
What are the best systems? New perspectives on NLP
Benchmarking

Pierre Colombo
L2S

CentraleSupelec, France
pierre.colombo@centralesupelec.fr

Nathan Noiry
S2A

Telecom Paris, France
nathan.noiry@telecom-paris.fr

Ekhine Irurozki
S2A

Telecom Paris, France
ekhine.irurozki@telecom-paris.fr

Stephan Clémençon
S2A

Telecom Paris, France
stephan.clemençon@telecom-paris.fr

Abstract

In Machine Learning, a benchmark refers to an ensemble of datasets associated
with one or multiple metrics together with a way to aggregate different systems
performances. They are instrumental in (i) assessing the progress of new methods
along different axes and (ii) selecting the best systems for practical use. This is
particularly the case for NLP with the development of large pre-trained models
(e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While
the community mainly focused on developing new datasets and metrics, there has
been little interest in the aggregation procedure, which is often reduced to a simple
average over various performance measures. However, this procedure can be
problematic when the metrics are on a different scale, which may lead to spurious
conclusions. This paper proposes a new procedure to rank systems based on their
performance across different tasks. Motivated by the social choice theory, the final
system ordering is obtained through aggregating the rankings induced by each task
and is theoretically grounded. We conduct extensive numerical experiments (on
over 270k scores) to assess the soundness of our approach both on synthetic and
real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we
show that our method yields different conclusions on state-of-the-art systems than
the mean-aggregation procedure while being both more reliable and robust.

1 Introduction

This paper is about improving current practices regarding benchmarks of NLP systems. As pointed
out by [83], benchmarks are made of datasets, metrics, and a way to aggregate performance. Our
point is that, if the bulk of the NLP community efforts on this domain is about collecting new datasets
and introducing new metrics, little work is concerned with the third part, namely how to aggregate
various performances.

Why are benchmarks vital? Research advances in Machine Learning (ML) are crucially fueled
by reliable evaluation procedures [34, 78]. The latter are indeed mandatory to fairly compare new
methods and systems. Usually, one relies on a well-chosen metric that reflects the ability to perform
on a task – e.g. accuracy for classification, mean-squared error for regression.

The multi-tasks evaluation setting. If single-tasks problems are quite common, to best understand
weakness and model in real-world scenario, the community is heading towards more complex
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evaluations involving fine-grained evaluation [61] across several metrics (or criteria [46, 103]) and
several tasks [36, 47, 63, 89, 91, 108]. This is due to the increasing performance of deep neural
networks, which are nowadays designed to generalize in a great variety of situations and to solve
complex tasks [86]. One is typically seeking for models with good transfer learning properties,
meaning an ability to generalize well under distribution shift and/or task shift [51].

How to aggregate performances? The multi-tasks setting has been investigated in recent works
that provide benchmark of state-of-the-art models across a great variety of tasks [28, 62, 80, 90, 108],
sometimes with more than fifty [2, 84, 85, 94]. These papers provide tables of scores across the
considered tasks, but the only non-qualitative way to compare systems consists in averaging the
performances across tasks and then ranking systems according to their mean score values. This is,
for instance, done with the GLUE benchmark [91] and its derivatives [92]. However, taking the
mean is seriously flawed since the different metrics are usually not on the same scales and can even
be unbounded [23, 102]. Even a pre-processing renormalization scheme would fail to capture the
intrinsic difficulty of the tasks.

Contribution 1. Our first contribution is to provide a reliable tool to rank systems in a multi-tasks
setting. We rely on a ranking aggregation procedure which, from a set of rankings induced by each
criterion, returns a single ranking that somehow aggregates the former. This procedure, called the
Kemeny consensus [52], can be seen as a voting rule and stems from the social choice theory [66].

Aggregation when instance-level information is available. As illustrated by Ruder [83], Zhong
et al. [109], a fine-grained understanding of the model performance should include instance-level
scores. If taking the mean is quite natural in the classification setting, this is not always the case,
as recently pointed out by [73] in the NLG setting. In this article, the authors investigate pairwise
comparison of NLG systems for a single metric (e.g. BLEU [71], ROUGE [59], METEOR [5, 35, 49],
CHRF [76, 77], BertScore [105]). They prove that a comparison based on the mean or the median
of the scores across test utterances can be highly flawed. They rather advise to rely on the Bradley-
Terry [10] pairwise comparison method, which consists, for two systems A and B, in computing
the proportion of utterances on which A achieves a better score than B. Their work is a significant
advance but remains limited to pairwise comparisons.

