
Supplementary Material of “Tensor Wheel
Decomposition and Its Tensor Completion Application”

Zhong-Cheng Wu1, Ting-Zhu Huang∗∗,1, Liang-Jian Deng∗,1, Hong-Xia Dou2, Deyu Meng3,4

1School of Mathematical Sciences, University of Electronic Science and Technology of China
2School of Science, Xihua University

3School of Mathematics and Statistics, Xi’an Jiaotong University
4Pazhou Laboratory (Huangpu)

wuzhch97@163.com, tingzhuhuang@126.com, liangjian.deng@uestc.edu.cn
hongxia.dou@mail.xhu.edu.cn, dymeng@mail.xjtu.edu.cn

The supplementary material is organized as follows:

• Appendix A provides complete proofs of Theorems 1-4 and Lemmas 1-4.
• Appendix B presents more details for solving the proposed TW-TC model.
• Appendix C supplements all parameter configurations and some result analysis for the

synthetic data experiments.
• Appendix D establishes additional discussion experiments, e.g., investigating the effects of

TW-ranks.
• Appendix E releases the MATLAB code for TW-TC model.

A Proofs of Theorems and Lemmas

A.1 Proofs of Theorems

Theorem 1 (Core-Centered Circular Invariance). Given an N th-order tensor X ∈ RI1×I2×···×IN

and its TW decomposition TWJ{Gk}Nk=1; CK. Assume that n = (n1, n2, · · · , nN ) is the circular re-
ordering of vector (1, 2, · · · , N), then the core-centered invariance gives ~X n = TWJ{Gnk

}Nk=1; ~CnK.

Proof. Since TWJ{Gk}Nk=1; CK is the TW decomposition of tensor X ∈ RI1×I2×···×IN , we have the
k-contraction as follows,

X = G1 ×4
1 · · · ×2k

1 Gk ×2k+2
1 · · · ×2N,1

1,4 GN ×2,4,··· ,2N
1,2,··· ,N C. (1)

Similarly, when n = (n1, n2, · · · , nN ) is obtained by circularly reordering vector (1, 2, · · · , N), we
easily have

~X n = Gn1
×4

1 · · · ×2k
1 Gnk

×2k+2
1 · · · ×2N,1

1,4 GnN
×2,4,··· ,2N

1,2,··· ,N
~Cn. (2)

Thus, ~X n = TWJ{Gnk
}Nk=1; ~CnK is clearly established.

Theorem 2 (Core-Connected Invariance). Assume that the TW decomposition of X ∈ RI1×···×IN

is ~X n = TWJ{Gnk
}Nk=1; ~CnK, where n = (n1, n2, · · · , nN ) is any vector that circularly shifts vector

(1, 2, · · · , N). Let vector e = (n1, nk, n2, · · · , nk−1, nk+1, · · · , nN ) (3 ≤ k < N, k ∈ Z), then

~X e = (Gn1 ×3
1
~Ce×4

3 Gnk
)×3,4,··· ,k+1,N+2

1,3,··· ,2k−3,2k−2 Un2,··· ,nk−1
×1,3,4,··· ,N−k+2,N−k+4

2(N−k)+2,3,5,··· ,2(N−k)+1,1 Vnk+1,··· ,nN
,

where Un2,··· ,nk−1
= Gn2

×4
1 · · · ×

2(k−2)
1 Gnk−1

and Vnk+1,··· ,nN
= Gnk+1

×4
1 · · · ×

2(N−k)
1 GnN

.
∗Corresponding authors.
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Proof. Since ~X n = TWJ{Gnk
}Nk=1; ~CnK, we easily have

Un2,··· ,nk−1
= Gn2

×4
1 · · · ×

2(k−2)
1 Gnk−1

∈ RRn2
×In2

×Ln2
×···×Ink−1

×Lnk−1
×Rnk , (3)

and

Vnk+1,··· ,nN
= Gnk+1

×4
1 · · · ×

2(N−k)
1 GnN

∈ RRnk+1
×Ink+1

×Lnk+1
×···×InN

×LnN
×Rn1 . (4)

