
Supplementary Material:
Associating Objects and Their Effects
in Video through Coordination Games

In this supplementary material, we provide additional implementation and training details, as well as
results.

1 Model Architecture (Sec. 3.2)

CNN Encoder. We use the same architecture (based on pix2pix [1]) for our image encoder and our
mask encoder: conv64-conv128-conv256-conv256, where each convN represents a block consisting
of a 4× 4 convolution with N filters and stride 2, followed by instance normalization [5] and leaky
ReLU activation with negative slope 0.2. Following [3], we omit the instance normalization in the
first convolutional block.

CNN Decoder. Our architecture consists of a series of convolutional transpose layers which perform
2x spatial upsampling: convt256-convt128-convt64-convt64-conv4, where convtN refers to a block
consisting of a 4× 4 convolutional transpose layer with N filters and stride 2, followed by instance
normalization and ReLU activation. The final conv layer uses a 3× 3 kernel with a tanh activation.

Positional Embedding. We use different learnable spatio-temporal positional embeddings for the
queries (encoded masks) and keys (encoded images). The embedding is obtained by concatenating
individual x, y, t positional embeddings along the channel dimension, with individual channel sizes
96, 96, and 64 respectively, resulting in a final 256-dimensional embedding. We add these embeddings
to the encoded masks and images before passing them to the transformer. During the test-time training
stage, if the input video has larger dimensions than the training videos, we use bilinear interpolation
to resize the positional embeddings.

Transformer Decoder. The transformer decoder consists of 4 heads and 2 layers. For an input
video I ∈ RT×H×W×3 and a single object i, we obtain queries Qi = Mi = {mi

1, . . . ,m
i
T } =

{Φmask(M
i
1), . . . ,Φmask(M

i
T )}, keys K = F = {f1, . . . , fT } = {Φenc(I1), . . . ,Φenc(IT )}, and

values V = F ; where Qi,K, V ∈ RT× H
16∗

W
16×256. After adding positional embeddings to Qi and K,

we flatten Qi, K, and V to dimensions T ∗ H
16 ∗

W
16 × 256 and pass them to the transformer decoder,

which produces outputs of the same dimension. We reshape these outputs to T × H
16 ∗

W
16 × 256

feature maps, and pass them through the CNN decoder to get the final RGBA layer prediction Li
t for

object i at frame t. This procedure is repeated for all objects in the frame. In practice, we need only
reconstruct the masked frames.

2 Losses (Sec. 3.3)

We train with self-supervised losses only—specifically, we apply supervision on the final reconstructed
frame, not the individual layers (ground truth is used for final numerical evaluation only).

In Equation 2, the reconstruction is obtained by Comp(Lt, ot), which denotes standard back-to-front
alpha compositing [4] of the N RGBA layers Li

t according to known order ot (see Algorithm 1).
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Algorithm 1 Alpha Compositing of Layers

recont ← L0
t

i← 1
while i < N do

recont ← αi
tLi

t + (1− αi
t)recont

end while

For the alpha sparsity term in Equation 3 in the main paper draft, we use γ = 1.

In Equation 5 in the main paper draft, our weighting coefficients are λr = 0.05, λm = 1 during the
pretraining stage, and λm = 0.1 during the test-time training stage. We update λm ←− 0.1λm during
the pretraining stage at 1k and 2k iterations. During the test-time training stage, we apply the same
update at 0.1N and 0.2N iterations, where N is the total number of training iterations.

3 Training (Sec. 5.1)

We use the Adamw optimizer [2] with an initial learning rate of 1e-3 for pretraining and 5e-4 for
test-time training. The batchsize is set to be 128 for pretraining and 32 for test-time training.

4 Background Estimation (Sec. 5.3)

We estimate the static background L0 for a stabilized video by computing the median value per RGB
channel over video frames amongst valid pixels, which we define as those not falling within an object
mask, i.e.

∑
i M

i
t = 0.

5 Additional Datasets (Sec. 5.5)

We experiment with creating a synthetic dataset which shares more visual similarities to our target
real videos (e.g. Figure 6, main paper)—specifically, longer shadows, and more similar camera
angles. We find that improving the realism of the synthetic data improves fine-tuning results on real
videos (Figure 1).

This more realistic data proves more challenging than our initial synthetic dataset, with our zero-shot
result often failing to capture effects (Figure 2), though many of these are subsequently captured
during fine-tuning.
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Figure 1: Results of our method after pretraining on various synthetic datasets and fine-tuning on real
videos. We show (a), the original input frames; (b), the corresponding masks for each object; (c), the
result from Lu, et al. [3]; (d), our initial result from pretraining on version 1 of our synthetic data; (e),
our improved result after pretraining on version 2 of our synthetic data. (d) incorrectly places Object
2’s reflection in Object 1’s layer ("Reflection"), and part of Object 1’s shadow in Object 2’s layer
("Dogwalk"). (e) produces the correct associations and is on par with Lu, et al.
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Figure 2: Results of our method on version 2 of our synthetic dataset. We show (a), the original
video frames input to our model and the masked frame (red border) that must be reconstructed by
our model; (b), the input object masks for the masked frame; (c), results from Lu, et al. [3]; (d), our
zero-shot results; (e), our results after test-time training; (f), the ground truth rendering. Lu, et al.
incorrectly groups reflections with the incorrect object (column (c), rows 2, 3, 6). Our zero-shot
result fails to reconstruct some reflections (column (d), rows 2-5), but our fine-tuned result manages
to capture all of the reflections in the correct layers (column (e)).
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