Contribution 2. Our second contribution consists in going one step further than [73] by applying our
ranking procedure to an arbitrarily large set of NLG systems with respect to a group of fixed criterion.
Our evaluation methodology can be seen as a natural extension of [73] since it coincides with the
latter in the particular case of pairwise comparison. In a more realistic multi-criteria scenario, we
combine our two contributions and develop a two-stages ranking aggregation procedure which first
aggregates along utterances and then along criteria.

Experiments. Our two contributions rely on our aggregation procedure which is proved to be
effective through several experiments.

1. We explain on a simple synthetic example the superiority of our approach compared to
the mean-aggregation procedure and the pairwise-aggregation procedure, both in terms of
consistency and robustness.

2. We use our ranking procedure on 10 multi-tasks / multi-criteria benchmarks and observe it
leads to different conclusions than mean- and pairwise-aggregation procedures.

3. We argue our procedure is more robust by investigating its stability with respect to the
addition of criteria and with respect to the addition of systems.

Our code and the collected data will be released to accelerate the adoption of what we think is a
reliable evaluation method for multi-tasks and multi-criteria benchmarks.

2 Problem Formulation and limitations of existing methods

2.1 General Considerations

When comparing systems performances, two settings can be distinguished depending on the infor-
mation granularity at our disposal and on the way one wishes to use this information. In general,
each system is scored on each instance of a test set with respect to a given metric. The final (single)
score of the system with respect to this metric is obtained through an aggregation procedure we
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Figure 1: Illustration of the two
considered frameworks relying on
different information granularity:
task-level information (below) or
instance-level information(above).
From the latter, one can derive the
former relying on what we call an
instance-level aggregation. A task-
level aggregation can then be per-
formed to synthesize a system per-
formance.

will call instance-level aggregation, and which has to be chosen by the practitioner (usually, the
mean of the instances-scores). Then, the final benchmark score of the system is obtained through
an aggregation we call task-level aggregation of the scores of this system for each metric of the
considered benchmark. See Fig. 1 for an illustration.

Notations. Suppose we are givenN ≥ 1 systems evaluated on T ≥ 1 tasks, each task t ∈ {1, . . . , T}
being associated with a metric and a test set made of Kt ≥ 1 instances. For every n ∈ {1, . . . , N},
t ∈ {1, . . . , T} and k ∈ {1, . . . ,Kt}, we denote by sn,t,k ∈ R the score of system n on the instance
k of task t.

Instance-level aggregation. The performance of system n on task t is an aggregation of its scores
(sn,t,k)1≤k≤Kt

on each instances. This aggregation is chosen by the practitioner and is usually the
mean-aggregation defined by smean

n,t := 1
Kt

∑
1≤k≤Kt

sn,t,k.

Task-level aggregation. Sometimes, one only has access to the aggregated scores of each system
on each task, that is, for every n ∈ {1, . . . , N} and t ∈ {1, . . . , T}, to a score sn,t ∈ R which
corresponds to an instance-level aggregation for system n on the instances of task t. From these
quantities, one can then compute, for each system, a synthetic score reflecting the overall performance
of this system across every considered task. Again, the usually-taken synthetic score of system n is
the mean-aggregation: smean

n := 1
T

∑
1≤t≤T sn,t.

2.2 Problem Formulation
Ranking objective. When benchmarking systems, the goal is to output a ranking of each systems
according to some objective criterion. Formally, we need to introduce the symmetric group on N
elements, denoted by SN , which elements are the N ! permutations of {1, . . . , N}. Equipped with
this notation, our goal is to output a permutation

σ∗ = [σ∗1 , . . . , σ
∗
N ] ∈ SN ,

corresponding to the rankings of the systems. For instance, one reads “system i is the σi-th best
system". Depending on the granularity of the information at our disposal, we distinguish two
problems.
Ranking Systems from Task Level Information. Given a set of scores (sn,t, 1 ≤ n ≤ N, 1 ≤
t ≤ T ) of N systems on T tasks, find a proper aggregation procedure.
Ranking Systems from Instance Level Information. Given a set of scores (sn,t,k, 1 ≤ n ≤
N, 1 ≤ t ≤ T, 1 ≤ k ≤ Kt) of N systems on the different instances of T tasks, find a proper
aggregation procedure.