According to vector e = (n1, nk, n2, · · · , nk−1, nk+1, · · · , nN ) (3 ≤ k < N, k ∈ Z), then the
corresponding tensor contractions yield

Gn1
×3

1
~Ce ×4

3 Gnk
∈ RRn1

×In1
×Rn2

×Ln2
×···×Lnk−1

×Lnk+1
×···×LnN

×Rnk
×Ink

×Rnk+1 . (5)

Obviously, there are k common modes between Gn1×3
1
~Ce×4

3Gnk
and Un2,··· ,nk−1

, i.e.,Rn2 , Ln2 ,· · · ,
Lnk−1

, and Rnk
. Eliminating the k modes, we can obtain

(Gn1
×3

1
~Ce ×4

3 Gnk
)×3,4,··· ,k+1,N+2

1,3,··· ,2k−3,2k−2 Un2,··· ,nk−1

∈ RRn1
×In1

×Lnk+1
×···×LnN

×Ink
×Rnk+1

×In2
×···×Ink−1 .

(6)

Similarly, there are N − k + 2 common modes between the above generated tensor (Gn1
×3

1
~Ce ×4

3

Gnk
)×3,4,··· ,k+1,N+2

1,3,··· ,2k−3,2k−2Un2,··· ,nk−1
and Vnk+1,··· ,nN

, i.e.,Rn1 , Lnk+1
, · · · , LnN

, andRnk+1
. Again,

all contractions along these modes lead to

(Gn1 ×3
1
~Ce ×4

3 Gnk
)×3,4,··· ,k+1,N+2

1,3,··· ,2k−3,2k−2Un2,··· ,nk−1
×1,3,4,··· ,N−k+2,N−k+4

2(N−k)+2,3,5,··· ,2(N−k)+1,1 Vnk+1,··· ,nN

∈ RIn1
×Ink

×In2
×···×Ink−1

×Ink+1
×···×InN ,

(7)

which is definitely equivalent to the e-based permutation of X , i.e., ~X e. The proof is completed.

Theorem 3 (Tensor Subwheel Equation). Assume that the TW decomposition ofX ∈ RI1×I2×···×IN

is ~X n = TWJ{Gnk
}Nk=1; ~CnK, where n = (n1, n2, · · · , nN ) is any vector that circularly shifts vector

(1, 2, · · · , N). Let m = (N + 1, N + 2, 1, 2, · · · , N) and v = (2, 4, · · · , 2N, 1, 3, · · · , 2N − 1),
then there inherently exists the following two tensor subwheel equations,

X<nN> = (GnN
)(2)(M6=nN

)[m;3] and ~xn
[1:N,0] = ~cn

[1:N,0](N 6=C)[v;N ], (8)

where M6=nN
∈ RRn1×In1×···×InN−1

×RnN
×LnN is an (N + 2)th-order subwheel tensor, which

merges all TW factors but GnN
, i.e., M6=nN

= Gn1
×4

1 · · · ×2k
1 Gnk

×2k+2
1 · · · ×2N−2

1

GnN−1
×3,5,··· ,2N−1

1,2,··· ,N−1
~Cn, and N 6=C ∈ RIn1

×Ln1
×···×InN

×LnN is another 2N th-order subwheel
tensor obtained by only merging {Gnk

}Nk=1, i.e., N 6=C = Gn1
×4

1 · · · ×2k
1 Gnk

×2k+2
1 · · · ×2N,1

1,4 GnN
.

Proof. Since ~X n = TWJ{Gnk
}Nk=1; ~CnK is the TW decomposition of ~X n ∈ RIn1×In2×···×InN , we

rewrite its form of tensor k-contraction as follows,

~X n = GnN
×1,3,4

N+1,N+2,1M6=nN
and ~X n = ~Cn ×1,2,··· ,N

2,4,··· ,2N N6=C , (9)

where
M6=nN

= Gn1
×4

1 · · · ×2k
1 Gnk

×2k+2
1 · · · ×2N−2

1 GnN−1
×3,5,··· ,2N−1

1,2,··· ,N−1
~Cn (10)

and
N6=C = Gn1 ×4

1 · · · ×2k
1 Gnk

×2k+2
1 · · · ×2N,1

1,4 GnN
. (11)

