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1 Datasheet for datasets [1]

1.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a spe-
cific gap that needed to be filled? Please provide a description. AI-based materials design is a rapidly
growing area of research in the field of Chemistry. However, experimental data is scarce, while the
obtention and indexation of data still constitute a major bottleneck in the materials’ discovery process.
Researchers mainly access information by extracting data from scientific documents, such as papers
and patents.[2] Molecular images have been, and currently are, the preferred format for publishing
discoveries and detailing structural information about new compounds. Previous approaches to
automating the information extraction process from images utilized rule-based methods.[3] More
recently, machine learning-based approaches have been explored for the same task.[4] However, until
now, even state-of-the-art models have struggled to perform on par with traditional approaches due
to being sample-inefficient. To overcome these issues, we present a collection of datasets, CEDe
(Chemical Entity Detection) in order to encourage research on more efficient molecular structure
identification methods. These datasets aim to help train pipelines based on chemical instance recogni-
tion and subsequent graph reconstruction, showing higher sample efficiency over image-to-sequence
translation models.

Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)? The CEDe collection of datasets was developed by
researchers at LG AI Research. Researchers with a background in chemistry, in conjunction with
AI experts, worked to establish an annotation pipeline that included all the necessary information to
train data-driven models for OCSR effectively..

Who funded the creation of the dataset? If there is an associated grant, please provide the name
of the grantor and the grant name and number. This project was fully funded by LG AI Research.
Researchers at LG AI Research generated these dataset annotations while conducting internal projects
and decided to open-source their efforts in order to foster research in this particular area.

1.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description. The CEDe datasets
consist of molecular image-level metadata annotations, as well as bounding box annotations for each
chemical entity contained within an image (i.e., nodes and edges). Each bounding box annotation
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also comes with their corresponding labels and necessary information for the molecular graph
reconstruction.

How many instances are there in total (of each type, if appropriate)? The collection of datasets
and the corresponding number of images are mentioned in the main paper. As for molecular entities,
there is a total of 700,566 bounding box annotations with their corresponding labels/chemical
information. Instance distributions for each dataset are also shown in the supplementary material,
section 2.

Does the dataset contain all possible instances, or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable). All chemical entities appearing in the molecular images are labeled, and even
random marks and signs that do not correspond to constituents of a molecular graph are annotated
accordingly.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description. The image metadata and bounding box
annotations are explained in the main paper; please refer to Fig. 3.

Is there a label or target associated with each instance? If so, please provide a description. All
images are correspondingly labeled; please refer to Fig.3 in the main paper for a description.

Is any information missing from individual instances? ? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text. In order to reconstruct the
underlying chemical graphs, no information is missing for individual instances.

Are there recommended data splits (e.g., training, development/validation, testing)? ? If so,
please provide a description of these splits, explaining the rationale behind them. We do not provide
official recommendations for data splits in this paper.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description. Bounding box annotations were performed by human expert annotators. This process
was carried out with several inspections, and many efforts were taken to avoid errors as much as
possible. However, errors may still exist, and we look to keep updating our datasets if missing
annotations or mislabeled instances are found.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival versions
of the complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external
resources that might apply to a dataset consumer? Please provide descriptions of all external
resources and any restrictions associated with them, as well as links or other access points, as
appropriate. As explained in the main paper, the annotations we release correspond to chemical
entity annotations appearing in existing open-source datasets; UOB, USPTO, CLEF, and JPO, which
currently do not include this information. This labeling process is a one-time job that does not
require continuous external source integration. Information about these external sources and the
corresponding references are mentioned in the main paper.

Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor–patient confidentiality, data that includes the content of individ-
uals’ non-public communications)? If so, please provide a description. The original molecular
image datasets are open-sourced and extensively used by previous work. As far as we know, they do
not contain any confidential data.
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1.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If the data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified?
If so, please describe how. The annotations were generated by recognizing the chemical information
of atoms and bonds in each molecule image and subsequently transforming it to SMARTS fragments
or pseudoatom text information.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)? How were these
mechanisms or procedures validated? The images used in this project were sourced from available
open databases. Annotations were performed manually by experts with in-house annotation tools.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)? The authors of this
paper, jointly with other members of LG AI Research, performed the data annotation process without
any outsourcing.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)If not, please describe
the timeframe in which the data associated with the instances was created. The labeling process was
performed over the course of 6 months as part of other related projects.