2.3 Limitation of Existing Methods
Mean-aggregation procedure. The mean-aggregation procedure consists in taking the permutation
σmean
∗ that would rank the aggregated means smean

n , 1 ≤ n ≤ N . This procedure suffers from several
flaws. First, it is not well-suited when the metrics associated with the considered tasks are not on the
same scale. Consider, for instance, the situation where one of the tasks (say task t0) is associated with
a metric that is at a significantly larger scale than the others. In that case, the ranking obtained through
mean-aggregation would probably correspond to the ranking induced by task t0. One could argue
that a remedy would first normalize each metric so that everything is on the same scale. However, the

3



Task1 Task2 Task3 Task4 Task5 Task6 SUM
A 0.3 (3) 5 (3) 10 (1) 0.02 (2) 1.0 (1) 0.4 (3) 16.72 (13)

B 0.1 (2) 4 (2) 13 (2) 0.01 (1) 2.2 (3) 0.3 (2) 19.61 (12)

C 0.0 (1) 3 (1) 15 (3) 0.03 (3) 2.0 (2) 0.2 (1) 20.23 (11)

Table 1: Example of where pairwise rankings can be paradoxical. Mean aggregation outputs
A > B > C while pairwise ranking considered in [73] fails to rank the systems and produce
B > A,C > B,A = C. Our method does not have this flaw and outputs C > B > A.

resulting aggregation would still fail to capture each task’s intrinsic difficulty. Worse, this procedure
is impractical in cases where some metrics are unbounded – for instance, this is the case of the
BARTScore [102]. Finally, another weakness of the mean-aggregation ranking procedure is that the
score of a system is computed irrespective of its relative performance with respect to the others. This
simple observation has been pointed out by [73] who advises, in the special case of two systems and
one metric, to compute the number of times a system is better than the other on the instances.

Pairwise ranking.To be a bit more formal, the pairwise ranking aggregation proposed by [73] to
rank two systems A and B, which scores on a given task are given by sA1 , . . . , s

A
K and sB1 , . . . , s

B
K ,

consists in computing

λA :=

K∑
k=1

1sAk ≥sBk and λB = K − λA.

Then, A is better than B if and only if λA > λB . As explained by the authors, this method is
more relevant than the mean-aggregation in the context of NLG evaluation. However, it is limited
to the evaluation of two systems and does not apply for a general number N ≥ 3 of systems. A
solution would be to give a rank for each pair of systems and then aggregate these pairwise rankings.
However, this would lead to a prohibitive

(
N
2

)
computational factor for the complexity. Moreover,

the conclusion of these pairwise rankings can be paradoxical. Tab. 1 below provides a toy example
where three systems A, B, and C are evaluated on 6 tasks, and where the pairwise comparisons give
the paradoxical conclusion B > A, C > B and A = C.

3 Ranking via Kemeny consensus

We now turn to the description of our methodology to rank an arbitrary number of systems on
multi-tasks / multi-criteria benchmarks.

3.1 Kemeny Consensus

Let us consider the problem of ranking N systems on T tasks based on the information of the
scores sn,t of each system n on each task t. We believe a robust approach to this problem consist
in relying on the relative performance between systems on each task. More precisely, for each task
t ∈ {1, . . . , T}, we consider

σt = [σt1, . . . , σ
t
N ] ∈ SN ,

where σtn corresponds to the rank of system n on task t, in decreasing order. Then, we would like to
find an appropriate procedure that aggregates the T rankings σ1, . . . , σT . More formally, we would
like to define a function

f : SN × · · · ×SN︸ ︷︷ ︸
T times

−→ SN .

This function, from a set of T permutations corresponding to rankings, should return a final per-
mutation that summarizes them. One difficulty is that the mean procedure makes no sense on the
symmetric group, which is not a vector space. It turns out that a very natural choice consists in taking
f as the so-called Kemeny consensus [52] aggregation procedure, which somehow corresponds to
compute a barycenter.
Kemeny consensus. Let d be the Kendall distance on the symmetric group, defined for every
η, τ ∈ SN by d(η, τ) :=

∑
1≤i,j≤N 1(ηi−ηj)(τi−τj)<0. A Kemeny consensus σ∗ of σ1, . . . , σT is a

solution of the following minimization problem minσ∈SN

∑
1≤t≤T d(σt, σ).

Why is Kemeny consensus natural? As proved by Young and Levenglick [100], the Kemeny
consensus aggregation procedure is the only rule that satisfies three natural properties: neutrality,
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meaning that it does not depend on the order of the tasks; consistency, meaning that if the tasks are
split in two subsets and that the aggregation in the to subsets rank system i above system j then
σ∗i > σ∗j ; and the Condorcet criterion [27], meaning that an item wining all its pairwise comparison
is ranked fist. Moreover, the Kemeny consensus is also the maximum likelihood of the widely-used
Mallows statistical on the symmetric group [99].