Following Definition 3 (i.e., Generalized Tensor k-Contraction) of the main text, then formula (9) can
be converted as corresponding matrix products

X<nN> = (GnN
)(2)(M6=nN

)[m;3] and ~xn
[1:N,0] = ~cn

[1:N,0](N6=C)[v;N ], (12)

where m = (N + 1, N + 2, 1, 2, · · · , N) and v = (2, 4, · · · , 2N, 1, 3, · · · , 2N −1) are also required.
This completes the proof.

Theorem 4. Assume that X = TWJ{Gk}Nk=1; CK with N ring factors Gk ∈ RRk×Ik×Lk×Rk+1 , then

Rank(X(k)) = Rank(X<k>) ≤ Lk

k+1∏
i=k

Ri, k = 1, 2, · · · , N. (13)
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Proof. According to Theorem 3, we have the subwheel equations for all k = 1, 2, · · · , N , as follows,

X<k> = (Gk)(2)(M6=k)[m;3]. (14)
Then, we can justify the following inequality,

Rank(X(k)) = Rank(X<k>) ≤ min{Rank((Gk)(2)), Rank((M6=k)[m;3])}
≤ Rank((Gk)(2))

≤ min{Ik, RkLkRk+1}

≤ Lk

k+1∏
i=k

Ri.

(15)

The proof is completed.

A.2 Proofs of Lemmas

Before proving the following Lemmas 1-4, we firstly rewrite the proposed TW-TC model as follows,

min
Z

Φ(Z) = h(Z) + f(X ), (16)

where Z = (X ,G1:N , C), h(Z) = 1/2‖X − TWJ{Gk}Nk=1; CK‖2F , and f(X ) = ι(X ).
Lemma 1. The objective function Φ(Z) in formula (16) is a Kurdyka-Łojasiewicz (KŁ) function.

Proof. Following [1, 2], since h(Z) is a polynomial function of N + 2 coupling variations, it
is an obviously real-analytic function. Regarding the f(X ), since the constraint set onto {L :
PΩ(L) = PΩ(F)} is semi-algebraic, the ι(X ) is a semi-algebraic function resulting from that
indicator functions of semi-algebraic sets are semi-algebraic functions. Thus, Φ(Z), as a finite sum
of real-valued analytic and semi-algebraic functions, is a KŁ function.

Lemma 2 (Sufficient Decrease Condition). Let {Z(t)}t∈N be the sequence generated by Algorithm 2
of the main text. Then, the sequence {Φ(Z(t))}t∈N explicitly satisfies the nonincreasing inequality,

Φ(Z(t))− Φ(Z(t+1)) ≥ ρ

2
‖Z(t+1) −Z(t)‖2F ,

where ‖Z(t+1) −Z(t)‖2F = ‖X (t+1) −X (t)‖2F +
∑N

k=1 ‖G
(t+1)
k − G(t)

k ‖2F + ‖C(t+1) − C(t)‖2F .

Proof. Since the sequences {G(t)
k }t∈N, k = 1, 2, · · · , N , are generated by minimizing

1

2
‖X (t) − TWJG(t+1)

1:k−1,Gk,G
(t)
k+1:N ; C(t)K‖2F +

ρ

2
‖Gk − G(t)

k ‖
2
F , k = 1, 2, · · · , N, (17)

each G(t+1)
k is a minimizer of (17) in (t+ 1)-th iteration, thus leading to inequalities as follows,

h(X (t),G(t+1)
1:k ,G(t)

k+1:N , C
(t))+

ρ

2
‖G(t+1)

k −G(t)
k ‖

2
F ≤ h(X (t),G(t+1)

1:k−1,G
(t)
k:N , C

(t)), k = 1, 2, · · · , N.
(18)

Likewisely, the sequences {C(t)}t∈N and {X (t)}t∈N are generated by respectively minimizing

1

2
‖X (t) − TWJG(t+1)

