce the amount of calculation,
we random select 10 classes of ImageNet-100 for this experiment.

B.3 Additional Experiment Details of Section 5.1

For CIFAR-10, we train ViT-Tiny on 1×NVIDIA V100 with 1600 epochs, which needs about 23
hours, and ViT-Base on 1×NVIDIA V100 with 1600 epochs, which needs about 25 hours. For
ImageNet-100, we train ViT-Base on 4×NVIDIA V100 with 200 epochs, which needs about 37
hours, and ViT-Large on 4×NVIDIA V100 with 200 epochs, which needs about 42 hours.

B.4 Details of Visualization Results in Figure 3(a)

We use t-SNE to to visualize the representations learned with MAE and U-MAE loss on random 10
classes of ImageNet. The ten classes are 0) "cock", 1) "hen", 2) "tiger shark, Galeocerdo cuvieri",
3) "tench, Tinca tinca", 4) "goldfish, Carassius auratus", 5) "hammerhead, hammerhead shark",
6) "electric ray, crampfish, numbfish, torpedo", 7) "stingray", 8) "great white shark, white shark,
man-eater, man-eating shark, Carcharodon carcharias", 9) "indigo bunting, indigo finch, indigo bird,
Passerina cyanea",

B.5 Online Linear Evaluation Experiments

Besides the offline linear evaluation results in Section 5, we also present the results obtained by an
online linear classifier. Specifically, we train a linear head along the MAE training process and detach
its gradients. From Table 4, we find that our promoting loss increases 14.71% for linear evaluation
results on CIFAR-10 with two different backbones and increases 7.35 % on ImageNet-100 with two
different backbones. And we could see that our U-MAE also significantly outperforms MAE on
large-scale datasets by improving 6.77% Top-1 accuracy on ImageNet-1K.

B.6 Additional Experiments on SimMIM

For SimMIM, we use ViT-Base as the encoder and use the linear decoder as proposed in SimMIM [29].
We use the recommended mask ratio, 60%. Similar to MAE, we propose a Uniformity-promoting
SimMIM loss (U-SimMIM) which adds a uniformity regularizer term to the original reconstruction
loss of SimMIM. For the uniformity term of our proposed loss, we set the coefficient of the uniformity
term to 0.01. For ImageNet-100, we pretrain the model for 200 epochs with batch size 128 and
weight decay 0.05. We conduct linear evaluation on the unsupervised pretrained encoder. From Table
5, we could see that our U-SimMIM also significantly outperforms SimMIM on large-scale datasets
by improving 8.46% Top-1 accuracy on ImageNet-1K.

C Extension to Other MIM Methods

The basic paradigm of current MIM frameworks is to reconstruct the masked patches from unmasked
ones, while their differences mainly exist in the implementation details [1, 32, 29, 15], e.g., 1) the
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Table 5: Online linear accuracy of SimMIM and U-SimMIM loss on ImageNet-100 with ViT-Base.

Method Top-1 Accuracy (%)

SimMIM 21.59%
U-SimMIM 30.05%(+8.46%)

input of encoder: including masked patches (SimMIM, iBOT, BEiT) or not (MAE); 2) the decoder:
one-layer (SimMIM, iBOT) or multi-layer (MAE, BEiT); and 3) the target: RGB (SimMIM, MAE)
or tokenized discrete tokens (iBOT, BEiT). In fact, our theoretical framework is quite general, and
can be easily extended to these variants:

• Input of Encoder. If masked patches are adopted, the input of encoder could be modeled as
x̃1 = (x1, px1+x2

) and x̃2 = (x2, px1+x2
), where p represents the position embeddings. In

this case, both of them have the access to the entire position encoding px1+x2
.

• Decoder. One-layer decoder is a special case of our multi-layer formulation. Moreover, the
one-layer decoder obtains the invertibility and our analysis can be simplified.

• Target. The tokenized target only corresponds to a specific format of x2, which does not
affect our analysis of their alignment property.
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