3.2 Borda’s count approximation

If the Kemeny consensus is the ideal objective one would like to obtain, its computation is, in general,
an NP-hard problem [6, 40] – although some regularity assumptions, rarely satisfied in practice, can
speed up the computation, see for instance [8] and [11]. Fortunately, there exist many ways to get
satisfying approximations of the latter: see for example [1] for a comprehensive empirical study.
For our experiments, we choose the so-called Borda’s count procedure, defined hereafter for the
instance-level and/or task-level aggregation.
Borda’s count. The Borda’s count consists, from a set of permutations η1, . . . , ηL ∈ N correspond-
ing to the ranking of N systems across L ≥ 1 tasks or instances, to sum the ranks of each system and
then to rank the obtained sums. Formally, it

1. Compute sumn :=
L∑
l=1

ηln for every 1 ≤ n ≤ N ,

2. Output η := Borda(η1, . . . , ηL) ∈ SN that ranks the sums, sumn

(argsort(argsort(sum1, . . . , sumT ))).

There are at least four explanations for choosing Borda’s count procedure. First, it coincides with the
pairwise ranking procedure in the case of two systems, making it a natural generalization. Second,
there exists a theoretical result assessing it is a 5-approximation of the Kemeny consensus [30] with
respect to the Kendall distance [42]. Third, it is an unbiased estimator of the Kemeny consensus
with low sample complexity for data distributed according to standard rankings models such as
Mallows [13, 44]. Fourth, from a practical perspective, [1] observe it is efficient, accurate, and
actually 10 times faster than the other approximation algorithms. Fourth, We are now in a position
to give our answers to the initial ranking problems from Task Level Information and from Instance
Level Information.

3.3 Our Ranking Procedures

How to rank Systems from Task Level Information. Let σt ∈ SN be permutation that ranks the
scores s1,t, . . . , sN,t. Our aggregation procedure (σ∗) output is σ∗ := Borda

(
σ1, . . . , σt

)
.

How to rank Systems from Instance Level
Information. We actually give two different
procedures. For every task t ∈ {1, . . . , T} and
every instance k ∈ {1, . . . ,Kt} of that task, let
σt,k be the permutation that ranks the scores
s1,t,k, . . . , sN,t,k. See Figure 2 for an illustration.

Two-level aggregation (σ2l). This procedure
1. Compute σt := Borda(σt,k, 1 ≤ k ≤
Kt) for each task t ∈ {1, . . . , T},

2. Output σ2l := Borda(σt, 1 ≤ t ≤ T ).

One-level aggregation (σl). This procedure out-
puts σl := Borda(σt,k, 1 ≤ t ≤ T, 1 ≤ k ≤
Kt).
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(
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Two level aggregation: ∀1 ≤ t ≤ T, σt = Borda

(
σt,k, 1 ≤ k ≤ Kt

)
σ2l = Borda

(
σt, 1 ≤ t ≤ T

)

σ1 σt σT

Figure 2: Illustration of our two aggregation pro-
cedures to rank systems from instance-level in-
formation.

3.4 How to compare rankings

The rest of the paper is dedicated to synthetic and empirical experiments, on which we demonstrate
the soundness of our approach. In order to obtain a quantitative result, one needs to be able to
compare different rankings quantitatively. Two measures can be used for that purpose: (1) the Kendall
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distance and (2) the Kendall correlation (τ ) [53, 54]. The Kendall distance computes the number of
inversions between two permutations and is therefore adapted for our purpose of ranking systems.
The values of τ range from [−1, 1] where the value of 1 corresponds to a strong agreement, and close
to -1 indicates strong disagreement.

4 Synthetic Experiments

In this section, we validate on simulated data the performance of our method on two criteria:
robustness to manipulation and robustness to scaling.

4.1 Data Generation

The toy experiment analysis is carried out on synthetic scores over N = 20 systems, T = 20
tasks and K = 20 instances. For each n ∈ {1, . . . , N}, we model the performance of system n
by a Gumbel r.v. Gn centered at φ ∗ n at scale β = 1, where φ ∈ [0, 1] is a dispersion parameter.
The scores of system n, (sn,t,k)t,k, are i.i.d. samples of Gn centered at φ ∗ n with scale β = 1,
where φ ∈ [0, 1] is a dispersion parameter. Moreover, the scores of different systems are sampled
independently. Since Gn+1 −Gn follows a logistic distribution with mean φ at scale 1, this imply
that P(Gn+1 −Gn > 0) > 0.5, the probability that system n+ 1 performs better than system n is at
least 0.5. Therefore, for all k, t, the rankings of systems is a realization of the ground-truth ranking
[1, ...N ], with a noise term controlled by the ‘dispersion’ parameter φ.

Extreme scenarii correspond to the choices φ = 0 and φ = 1. More precisely, φ = 0 implies that
all scores sn,t,k have the same distribution, whereas φ = 1 induces a strong consensus, i.e., a clear
system ranking emerges.