1:N ; CK‖2F +
ρ

2
‖C − C(t)‖2F (19)

and
1

2
‖X − TWJG(t+1)

1:N ; C(t+1)K‖2F +
ρ

2
‖X − X (t)‖2F + ι(X ), (20)

thus C(t+1) and X (t+1) can respectively satisfy

h(X (t),G(t+1)
1:N , C(t+1)) +

ρ

2
‖C(t+1) − C(t)‖2F ≤ h(X (t),G(t+1)

1:N , C(t)) (21)

and

h(X (t+1),G(t+1)
1:N , C(t+1))+f(X (t+1))+

ρ

2
‖X (t+1)−X (t)‖2F ≤ h(X (t),G(t+1)

1:N , C(t+1))+f(X (t)).

(22)
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Especially, if t ∈ {t : t > 200 and mode(t, s) 6= 0}, then the equal sign in (21) is exactly established
owing to C(t+1) = C(t). By eliminating the duplicates on the left and right, we can deduce

Φ(Z(t))− Φ(Z(t+1)) ≥ ρ

2
‖X (t+1) −X (t)‖2F +

N∑
k=1

ρ

2
‖G(t+1)

k − G(t)
k ‖

2
F +

ρ

2
‖C(t+1) − C(t)‖2F

≥ ρ

2
(‖X (t+1) −X (t)‖2F +

N∑
k=1

‖G(t+1)
k − G(t)

k ‖
2
F + ‖C(t+1) − C(t)‖2F )

=
ρ

2
‖Z(t+1) −Z(t)‖2F .

(23)

The proof is completed.

Lemma 3 (Relative Error Condition). Let {Z(t)}t∈N be the sequence generated by Algorithm 2 of
the main text. Then, there exists

‖∂Φ(Z(t+1))‖F ≤ {LΦ + (N + 2)ρ}‖Z(t+1) −Z(t)‖F ,

where LΦ sums the Lipschitz constants of {∂GkΦ(Z)}Nk=1 and ∂CΦ(Z), i.e., LΦ =
∑N

k=1 LGk +LC .

Proof. According to the proof of Lemma 2, i.e., G(t+1)
k , k = 1, 2, · · · , N , C(t+1) and X (t+1) are

the minimum solutions, thus we have f(X (t+1)) ≡ 0 for avoiding Φ(Z) → ∞. Especially, when
t > 200, the variable C tends to be relatively stable, i.e., ‖C(t+1) − C(t)‖F is sufficiently small. Thus,
we assume that when t ∈ {t : t > 200 and mode(t, s) 6= 0}, C(j), j = t + 2, t + 3, · · · , t + s,
can approximately share the first-order optimal condition of C(t+1). According to the fact that
minimum solutions must satisfy the first-order optimal conditions, i.e., the sub-gradient equations of
the objective function, then for all t ∈ N, we always have

0 ∈ ∂Gkh(X (t),G(t+1)
1:k ,G(t)

k+1:N , C
(t)) + ρ(G(t+1)

k − G(t)
k ), k = 1, 2, · · · , N,

0 ∈ ∂Ch(X (t),G(t+1)
1:N , C(t+1)) + ρ(C(t+1) − C(t)),

0 ∈ ∂Xh(X (t+1),G(t+1)
1:N , C(t+1)) + ρ(X (t+1) −X (t)).

(24)

Based on the sub-differentiability property, i.e.,

∂Φ(Z(t+1)) =
(
∂XΦ(X (t+1),G(t+1)

1:N , C(t+1)), ∂G1Φ(X (t+1),G(t+1)
1:N , C(t+1)),

∂G2Φ(X (t+1),G(t+1)
1:N , C(t+1)), · · · , ∂GN Φ(X (t+1),G(t+1)

1:N , C(t+1)),

∂CΦ(X (t+1),G(t+1)
1:N , C(t+1))

)
,

(25)

where
∂XΦ(X (t+1),G(t+1)

1:N , C(t+1)) = ∂Xh(X (t+1),G(t+1)
1:N , C(t+1)),

∂GkΦ(X (t+1),G(t+1)
1:N , C(t+1)) = ∂Gkh(X (t+1),G(t+1)

