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Abstract

Contrastive learning is a highly effective method for learning representations from1

unlabeled data. Recent works show that contrastive representations can transfer2

across domains, leading to simple state-of-the-art algorithms for unsupervised3

domain adaptation. In particular, a linear classifier trained to separate the4

representations on the source domain can also predict classes on the target domain5

accurately, even though the representations of the two domains are far from each6

other. We refer to this phenomenon as linear transferability. This paper analyzes7

when and why contrastive representations exhibit linear transferability in a general8

unsupervised domain adaptation setting. We prove that linear transferability can9

occur when data from the same class in different domains (e.g., photo dogs and10

cartoon dogs) are more related with each other than data from different classes in11

different domains (e.g., photo dogs and cartoon cats) are. Our analyses are in a12

realistic regime where the source and target domains can have unbounded density13

ratios and be weakly related, and they have distant representations across domains.14

1 Introduction15

In recent years, contrastive learning and related ideas have been shown to be highly effective for16

representation learning [Chen et al., 2020a,b, He et al., 2020, Caron et al., 2020, Chen et al., 2020c,17

Gao et al., 2021, Su et al., 2021, Chen and He, 2020]. Contrastive learning trains representations on18

unlabeled data by encouraging positive pairs (e.g., augmentations of the same image) to have19

closer representations than negative pairs (e.g., augmentations of two random images). The20

learned representations are almost linearly separable: one can train a linear classifier on top of21

the fixed representations and achieve strong performance on many natural downstream tasks [Chen22

et al., 2020a]. Prior theoretical works analyze contrastive learning by proving that semantically23

similar datapoints (e.g., datapoints from the same class) are mapped to geometrically nearby24

representations [Arora et al., 2019, Tosh et al., 2020, 2021, HaoChen et al., 2021]. In other words,25

representations form clusters in the Euclidean space that respect the semantic similarity; therefore,26

they are linearly separable for downstream tasks where datapoints in the same semantic cluster have27

the same label.28

Intriguingly, recent empirical works show that contrastive representations carry richer information29

beyond the cluster memberships—they can transfer across domains in a linear way as elaborated30

below. Contrastive learning is used in many unsupervised domain adaptation algorithms[Thota31

and Leontidis, 2021, Sagawa et al., 2022] and the transferability leads to simple state-of-the-art32

algorithms [Shen et al., 2022, Park et al., 2020, Wang et al., 2021]. In particular, Shen et al. [2022]33

observe that the relationship between two clusters can be captured by their relative positions in34
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Figure 1: The linear transferability of representations. We demonstrate the linear transferability of
representations when the unlabeled data contains images of two breeds of dogs (Brittanys, Bulldogs)
and two breeds of cats (Persians, Tabbies). Left: A visualization of the positive-pair graph with
four semantic clusters. Inter-cluster edges (dashed) have a much smaller weight than intra-cluster
edges (solid). Inter-cluster edges between two breeds of dogs (or cats) have more weight than that
between a dog cluster and a cat cluster. Middle and right: A visualization of two different types of
representations: both have linear separability, but only the middle one has linear transferability. The
red line is the decision boundary of a dog-vs-cat linear classifier trained in the representation space
on labeled Brittanys (Sdog) vs. Persians (Scat) images. The representation has linear transferability if
this classifier is accurate on unlabeled Bulldogs (Tdog) vs. Tabbies (Tcat) images.

the representation space. For instance, as shown in Figure 1 (middle), suppose Sdog and Scat are35

two classes in a source domain (e.g., Brittany dogs and Persian cats), and Tdog and Tcat are two36

classes in a target domain (e.g., Bulldogs and Tabby cats). A linear classifier trained to separate37

the representations of Sdog and Scat turns out to classify Tdog and Tcat as well. This suggests the38

four clusters of representations are not located in the Euclidean space randomly (e.g., as in Figure 139

(right)), but rather in a more aligned position as in Figure 1 (middle). We refer to this phenomenon as40

the linear transferability of contrastive representations.41

This paper analyzes when and why contrastive representations exhibit linear transferability in a42

general unsupervised domain adaptation setting. Evidently, linear transferability can only occur43

when clusters corresponding to the same class in two domains (e.g., Brittany dogs and Bulldogs) are44

somewhat related with each other. Somewhat surprisingly, we found that a weak relationship suffices:45

linear transferability occurs as long as corresponding classes in different domains are more related46

than different classes in different domains. Concretely, under this assumption (Assumptions 3.147

or 3.3), a linear head learned with labeled data on one domain (Algorithm 1) can successfully predict48

the classes on the other domain (Theorems 3.2 and 3.4). Notably, our analysis provably shows that49

representations from contrastive learning do not only encode cluster identities but also capture the50

inter-cluster relationship, hence explains the empirical success of contrastive learning for domain51

adaptation.52

Compared to previous theoretical works on unsupervised domain adaptation [Shimodaira, 2000,53