Remark 1. Sampling sn,t,k according to the described procedure is equivalent to sampling the
ranking of the systems from the well-know Plackett-Luce distribution [39, 75] with weightswi = φ∗n.
Interestingly, this distribution over ranking can be seen both from the utilitarian perspective in which
the scores sn,t,k are real numbers and from a ranking-model perspective in which the ranking of
systems have known distribution.

4.2 Robustness to manipulation

Setting. To test the robustness of our ranking procedure, we analyze its stability with respect to
perturbations of the scores. More precisely, our way to corrupt scores of a given task t consists in
sampling (sn, t, k)n,k as i.i.d. samples following Gumbel distribution centered at −n. This implies
that, for that task t, the underlying ranking is [N, ...1], namely the exact opposite of the ground truth
[1, . . . , N ]. The robustness to manipulation analysis shows how the error on the final ranking of
systems increases as the scores of some t tasks are ‘corrupted’. Here, the error is computed relying
on the normalized Kendall distance between the ground-truth ranking [1, ...N ] and the ranking of
systems obtained relying on the corrupted scores.
Results: For each of the considered methods, σmean, σl and σ2l we report in Fig. 3 the results of the
robustness analysis when φ and the number of corrupted task varies. The results of the robustness
analysis show that σ2l outperforms σl which at the same time consistently outperforms σmean.
Overall, for the same number of corrupted tasks and dispersion, the error of σ2l is always the smallest.
Moreover, the score-based method σmean gets an error larger than .75 when just 2, 3, and 5 out of the
total of T = 20 tasks have been corrupted, while for σl the same error is achieved with 5, 7 and 10
corrupted tasks. The most robust method is the two-level σ2l for which 10, 11 and 11 out of T = 20
tasks have to be corrupted to get the same error of 0.75.
Takeaways: We conclude that the ranking-based methods are more robust than σmean. In particular,
the 2-level aggregation σ2l is the most robust aggregation procedure.

4.3 Robustness to scaling

To further compare the ranking, we corrupt the scores of a given task by re-scaling them by a factor
of x > 0. Whereas it does not affect our ranking procedure (every ranking induced by a task-instance
pair remains the same), it increasingly perturbs the mean aggregation procedure as x increases.
Re-scaling the scores by a factor of 2 produces an error larger than 90%. For larger φ, re-scaling the
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scores by a factor of 7 produces the same error (see Fig. 7 for detailed results).
Takeaways: Re-scaling one task’s score with an arbitrarily large number will always produce an
arbitrarily large error for mean aggregation while not affecting ranking based aggregation.

5 Empirical Experiments

In this section, we present our results on real evaluation scores. Our large scale experiments relies on
real evaluation scores (over 270k scores) which are described in Ssec. 5.1. In Ssec. 5.2 we gather
experimental results for Ranking Systems from Task Level Information, while Ssec. 5.3 is dedicated
to the problem of Ranking Systems from Instance Level Information.

5.1 Data Collection

Datasets with Task Level Information We collect the results of GLUE [91], SGLUE [92]1 and
XTREME [50]. For GLUE the dataset is composed of N = 105 systems that are evaluated on 9
different tasks: CoLA [93], SST-2 [87], MRPC [38], STS-B [14], QQP, MNLI [96], QNLI [80], RTE
[7, 31, 48] and WNLI [57]. For SGLUE, the final dataset gathers scores from N = 24 systems that
are evaluated on 10 different tasks: BoolQ [17], CB [33], COPA [82], MultiRC [55], ReCoRD [104],
RTE, WiC [74], WSC and its derivatives AX-b AX-g [57]. XTREM benchmark is composed of
N = 15 systems and include tasks such as sentence classification (using XNLI [29, 95] and PAXS-X
[98, 106]), structured prediction (relying on Universal Dependencies v2.5 [68] and Wikiann [70, 79]),
sentence retrieval (with BUCC [110, 111] and Tatoeba [3]) and question answering (via XQuAD
[4, 80], MLQA [58], TyDiQA-GoldP [18]). For all benchmarks, various types of metrics with various
scales are reported (i.e accuracy, f1, correlation).

Datasets with Instance-level information In this setting we focus on NLG evaluation as these
scores are among the easiest to be collected. We focus on five different tasks: summary evaluation,
image description, dialogue and translation. For summary evaluation, we use TAC08 [32], TAC10,
TAC11 [69], RSUM [9] and SEVAL [41]. For sentence-based image description we rely on FLICKR
[101] and for dialogue we use PersonaChat (PC) and TopicalChat (TC) [64]. Finally for machine
translation, we rely on the multilingual quality estimation (MLQE) introduced in Ranasinghe et al.
[81]. For all datasets except MLQE, we consider automatic metric based on S3 (both variant pyr/resp)
[72], ROUGE [59] (including 5 of its variants [67]), JS [1-2] [60], Chrfpp [77], BLEU, BERTScore
[105], MoverScore [107]. For MLQE we solely consider several version of BERTScore, MoverScore
and ContrastScore. We also add human evaluation which is specific to each dataset. All details
corresponding to these dataset can be found in Appendix A.