1:N , C(t+1)), k = 1, 2, · · · , N,

∂CΦ(X (t+1),G(t+1)
1:N , C(t+1)) = ∂Ch(X (t+1),G(t+1)

1:N , C(t+1)),

(26)

then we have the triangle inequality as follows,

‖∂Φ(Z(t+1))‖F ≤
N∑

k=1

‖∂Gkh(X (t+1),G(t+1)
1:N , C(t+1))‖F + ‖∂Ch(X (t+1),G(t+1)

1:N , C(t+1))‖F

+ ‖∂Xh(X (t+1),G(t+1)
1:N , C(t+1))‖F .

(27)
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Substitute into the first-order optimal condition (24), leading to

‖∂Φ(Z(t+1))‖F

≤
N∑

k=1

‖∂Gkh(X (t+1),G(t+1)
1:N , C(t+1))− ∂Gkh(X (t),G(t+1)

1:k ,G(t)
k+1:N , C

(t))− ρ(G(t+1)
k − G(t)

k )‖F

+ ‖∂Ch(X (t+1),G(t+1)
1:N , C(t+1))− ∂Ch(X (t),G(t+1)

1:N , C(t+1))− ρ(C(t+1) − C(t))‖F
+ ρ‖X (t+1) −X (t)‖F

≤
N∑

k=1

‖∂Gkh(X (t+1),G(t+1)
1:N , C(t+1))− ∂Gkh(X (t),G(t+1)

1:k ,G(t)
k+1:N , C

(t))‖F

+

N∑
k=1

ρ‖G(t+1)
k − G(t)

k ‖F + ‖∂Ch(X (t+1),G(t+1)
1:N , C(t+1))− ∂Ch(X (t),G(t+1)

1:N , C(t+1))‖F

+ ρ‖C(t+1) − C(t)‖F + ρ‖X (t+1) −X (t)‖F .
(28)

Since h ∈ C1 and f ≡ 0, the partial derivatives {∂GkΦ(Z)}Nk=1 and ∂CΦ(Z) can be assumed to be
{LGk}Nk=1 and LC-Lipschitz continuous, respectively. Then, we easily have
‖∂Gkh(X (t+1),G(t+1)

1:N , C(t+1))− ∂Gkh(X (t),G(t+1)
1:k ,G(t)

k+1:N , C
(t))‖F

≤ LGk‖(X (t+1) −X (t), {G(t+1)
m − G(t)

m }Nm=k+1, C(t+1) − C(t))‖F , k = 1, 2, · · · , N,

‖∂Ch(X (t+1),G(t+1)
1:N , C(t+1))− ∂Ch(X (t),G(t+1)

1:N , C(t+1))‖F ≤ LC‖X (t+1) −X (t)‖F .

(29)

Thus, a backsubstitution yields

‖∂Φ(Z(t+1))‖F ≤
N∑

k=1

LGk‖(X (t+1) −X (t), {G(t+1)
m − G(t)

m }Nm=k+1, C(t+1) − C(t))‖F

+

N∑
k=1

ρ‖(G(t+1)
k − G(t)

k )‖F + LC‖X (t+1) −X (t)‖F + ρ‖C(t+1) − C(t)‖F

+ ρ‖X (t+1) −X (t)‖F

≤ (

N∑
k=1

LGk + LC)‖Z(t+1) −Z(t)‖F + (N + 2)ρ‖Z(t+1) −Z(t)‖F

= {LΦ + (N + 2)ρ}‖Z(t+1) −Z(t)‖F ,

where LΦ =
∑N

k=1 LGk + LC . The relative error condition is proved.

Lemma 4. Let {Z(t)}t∈N be the sequence generated by Algorithm 2 of the main text, then it is
bounded.