1.4 Dataset Uses

Has the dataset been used for any tasks already? If so, please provide a description. These
dataset annotations have not been in any task outside LG AI Research.

Is there a repository that links to any or all papers or systems that use the dataset? ? If so,
please provide a link or other access point. Currently, there are no open-source projects that use the
chemical entity annotations presented in this work.

What (other) tasks could the dataset be used for? As for now, this dataset can only be used for
the task of recognizing molecular images. However, this data can be extended to work on a broader
framework, for example linking chemical information appearing in the scientific literature in the
form of images with related data in text form. In this case, we might use not only chemical entities’
information appearing in molecular images but also other signs and markers that link to other parts of
a document.

Are there tasks for which the dataset should not be used? If so, please provide a description.
Not to our knowledge.

1.5 Dataset Distribution

Will the dataset be distributed to third parties outside the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.
This data is provided free of charge, under an "Attribution-Non Commercial 4.0 International (CC
BY-NC 4.0)" license, in order to foster research in OCSR-based applications.

How will the dataset be distributed (e.g., tarball on the website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)? We distribute the CEDe collection of datasets through
an GCP Storage Bucket and, will open-source our baseline implementations in a GitHub repository
https://github.com/rshormazabal/CEDe). Also, the dataset is registered in identifiers.org and has its
corresponding prefix (lgai.cede).

When will the dataset be distributed? The plan to make CEDe publicly available after the corre-
sponding NeurIPS review process of this work (before the start of NeurIPS 2022).
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Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU,
as well as any fees associated with these restrictions
The annotations and corresponding labels will be distributed under an "Attribution-Non Commercial
4.0 International (CC BY-NC 4.0)" license, which allows for distribution, remix, and adaptation in
any medium or format for noncommercial purposes only.

Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? If so, please describe these restrictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions. There are no imposed restrictions on the data released in this work.

1.6 Dataset Maintenance

Who will be supporting/hosting/maintaining the dataset? The dataset will be hosted and main-
tained by the authors of this work, researchers at LG AI Research.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Users
can contact us through email or the related GitHub repository.

Is there an erratum? If so, please provide a link or other access point. We plan to release a website
for data exploration, where users will be able to flag images/annotations.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to dataset
consumers (e.g., mailing list, GitHub)? We plan to keep the CEDe datasets updated for corrections,
improvements, and extensions in the future. We plan to label other datasets that can help to recognize
more complex chemical structures (polymers, reactions, etc.).

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to dataset consumers.
We will keep a log of updates in the GitHub repository and the soon-to-be-released website.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for communicating/distributing these
contributions to dataset consumers? If so, please provide a description. As mentioned before, we plan
to release a website for data exploration, where users will be able to flag images/annotations. These
tagged cases will be correspondingly fixed if necessary. However, currently, we are not considering
any form of bigger scale extension or update method to our datasets from external users.
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2 Dataset details

In the figures below, we present the chemical instance-level token distribution for the UOB, USPTO,
CLEF and JPO datasets. SMARTS fragment instances like [C] or [O] are commonly present across all
datasets and have a clear chemical meaning. However, pseudoatoms can have different interpretations
depending on the context. Pseudoatoms can represent a cluster of atoms in a compressed format or
work as markers for scientific document authors to point to a substructure within a chemical structure.
Pseudoatoms representing atoms’ clusters can permute in certain ways while keeping their meaning.
For example, [CN] and [NC] represent the same group of atoms and connectivity. In the case of
pseudoatoms used as markers, they tend not to permute and need to be identified as separate instance
classes. The way we handle pseudoatoms annotations in this work is explained in the main manuscript
(Sec. 3.1 - pseudoatoms). The number of molecular entity annotations per dataset is shown in table 1.

Table 1: Number of SMARTS fragment annotations and pseudoatom annotations for the CEDe. UOB
dataset do not contain pseudoatom instances.

Datasets SMARTS fragments Pseudoatoms
UOB 188,311 0

USPTO 419,726 3,308
CLEF 63,897 362
JPO 24,766 196

Figure 1: Instance class distribution for chemical entities that can be represented directly with
SMARTS fragments for the UOB dataset. Does not consider pseudoatoms.
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Figure 2: Instance class distribution for chemical entities that can be represented directly with
SMARTS fragments for the USPTO dataset. Does not consider pseudoatoms.