5.2 Task-level Aggregation Experiments

In this section, we address the aggregation problem when task-level information is available. We first
study the final ranking obtained by different methods on GLUE, SGLUE, and XTREM. Then, we
assess the robustness of σ∗ when removing tasks.

Comparison with mean-aggregation To compare the rankings σmean and σ∗, we compute (i) the

1Results can be found at https://super.gluebenchmark.com/
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Dataset Top 1 Top 3 Top 5 Top 10
XT. 1 0.66 0.8 0.9

GLUE 1 1 0.8 0.8
SGLUE 1 1 0.8 0.9
Dataset Last 3 Last 5 Last 10 τ
EXT. 1 0.8 0.9 0.82

GLUE 1 0.8 0.7 0.92
SGLUE 1 1 1 0.91

Table 2: Agreement count between Top
N/Last N systems on the Ranking when Task
Level Information is available. τ is computed
on the total ranking.

GLUE XTREM
σ∗ Team σmean σ∗ Team σmean

0 (1430) Ms Alex 0 (88.6) 0 (55) ULR 0 (83.2)

1 (1405) ERNIE 1 (88.0) 1 (50) CoFe 1 (82.6)

2 (1397) DEBERTA 2 (87.9) 2 (44) InfoLXL 3 (80.6)

3 (1391) AliceMind 3 (87.8) 3 (42) VECO 4 (80.3)

4 (1375) PING-AH 5 (87.6) 4 (35) Unicoder 5 (79.4)

5 (1362) HFL 4 (87.7) 5 (34) PolyGlot 2 (80.6)

6 (1361) T5 6 (87.5) 6 (31) ULR-v2 6 (79.4)

7 (1358) DIRL 10 (86.7) 7 (29) HiCTL 8 (79.1)

8 (1331) Zihan 7 (87.6) 8 (29) Ernie 7 (79.1)

9 (1316) ELECTRA 11 (86.7) 9 (21) Anony 10 (78.3)

Table 3: Qualitative analysis between rank-
ing obtained with σ∗ or σmean. Results in
parenthesis report the score of the considered
aggregation procedure.
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Figure 5: Impact of adding/removing metrics/tasks. The first column refers to ranking obtained
with task-level information, while others columns refer to ranking obtained with instance-level
information.

agreement rate (in %) which is the proportion of common top-ranked systems between σmean and
σ∗, and (ii) the Kendall Tau correlation (τ ) between the rankings.
Results. In Tab. 2, we compare the rankings of aforementioned methods for Top K systems (strongest
systems) and Last K systems (weakest systems). For the three benchmarks, we observe a high
correlation between the final rankings (i.e. correlation values are in the range [0.80, 1]). To a finer
degree, we also observe that methods tend to agree on which are the best/worst systems. Although
σmean and σ∗ agree on the best/worst systems, they do not rank them in the same order (see Tab. 3).
For instance, on XTREM, the third-best system according to σmean (rank 2) is actually the sixth-best
system according to σ∗.
Takeaways. When changing the aggregation function, the response to our initial question "what are
the best systems?" varies.

How does the addition/removal of new tasks/metrics affect the ranking? When building a bench-
mark, practitioners can always add new tasks to refine the model performance assessment (it boils
down to adding a new column in Tab. 1). In this experiment, we analyze how adding and removing
tasks affect the rankings of the aggregation procedures.
Setting. We compare the rankings obtained when considering a subset of the tasks and the one
obtained using all the tasks. Formally, for a given number of tasks t ≤ T , we randomly sample t tasks,
compute the rankings obtain by our procedure and by the mean procedure, σ∗,t and σmean, on these
t tasks, and finally compute the Kendall correlation between σ∗,t (resp. σmean,t) and the "ground
truth" σ∗ (resp. σmean). We repeat this random sampling 100 times to obtain a mean/variance plot of
the correlations in the function of the number of sub-tasks.
Results. We report in Fig. 5(a,f) the obtained results for varying size of subsets. Interestingly we
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observe that correlation between the σ∗,t and σ∗ is consistently higher than the one between σmean,t
and σmean. This difference is particularly visible in the range [0.25%−0.75%]. We observe a similar
behavior when considering SGLUE (see Fig. 8)
Takeaways. The ranking from σ∗ is more robust to task addition/drop than the one from σmean.

5.3 Instance-level Aggregation Experiments

For instance level aggregation, we conduct experiments on the 9 aforementioned data-sets. We study
both the final ranking obtained for each aggregation (i.e. σl, σ2l and σmean) as well as the effect of
task addition/removal.