Proof. Relying upon the optimal solution in Algorithm 2 of the main text, i.e.,

X (t+1) = PΩc

(TWJ{G(t+1)
k }Nk=1; C(t+1)K + ρX (t)

1 + ρ

)
+ PΩ(F), (30)

which requires that X is forcibly projected into set {L : PΩ(L) = PΩ(F)}. Thus, the indicator
function ι(X ) ≡ 0, i.e., f(X ) ≡ 0 in (16). As shown in Algorithm 2 of the main text, the
initial Z(0) = (X (0),G(0)

1:N , C(0)) is bounded, then Φ(Z(0)) is bounded. According to Lemma 2,
the sequence {Φ(Z(t))}t∈N decreases sufficiently, thus leading to 0 ≤ Φ(Z(t)) ≤ Φ(Z(0)), i.e.,
0 ≤ h(Z(t)) ≤ h(Z(0)) for ∀t ∈ N. Since the continuous function h(Z) is proper and coercive,
there exists ‖Z‖F → ∞ if and only if h(Z) → ∞. Obviously, the discrete points h(Z(t)) 6→ ∞,
thus ‖Z(t)‖F 6→ ∞, i.e., sequence {Z(t)}t∈N is certainly bounded.
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Table 1: The parameter configurations of all compared methods for the synthetic data experiments under different
cases.

Data Type SR Method Rank Setting Storage Complexity
O(Ave.± Std.)

Third-order tensor

20%

TT-TC (PAM) (23, 8) O(11288± 1046)

TR-TC (PAM) (4, 6, 5) O(3885± 244)

FCTN-TC (PAM) (4, 5, 5) O(3413± 213)

Tucker-TC (PAM) (6, 6, 6) O(1161± 59)

TW-TC (PAM) (2, 3, 4, 2, 2, 3) O(3162± 203)

40%

TT-TC (PAM) (26, 14) O(21210± 2058)

TR-TC (PAM) (10, 2, 8) O(6090± 473)

FCTN-TC (PAM) (8, 8, 2) O(5040± 382)

Tucker-TC (PAM) (6, 6, 6) O(1161± 59)

TW-TC (PAM) (7, 2, 2, 2, 2, 2) O(3368± 228)

Fourth-order tensor

20%

TT-TC (PAM) (17, 11, 12) O(6960± 378)

TR-TC (PAM) (13, 9, 5, 5) O(5040± 236)

FCTN-TC (PAM) (3, 2, 5, 3, 2, 2) O(1600± 69)

Tucker-TC (PAM) (5, 5, 5, 5) O(1025± 16)

TW-TC (PAM) (4, 6, 3, 2, 2, 2, 2, 2) O(2256± 104)

40%

TT-TC (PAM) (20, 17, 6) O(9360± 584)

TR-TC (PAM) (19, 6, 2, 13) O(7980± 449)

FCTN-TC (PAM) (2, 5, 5, 4, 3, 3) O(3580± 153)

Tucker-TC (PAM) (5, 5, 5, 5) O(1025± 16)

TW-TC (PAM) (8, 7, 4, 3, 2, 2, 2, 2) O(4816± 224)

Fifth-order tensor

20%

TT-TC (PAM) (11, 17, 6, 5) O(2513± 109)

TR-TC (PAM) (4, 21, 4, 5, 4) O(1680± 63)

FCTN-TC (PAM) (2, 2, 3, 3, 2, 2, 5, 3, 2, 2) O(1470± 46)

Tucker-TC (PAM) (3, 3, 3, 3, 3) O(356± 3)

TW-TC (PAM) (2, 2, 3, 2, 2, 2, 2, 2, 3, 2) O(438± 12)

40%

TT-TC (PAM) (23, 17, 7, 3) O(4178± 208)

TR-TC (PAM) (19, 15, 3, 2, 5) O(3308± 154)

FCTN-TC (PAM) (2, 3, 2, 2, 2, 2, 6, 3, 2, 2) O(1350± 43)

Tucker-TC (PAM) (3, 3, 3, 3, 3) O(356± 3)

TW-TC (PAM) (3, 5, 6, 3, 2, 2, 2, 2, 3, 2) O(1218± 40)

B Solving Procedure for TW-TC Model

Under PAM framework [1], the proposed TW-TC model can be solved by

G(t+1)
k ∈ arg min

Gk

{1

2
‖X (t) − TWJG(t+1)

1:k−1,Gk,G
(t)
k+1:N ; C(t)K‖2F +

ρ

2
‖Gk − G(t)

k ‖
2
F

}
,

k = 1, 2, · · · , N,

C(t+1) ∈ arg min
C

{1

2
‖X (t) − TWJG(t+1)

1:N ; CK‖2F +
ρ

2
‖C − C(t)‖2F

}
,

X (t+1) ∈ arg min
X

{1

2
‖X − TWJG(t+1)

1:N ; C(t+1)K‖2F +
ρ

2
‖X − X (t)‖2F + ι(X )

}
.