Huang et al., 2006, Sugiyama et al., 2007, Gretton et al., 2008, Ben-David et al., 2010, Mansour54

et al., 2009, Kumar et al., 2020, Chen et al., 2020d, Cai et al., 2021], our results analyze a modern,55

practical algorithm with weaker and more realistic assumptions. We do not require bounded density56

ratios or overlap between the source and target domains, which were assumed in some classical57

works [Sugiyama et al., 2007, Ben-David et al., 2010, Zhang et al., 2019, Zhao et al., 2019]. Another58

line of prior works [Kumar et al., 2020, Chen et al., 2020d] assume that data is Gaussian or near-59

Gaussian, whereas our result allows more general data distribution. Cai et al. [2021] analyze60

pseudolabeling algorithms for unsupervised domain adaptation, but require that the same-class61

cross-domain data are more related with each other (i.e., more likely to form positive pairs) than62

cross-class same-domain data are. We analyze a contrastive learning algorithm with strong empirical63

performance, and only require that the same-class cross-domain data are more related with each64

other than cross-class cross-domain data, which is intuitively and empirically more realistic as shown65

in Shen et al. [2022]. (See related work and discussion below Assumption 3.1 for details).66
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Technically, we significantly extend the framework of HaoChen et al. [2021] to allow distribution67

shift—our setting only has labels on one subpopulation of the data (the source domain). Studying68

transferability to unlabeled subpopulations requires both novel assumptions (Assumptions 3.1 and 3.3)69

and novel analysis techniques (as discussed in Section 4).70

Our analysis also introduces a variant of the linear probe—instead of training the linear head with the71

logistic loss, we learn it by directly computing the average representations within a class, multiplied72

by a preconditioner matrix (Algorithm 1). We empirically test this linear classifier on benchmark73

datasets and show that it achieves superior domain adaptation performance in Section 5.74

Additional Related Works. A number of papers have analyzed the linear separability of75

representations from contrastive learning [Arora et al., 2019, Tosh et al., 2020, 2021, HaoChen et al.,76

2021] and self-supervised learning [Lee et al., 2020], whereas we analyze the linear transferability.77

Shen et al. [2022] also analyze the linear transferability but only for toy examples where the data is78

generated by a stochastic block model. Their technique requires a strong symmetry of the positive-pair79

graph (which likely does not hold in practice) so that top eigenvectors can be analytically derived.80

Our analysis is much more general and does not rely on explicit, clean form of the eigenvectors81

(which is impossible for general graphs).82

Empirically, pre-training on a larger unlabeled dataset and then fine-tuning on a smaller labeled83

dataset is one of the most successful approaches for handling distribution shift [Blitzer et al., 2007,84

Ziser and Reichart, 2018, 2017, Ben-David et al., 2020, Chen et al., 2012, Xie et al., 2020, Jean et al.,85

2016, Hendrycks et al., 2020, Kim et al., 2022, Kumar et al., 2022, Sagawa et al., 2022, Thota and86

Leontidis, 2021, Shen et al., 2022]. Recent advances in the scale of unlabeled data, such as in BERT87

and CLIP, have increased the importance of this approach [Wortsman et al., 2022, 2021]. Despite the88

empirical progress, there has been limited theoretical understanding of why pre-training helps domain89

shift. Our work provides the first analysis that shows pre-trained representations with a supervised90

linear head trained on one domain can provably generalize to another domain.91

2 Preliminaries92

In this section, we introduce the contrastive loss, define the positive-pair graph, and introduce the93

basic assumptions on the clustering structure in the positive-pair graph.94

Positive pairs. Contrastive learning algorithms rely on the notion of “positive pairs”, which are pairs95

of semantically similar/related data. Let X be the set of population data and P+ be the distribution96

of positive pairs of data satisfying P+(x, x
′) = P+(x

′, x) for any x, x′ ∈ X . We note that though a97

positive pair typically consists of semantically related data, the vast majority of semantically related98

pairs are not positive pairs. In the context of computer vision problems [Chen et al., 2020a], these99

pairs are usually generated via data augmentation on the same image.100

For the ease of exposition, we assume X is a finite but large set (e.g., all real vectors in Rd with101

bounded precision) of size N . We use PX to denote the marginal distribution of P+, i.e., PX (x) :=102 ∑
x′∈X P+(x, x

′). Following the terminology in the literature [Arora et al., 2019], we call (x, x′) a103

“negative pair” if x and x′ are independent random samples from PX .104

Generalized spectral contrastive loss. Contrastive learning trains a representation function (feature105

extractor) by minimizing a certain form of contrastive loss. Formally, let f : X → Rk be a mapping106

from data to k-dimensional features. In this paper, we consider a more general version of the spectral107

contrastive loss proposed in HaoChen et al. [2021]. Let Ik×k be the k-dimensional identity matrix.108