PC TC FLI. MLQE
τ(σl, σ2l) -0.08 -0.01 0 -0.03

τ(σmean, σ2l) 0.32 0.27 0.29 0.01
τ(σmean, σl) -0.10 -0.15 -0.04 0.00

RSUM SEVAL TAC08 TAC09 TAC11
0.04 0.14 0.28 0.06 -0.06
0.07 0.52 0.32 0.37 0.37

0 0.10 0.23 0.19 0.07

Figure 6: τ on global instance-level rankings.

Global analysis When conducting our experi-
ments, we observe that the three different aggre-
gation procedures lead to three different state-
of-the-art in 8 datasets out of 9. Furthermore,
they never agree on the top 3 systems. In what
follows, we compare σl, σ2l and σmean.
Setting. We compare the obtained ranking
by (1) comparing the Kendall correlation (see
Fig. 6), (2) comparing the number of agreements
between the top N systems, (3) computing the
Kendall correlation between them.
Results. When considering the agreement analysis of Fig. 4(a), we observe that σ2l and σmean select
a high number of common top systems. However, the correlation of the rankings induced by σ2l and
σmean on these top-systems is low (see Fig. 4(b)). This is also the case for the correlation of the
entire rankings (see Fig. 4). In short σ2l and σmean select similar systems but rank them differently.
Similar analysis shows that σl disagrees from σ2l and σmean both on top systems and on their orders.

Takeaways. σ2l exhibits a more similar behavior than σl with respect to σmean.

What is the impact of removing/adding tasks? In NLG, different metrics (i.e. task) assess the
quality of a generated sentence along a different axis. As adding a new metric may affect the final
ranking, we investigate the impact of task addition/removal on the final system ordering.
Setting. Similarly to ??, we study the evolution between the correlation between the ranking com-
puted on a subset of tasks and the ground truth ranking (computed on all tasks) for each of the three
procedures.
Results. We observe that for all datasets both σ2l, σl obtain higher correlation and lower variance
compared to σmean when adding/removing tasks. Results for RSUM reports a similar trends (see
Fig. 9).
Takeaways. The ranking obtained with either σl or σ2l are more robust to task addition/drop than
the one from σmean.

6 Conclusion and Future Works

In this paper, we introduced new aggregation procedures to rank systems when either task level scores
or instance level scores are available. Our methods, which are theoretically grounded and rely on
Kemeny ranking consensus, address fundamental flaws of the widely used arithmetic mean.

We conducted extensive numerical experiments, which show that our methods are both more reliable
and more robust than the mean aggregation while leading to different conclusions on which are the
best systems. Overall, when task-level (resp. instance-level) information is available, we would
recommend using the aggregation procedure σ∗ (resp. σ2l) rather than the σmean (resp. σmean and
σl).

Although we focused on NLP benchmarks, our methodology could be applied in other modalities
(e.g. Computer Vision, Audio). Another interesting avenue would be to consider a weighted version
of the Kemeney consensus where weight could reflect task-specific criteria (e.g fairness, robustness,
complexity).
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[1] Alnur Ali and Marina Meilă. Experiments with kemeny ranking: What works when? Mathe-

matical Social Sciences, 64(1):28–40, 2012.

[2] Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav
Mehta, Honglei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni, et al. Ext5: Towards extreme
multi-task scaling for transfer learning. arXiv preprint arXiv:2111.10952, 2021.

[3] Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transactions of the Association for Computational
Linguistics, 7:597–610, 2019.

[4] Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the cross-lingual transferability of
monolingual representations. arXiv preprint arXiv:1910.11856, 2019.

[5] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with
improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic
and extrinsic evaluation measures for machine translation and/or summarization, pages 65–72,
2005.

[6] John J Bartholdi, Craig A Tovey, and Michael A Trick. The computational difficulty of
manipulating an election. Social Choice and Welfare, 6(3):227–241, 1989.

[7] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009.

[8] Nadja Betzler, Michael R Fellows, Jiong Guo, Rolf Niedermeier, and Frances A Rosamond.
How similarity helps to efficiently compute kemeny rankings. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages
657–664, 2009.

[9] Manik Bhandari, Pranav Gour, Atabak Ashfaq, Pengfei Liu, and Graham Neubig. Re-
evaluating evaluation in text summarization. arXiv preprint arXiv:2010.07100, 2020.

[10] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[11] Felix Brandt, Markus Brill, Edith Hemaspaandra, and Lane A Hemaspaandra. Bypassing
combinatorial protections: Polynomial-time algorithms for single-peaked electorates. In
Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[12] Róbert Busa-Fekete, Dimitris Fotakis, and Emmanouil Zampetakis. Private and non-private
uniformity testing for ranking data. Advances in Neural Information Processing Systems, 34,
2021.