Figure 3: Instance class distribution for pseudoatoms in the USPTO dataset. Only shows the 60
most common instance classes from a total of 285.
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Figure 4: Instance class distribution for chemical entities that can be represented directly with
SMARTS fragments for the CLEF dataset. Does not consider pseudoatoms.

Figure 5: Instance distribution for pseudoatoms in the CLEF dataset. There are a total of 53
pseudoatom classes present in this dataset.
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Figure 6: Instance class distribution for chemical entities that can be represented directly with
SMARTS fragments for the JPO dataset. Does not consider pseudoatoms.

Figure 7: Instance class distribution for pseudoatoms in the JPO dataset. There are a total of 42
pseudoatom classes present in this dataset.
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3 Detection models metrics: mean average precision per class

Mean average precision (mAP) for detection models presented in section 4 of this work (Main paper,
Table 2) is shown in the table below. In addition, a comparison between experiments using synthetic
data for pretraining (10K) and models from random initialization are presented. The column ’Diff’
shows the difference in percentage with respect to models without pre-training.

Table 2: Mean average precision per class (mAP) for detection models used in this work. "No
pre-trained" uses a subset of CEDe to train (2575 images) and "Pre-trained" uses 10K synthetic
images for pretraining and finetunes with the same subset of CEDe as "no pre-trained".

RCNN (mAP) DETR (mAP)
Instance

class No pre-trained Pre-trained Diff No pre-trained Pre-trained Diff

[STEREOE] 37.33 53.05 +42.12% 32.51 47.63 +46.52%
[C@] 34.74 48.33 +39.12% 34.52 49.36 +42.98%

[C@@H] 42.42 57.76 +36.15% 39.44 52.12 +32.15%
down 46.69 61.92 +32.61% 44.89 60.67 +35.18%

[C@H] 52.14 67.32 +29.12% 49.26 59.67 +21.14%
[o_arom] 50.25 63.53 +26.43% 49.48 63.78 +28.88%

up 62.96 77.70 +23.41% 61.55 73.33 +19.15%
[C] 66.79 82.31 +23.23% 65.58 82.94 +26.46%

[STEREOZ] 45.30 55.46 +22.42% 42.31 52.45 +23.98%
[Me] 69.28 82.07 +18.47% 68.00 77.41 +13.85%

other_signs 31.23 36.63 +17.28% 28.22 35.23 +24.86%
# 73.01 84.41 +15.61% 69.84 81.89 +17.26%

[CO2H] 68.01 78.57 +15.52% 62.53 75.01 +19.96%
[CH] 63.34 73.10 +15.42% 61.18 70.53 +15.29%

[bond_arom] 64.80 73.60 +13.58% 61.22 67.52 +10.30%
[CH2] 69.08 78.12 +13.09% 67.53 80.96 +19.89%

[n_arom] 70.41 79.50 +12.91% 69.12 80.14 +15.93%
either 48.51 54.66 +12.66% 47.80 56.47 +18.13%
[CN] 59.12 66.60 +12.65% 57.68 63.41 +9.92%
[NH] 74.59 83.19 +11.52% 71.86 82.59 +14.93%
[H] 64.91 71.31 +9.86% 62.95 69.39 +10.24%
[F] 71.72 78.47 +9.41% 71.36 79.38 +11.23%

[OMe] 76.91 82.91 +7.80% 74.04 87.31 +17.93%
- 75.47 80.87 +7.16% 69.47 77.26 +11.20%

[s_arom] 68.19 72.87 +6.86% 66.51 71.52 +7.53%
[N] 74.28 79.06 +6.43% 72.82 75.11 +3.15%
[Cl] 74.30 78.93 +6.23% 73.18 80.45 +9.94%

[CH3] 66.93 71.07 +6.19% 60.47 64.41 +6.53%
[cH_arom] 70.87 75.21 +6.13% 68.27 74.22 +8.72%

[OH] 74.35 78.90 +6.12% 70.22 72.50 +3.25%
[c_arom] 70.23 74.50 +6.09% 63.90 67.18 +5.13%