(31)

More specifically,

Updating Gk, k = 1, 2, · · · , N : Following Theorem 3, the matrix form of Gk-subproblem can be
given by

(G
(t+1)
k )(2) ∈ arg min

(Gk)(2)

{1

2
‖X(t)

<k> − (Gk)(2)(M
(t)
6=k)[m;3]‖2F +

ρ

2
‖(Gk)(2) − (G

(t)
k )(2)‖2F

}
, (32)
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(a) MPSNR versus inner TW-ranks
(i.e., L = Lk, k = 1, 2, · · · , N )

when outer TW-ranks
(i.e., R = Rk, k = 1, 2, · · · , N )

and all TR-ranks are 6.

(b) MPSNR versus outer TW-ranks
(i.e., R = Rk, k = 1, 2, · · · , N )

when inner TW-ranks
(i.e., L = Lk, k = 1, 2, · · · , N )

and all Tucker-ranks are 4.

Figure 1: Recovery results of TR-TC, Tucker-TC, and TW-TC algorithms on HSV data under three SRs: 5%,
10%, 20%. Especially, the MPSNR values of TW-TC using various TW-ranks are recorded.

whereM(t)
6=k and m are obtained relying upon Theorem 3. Thus, we easily have

G(t+1)
k = Fold(2)

{
(G

(t+1)
k )(2)

}
(33)

with

(G
(t+1)
k )(2) =

(
X

(t)
<k>(M

(t)
6=k)T[m;3] + ρ(G

(t)
k )(2)

)(
(M

(t)
6=k)[m;3](M

(t)
6=k)T[m;3] + ρI

)−1
. (34)

Updating C: Similarly, the C-subproblem is rewritten as

c
(t+1)
[1:N,0] ∈ arg min

c[1:N,0]

{1

2
‖x(t)

[1:N,0] − c[1:N,0](N
(t)
6=C)[v;N ]‖2F +

ρ

2
‖c[1:N,0] − c

(t)
[1:N,0]‖

2
F

}
, (35)

where N (t)
6=C and v are determined by Theorem 3. The above problem has a minimum solution,

appearing as
C(t+1) = Fold[1:N,0]

{
c

(t+1)
[1:N,0]

}
(36)

with
c

(t+1)
[1:N,0] =

(
x

(t)
[1:N,0](N

(t)
6=C)

T
[v;N ] + ρc

(t)
[1:N,0]

)(
(N

(t)
6=C)[v;N ](N

(t)
6=C)

T
[v;N ] + ρI

)−1
. (37)

Updating X : The X -subproblem reduces to a least squares problem, thus its closed-form solution
satisfies

X (t+1) = PΩc

(TWJ{G(t+1)
k }Nk=1; C(t+1)K + ρX (t)

1 + ρ

)
+ PΩ(F), (38)

where Ωc indicates the complementary set of Ω.

Although formulas (32) and (35) appear to be extremely complex, they are actually straightforward
matrix least-squares issues. Thus, formulas (34) and (37) can be directly obtained by forcing the
derivatives of formulas (32) and (35) w.r.t. (Gk)(2) and c[1:N,0] to 0, respectively. On another hand,
the least-squares problem

1

2
‖X − TWJG(t+1)

1:N ; C(t+1)K‖2F +
ρ

2
‖X − X (t)‖2F (39)

has a closed-form solution as follows,

X =
TWJ{G(t+1)

k }Nk=1; C(t+1)K + ρX (t)

1 + ρ
. (40)

To make ι(X ) ≡ 0, formula (40) is converted to formula (38).
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Figure 2: The number of hyper-parameters (i.e., ranks) of FCTN and TW decompositions against tensor
dimension.