[13] Ioannis Caragiannis, Ariel D Procaccia, and Nisarg Shah. When Do Noisy Votes Reveal the
Truth? In Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC ’13,
pages 143–160. ACM, 2013. ISBN 978-1-4503-1962-1. doi: 10.1145/2482540.2482570. URL
http://doi.acm.org/10.1145/2482540.2482570.

[14] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017
task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

[15] Emile Chapuis, Pierre Colombo, Matteo Manica, Matthieu Labeau, and Chloe Clavel. Hierar-
chical pre-training for sequence labelling in spoken dialog. arXiv preprint arXiv:2009.11152,
2020.

[16] Emile Chapuis, Pierre Colombo, Matthieu Labeau, and Chloe Clavel. Code-switched inspired
losses for generic spoken dialog representations. arXiv preprint arXiv:2108.12465, 2021.

[17] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

11

http://doi.acm.org/10.1145/2482540.2482570


[18] Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly
Nikolaev, and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question
answering in typologically diverse languages. Transactions of the Association for Computa-
tional Linguistics, 8:454–470, 2020.

[19] Pierre Colombo. Learning to represent and generate text using information measures. PhD
thesis, Institut polytechnique de Paris, 2021.

[20] Pierre Colombo, Wojciech Witon, Ashutosh Modi, James Kennedy, and Mubbasir Kapadia.
Affect-driven dialog generation. arXiv preprint arXiv:1904.02793, 2019.

[21] Pierre Colombo, Emile Chapuis, Matteo Manica, Emmanuel Vignon, Giovanna Varni, and
Chloe Clavel. Guiding attention in sequence-to-sequence models for dialogue act prediction.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7594–7601,
2020.

[22] Pierre Colombo, Emile Chapuis, Matthieu Labeau, and Chloe Clavel. Improving multimodal
fusion via mutual dependency maximisation. arXiv preprint arXiv:2109.00922, 2021.

[23] Pierre Colombo, Chloe Clave, and Pablo Piantanida. Infolm: A new metric to evaluate
summarization & data2text generation. arXiv preprint arXiv:2112.01589, 2021.

[24] Pierre Colombo, Chloe Clavel, and Pablo Piantanida. A novel estimator of mutual information
for learning to disentangle textual representations. arXiv preprint arXiv:2105.02685, 2021.

[25] Pierre Colombo, Guillaume Staerman, Chloe Clavel, and Pablo Piantanida. Automatic text
evaluation through the lens of wasserstein barycenters. arXiv preprint arXiv:2108.12463,
2021.

[26] Pierre Colombo, Chouchang Yang, Giovanna Varni, and Chloé Clavel. Beam search with
bidirectional strategies for neural response generation. arXiv preprint arXiv:2110.03389, 2021.

[27] N. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la
pluralité des voix. de l’Imprimerie Royale, 1785.

[28] Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni.
What you can cram into a single vector: Probing sentence embeddings for linguistic properties.
arXiv preprint arXiv:1805.01070, 2018.

[29] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations.
arXiv preprint arXiv:1809.05053, 2018.

[30] Don Coppersmith, Lisa Fleischer, and Atri Rudra. Ordering by weighted number of wins
gives a good ranking for weighted tournaments. In Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pages 776–782, 2006.

[31] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, pages 177–190. Springer, 2005.

[32] Hoa Trang Dang, Karolina Owczarzak, et al. Overview of the tac 2008 update summarization
task. In TAC, 2008.

[33] Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank:
Investigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung,
volume 23, pages 107–124, 2019.

[34] Mostafa Dehghani, Yi Tay, Alexey A Gritsenko, Zhe Zhao, Neil Houlsby, Fernando Diaz,
Donald Metzler, and Oriol Vinyals. The benchmark lottery. arXiv preprint arXiv:2107.07002,
2021.

[35] Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evalu-
ation for any target language. In Proceedings of the ninth workshop on statistical machine
translation, pages 376–380, 2014.

12



[36] Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad
Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, et al. Nl-
augmenter: A framework for task-sensitive natural language augmentation. arXiv preprint
arXiv:2112.02721, 2021.

[37] Tanvi Dinkar, Pierre Colombo, Matthieu Labeau, and Chloé Clavel. The importance of fillers
for text representations of speech transcripts. arXiv preprint arXiv:2009.11340, 2020.

[38] William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential
paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005),
2005.

[39] Luce R Duncan. Individual choice behavior: A theoretical analysis, 1959.

[40] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation
methods for the web. In Proceedings of the 10th international conference on World Wide Web,
pages 613–622, 2001.
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