[CF3] 66.02 69.48 +5.25% 63.24 66.07 +4.48%
[NH2] 75.66 79.07 +4.51% 70.16 75.08 +7.00%
[Br] 72.87 75.75 +3.95% 65.92 67.85 +2.93%
[Ph] 74.27 77.15 +3.87% 71.97 73.31 +1.87%

[nH_arom] 61.93 64.05 +3.42% 56.70 58.14 +2.54%
[NO2] 73.61 76.06 +3.33% 71.13 74.63 +4.92%

[O] 74.12 76.37 +3.03% 72.85 73.56 +0.98%
[S] 69.94 71.97 +2.90% 66.75 67.61 +1.29%

other 50.91 52.09 +2.31% 49.61 50.10 +0.99%
= 76.91 78.53 +2.11% 70.70 72.36 +2.34%
[I] 66.97 68.21 +1.86% 63.79 65.92 +3.34%

Average mAP 63.84 71.21 +13.05% 60.96 68.49 +13.90%
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4 Generation augmentations effect

The effect of augmentation in the synthetic data generation process was explored. For every augmen-
tation, an experiment consisting of data generation, pre-training, and finetuning was done. When
certain random augmentations are not used, they are set to the mean value across the original sample
range. Pseudatom ratio refers to the percentage of compounds where an atom is replaced by a
randomly sampled superatom/pseudoatom instance, which shows the most significant impact on the
performance over real data. Rotation and XY sheer are set before image file is generated, so they
do not perturb the letters orientation (contrary to what happens when applying rotation augmentations
at training time).

Figure 8: Effect of style-augmentations for synthetic data in fine-tuning tasks’ performance is shown.
Each augmentation by itself (diagonal) and, pairs of augmentations are shown. Also, the average
performance of each augmentation while paired with others is presented.

5 Previous work baselines

Performance of previous work [4, 5, 6] in the test splits utilized for our baseline experiments is shown
in Table 3. Baselines presented in our work are vanilla implementations of these approaches that
do not rely on any pre-trained model for image featurization or string representation encoding. As
an example, in previous works, such as Img2Mol and DECIMER, pre-trained models are used to
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generate image features as a preprocessing step (Inception V3[7]), decoding SMILES sequences
(CDDD[8]) and for encoding SMILES strings into representations (DeepSMILES[9], SELFIES[10])
are used, which adds a lot of complexity to the benchmarking scheme. Here, we present the accuracy
of these models calculated with their open-source implementations and pre-trained models. The
amount of data used for training each of these models is shown in the column names.

Table 3: Accuracy of open-source implementations of previous work for the OCSR task. Models
were tested against the splits used for our main experiments. The amount of data used to train each
model is also shown.

img2mol@11M Chemgrapher@140K DECIMER@15M
UOB 0.612 0.832 0.538

USPTO 0.459 0.809 0.374
CLEF 0.441 0.755 0.260
JPO 0.386 0.533 0.272

6 Baselines implementation details

Models We present six baselines in our work in order to show how frameworks based on chemical
entity detection followed by graph reconstruction outperform image-to-sequence methods, even with
orders of magnitude fewer data. Architecture details corresponding to these baselines are presented
below. Also, we plan to open-source a PyTorch [11] implementation of these baselines and provide
trained model weights to reproduce our results. Details about the corresponding models, optimizers,
and hyperparameters will be provided as config files at https://github.com/rshormazabal/
CEDe. In addition, the sampled images for the fine-tuning task and the corresponding sampling
procedure will also be available.

Image-to-SMILES For the image-to-SMILES models, we use as image feature structures CNN
backbones, specifically ResNet101[12]. As for the autoregressive generation module, we use vanilla
PyTorch GRU[13], attention [14] and transformer implementations [15]. For the tokenization scheme,
we follow previous work [6]. Details will be available in the aforementioned repository.

Chemical entity detection For the detection modules (DETR [16] and Faster-RCNN [17]), we
based our implementations on the Detectron2 vision library [18]. For the connectivity prediction task,
we also use a vanilla PyTorch implementation of a transformer. We calculate pairwise interactions
between the bounding box representations generated by the transformer in order to predict connected
instances. Details about this pipeline and the rule-based connectivity prediction process will be
available in the GitHub repository.
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