We consider the following loss with regularization strength σ > 0:109

Lσ(f) = E
(x,x+)∼P+

[ ∥∥f(x)− f(x+)
∥∥2
2

]
+ σ ·R(f), (1)

where the regularizer is defined as R(f) =
∥∥∥ E
x∼PX

[
f(x)f(x)⊤

]
− Ik×k

∥∥∥2
F
. The loss Lσ intuitively110

minimizes the closeness of positive pairs via its first term, while regularizing the representations’111

covariance to be identity, avoiding all the representations to collapse to the same point. Simple112

algebra shows that Lσ recovers the original spectral contrastive loss when σ = 1 (see Proposition B.1113

for a formal derivation). We note that this loss is similar in spirit to the recently proposed Barlow114

Twins loss [Zbontar et al., 2021].115
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The positive-pair graph. One useful way to think of positive pairs is through a graph defined by116

their distribution. Let the positive-pair graph be a weighted undirected graph G(X , w) such that the117

vertex set is X , and for x, x′ ∈ X , the undirected edge (x, x′) has weight w(x, x′) = P+(x, x
′). This118

graph was introduced by HaoChen et al. [2021] as the augmentation graph when the positive pairs are119

generated from data augmentation. We introduce a new name to indicate the more general applications120

of the graph into other use cases of contrastive learning (e.g. see Gao et al. [2021]). We use121

w(x) = PX (x) =
∑

x′∈X w(x, x′) to denote the total weight of edges connected to a vertex x. We122

call Ā ∈ RN×N the normalized adjacency matrix of G(X , w) if Āxx′ = w(x, x′)/
√
w(x)w(x′),1123

and call L := IN×N − Ā the Laplacian of G(X , w).124

2.1 Clustering assumptions125

Previous work accredits the success of contrastive learning to the clustering structure of the positive-126

pair graph—because the positive pairs connect data with similar semantic contents, the graph can127

be partitioned into many semantically meaningful clusters. To formally describe the clustering128

structure of the graph, we will use the notion of expansion. For any subset A of vertices, let129

w(A) ≜
∑

x∈A w(x) be the total weights of vertices in A. For any subsets A,B of vertices, let130

w(A,B) ≜
∑

x∈A,x′∈B w(x, x′) be the total weights between set A and B. We abuse notation and131

use w(x,B) to refer to w({x}, B) when the first set is a singleton.132

Definition 2.1 (Expansion). Let A,B be two disjoint subsets of X . We use ϕ(A,B), ϕ̄(A,B) and133

ϕ(A,B) to denote the expansion, max-expansion and min-expansion from A to B respectively, defined134

as135

ϕ(A,B) =
w(A,B)

w(A)
, ϕ̄(A,B) = max

x∈A

w(x,B)

w(x)
, ϕ(A,B) = min

x∈A

w(x,B)

w(x)
(2)

Note that ϕ(A,B) ≤ ϕ(A,B) ≤ ϕ̄(A,B).136

Intuitively, ϕ(A,B) is the average proportion of edges adjacent to vertices in A that go to B, whereas137

the max-(min-)expansion is an upper (lower) bound of this proportion for each x ∈ A.138

Our basic assumption on the positive-pair graph is that the vertex set X can be partitioned into m139

groups C1, . . . , Cm with small connections (expansions) across each other.140

Assumption 2.2 (Cross-cluster connections). For some α ∈ (0, 1), we assume that the vertices of the141

positive-pair graph G can be partition into m disjoint clusters C1, . . . , Cm such that for any i ∈ [m],142

ϕ̄(Ci,X\Ci) ≤ α (3)

We will mostly work with the regime where α ≪ 1. Intuitively, each Ci corresponds to all the data143

with a certain semantic meaning or a class of interest. For instance, Ci may contain dogs from a certain144

breed. Our assumption is slightly stronger than in HaoChen et al. [2021]. In particular, they assume145

that the average expansions cross clusters is small, i.e.,
∑

i∈[m] ϕ(Ci,X\Ci) · w(Ci) ≤ α, whereas146

we assume that the max-expansion is smaller than α for each cluster. In fact, since
∑

i∈[m] w(Ci) = 1147

and ϕ(Ci,X\Ci) ≤ ϕ̄(Ci,X\Ci), Assumption 2.2 directly implies their assumption. However,148

we note that Assumption 2.2 is still realistic in many domains. For instance, any bulldog x has149

way more neighbors that are still bulldogs than neighbors that are Brittany dog, which suggests the150

max-expansion between bulldogs and Brittany dogs is small.151

We also introduce the following assumption about intra-cluster expansion that guarantees each cluster152

can not broken into two well-separated sub-clusters.153

Assumption 2.3 (Intra-cluster conductance). For all i ∈ [m], assume the conductance of the subgraph154

restricted to Ci is large, that is, every subset A of Ci with at most half the size of Ci expands to the155

rest:156

∀A ⊂ Ci satisfying w(A) ≤ w(Ci)/2, ϕ(A,Ci\A) ≥ γ. (4)