C Details for Experiments with Synthetic Data

C.1 Parameter Details

To clearly understand the model complexity of all algorithms, Table 1 provides the parameter
configurations and storage complexities. For each case, the hyper-parameters, i.e., TT-ranks, TR-
ranks, FCTN-ranks, Tucker-ranks, and TW-ranks, are determined by respectively rounding the
average of three corresponding rank collections, which are fine-tuned with a step size of 1 on three
randomly selected experiments. Furthermore, the parameter storage complexity is also rounded.

C.2 Result Analysis

The experimental descriptions are exhibited in the main text. We here explain some of the unintuitive
results, i.e., the proposed TW-TC model requires more computing costs than the FCTN-TC one, and
the TT-TC and TR-TC models perform better than the FCTN-TC one despite their fewer connections.

As empirically analyzed in [3], i.e., the required FCTN rank values are typically significantly lower
than Tucker rank values. For the synthetic data experiments, these relatively small rank configurations
experimentally yield the optimal performance of the FCTN-TC model (see Table 1) even if the
obtained results are unsatisfactory (see Figure 3 of the main text), thus allowing a computational
advantage over the TW-TC, TT-TC, and TR-TC ones. Moreover, as depicted in Figure 2, the proposed
TW topology has a more complicated structure than the FCTN one under two exceptional cases, i.e.,
when the operated tensors are third-order or fourth-order. Consequently, the proposed TW-TC model
requires incremental computational time in the synthetic data experiments, despite its higher recovery
accuracy.

According to the optimal rank parameter configuration of the FCTN model, we argue that the inferior
performance of FCTN-TC model may be caused by over-fitting, judged by its several optimal ranks
between non-adjacent factors being 2 (see Table 1). Compared with real-world data, the low-rank
characteristics of synthetic data are simpler. That is, not all non-adjacent dimensions have a direct
relationship, thus leading the authentic ranks between some non-adjacent factors to be 1 (i.e., without
connection). However, the minimum values of FCTN-ranks among several non-adjacent factors are
2 rather than 1, forcing the FCTN topology to maintain its fully-connected structure. Accordingly,
some ineffective structures may reduce the performance of the FCTN-TC method, when applied to
the synthesized fourth-order and fifth-order data.

D Discussion Experiments

In Section 2.3 of the main text, we briefly illustrate that TW decomposition can degenerate into TR
and Tucker decompositions by enforcing the corresponding TW-ranks to be 1, showing its graphical
potentiality over the latter. Numerically, we further confirm it by investigating the effects of TW-ranks.

Figure 1 provides the recovery results versus TW-ranks for the TR-TC (i.e., TR decomposition-based
TC model), Tucker-TC (i.e., Tucker decomposition-based TC model), and the proposed TW-TC when
SRs are 5%, 10%, 20%. These methods are uniformly solved by the PAM algorithm, and the HSV
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data is adopted for presentation. At any considered SR, Figure 1(a) and Figure 1(b) experimentally
indicate that TW decomposition compares favorably to TR and Tucker decompositions, respectively.
Actually, the designed experiments also investigate how TW-ranks affect the quality of the TC results
or, more internally, the characterization capability of TW decomposition. From Figure 1(a) and
Figure 1(b), we observe that both inner TW-ranks L and outer TW-ranks R contribute positively to
the final effect (i.e., MPSNR) within a certain range, implying the rationality of the TW topology
without meaningless structure.

Moreover, as one of the motivations for designing the TW topology, Figure 2 shows the number of
hyper-parameters of FCTN and TW decompositions (i.e., FCTN-ranks and TW-ranks, respectively)
under different tensor dimensions. From Figure 2, we observe that our TW decomposition effectively
alleviates the curse from dimensionality, thereby significantly improving its flexibility for higher-order
tensor applications.

E MATLAB Code

The code is available at: https://github.com/zhongchengwu/code_TWDec.
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