We have γ < 1 and we typically work with the regime where γ is decently large (e.g., Ω(1), or157

inverse polynomial in dimension)2 and much larger than the cross-cluster connections α. This is the158

1We index Ā by (x, x′) ∈ X × X . Generally, we will index the N -dimensional axis of an array by x ∈ X .
2E.g., suppose each cluster’s distribution is a Gaussian distribution with covariance I , and the data

augmentation is Gaussian blurring with a covariance 1
d
· I , then the intra-cluster expansion is Ω(1) by Gaussian

isoperimetric inequality [Bobkov et al., 1997]. The same also holds with a Lipschitz transformation of Gaussian.
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same regime where prior work HaoChen et al. [2021] guarantees the representations of clusters are159

linearly separable.160

We also remark that all the assumptions are on the population positive-pair graph, which is sparse but161

has reasonable connected components (as partially evaluated in Wei et al. [2020]). The rest of the162

paper assumes access to population data, but the main results can be extended to polynomial sample163

results by levering a model class for representation functions with bounded Rademacher complexity164

as shown in HaoChen et al. [2021].3165

3 Main Results on Linear Transferability166

In this section, we analyze the linear transferability of contrastive representations by showing that167

representations encode information about the relative strength of relationships between clusters.168

Let S and T be two disjoint subsets of X , each formed by r clusters corresponding to r classes.169

We say a representation function has linear transferability from the source domain S to the target170

domain T if a linear head trained on labeled data from S can accurately predict the class labels on T .171

E.g., the representations in Fig. 1 (middle) has linear transferability because the max-margin linear172

classifier trained on Sdog vs. Scat also works well on Tdog vs. Tcat. We note that linear separability173

is a different, weaker notion, which only requires the four groups of representations to be linearly174

separable from each other.175

Mathematically, we assume that the source domain and target domain are formed by r clusters among176

C1, . . . , Cm for r ≤ m/2. Without loss of generality, assume that the source domain consists of177

cluster S1 = C1, . . . , Sr = Cr and the target domain consists of T1 = Cr+1, . . . , Tr = C2r. Thus,178

S = ∪i∈[r]Si and T = ∪i∈[r]Ti. We assume that the correct label for data in Si and Ti is the cluster179

identity i. Contrastive representations are trained on (samples of) the entire population data (which180

includes all Ci’s). The linear head is trained on the source with labels, and tested on the target.181

Our key assumption is that the source and target classes are related correspondingly in the sense182

that there are more same-class cross-domain connections (between Si and Ti) than cross-class183

cross-domain connections (between Si and Tj with i ̸= j), formalized below.184

Assumption 3.1 (Relative expansion). Let ρ ≜ mini∈[r] ϕ(Ti, Si) be the minimum min-expansions185

from Ti to Si. For some sufficiently large universal constant c (e.g., c = 8 works), we assume that186

ρ ≥ c · α2 and that187

ρ = min
i∈[r]

ϕ(Ti, Si) ≥ c ·max
i̸=j

·ϕ̄(Ti, Sj) (5)

Intuitively, equation (5) says that every vertex in Ti has more edges connected to Si than to Sj .188

The condition ρ ≳ α2 says that the min-expansion ρ is bigger than the square of max-expansion189

α. This is reasonable because α ≪ 1 and thus α2 ≪ α, and we consider the min-expansion ρ and190

max-expansion α to be somewhat comparable. In Section 3.1 we will relax this assumption and study191

the case when the average expansion ϕ(Ti, Si) is larger than ϕ(Ti, Sj).192

Our assumption is weaker than that in the prior work [Cai et al., 2021] which also assumes expansion193

from Si to Ti (though their goal is to study label propagation rather than contrastive learning). They194

assume the same-class cross-domain conductance ϕ(Ti, Si) to be larger than the cross-class same-195

domain conductance ϕ(Si, Sj). Such an assumption limits the application to situations where the196

domains are far away from each other (such as DomainNet [Peng et al., 2019]).197

Moreover, consider an interesting scenario with four clusters: photo dog, photo cat, sketch dog, and198

sketch cat. Shen et al. [2022] empirically showed that transferability can occur in the following two199

settings: (a) we view photo and sketch as domains: the source domain is photo dog vs photo cat, and200

the target domain is sketch dog vs sketch cat; (b) we view cat and dog as domains, whereas photo and201

sketch are classes: the source domain is photo dog vs sketch dog, and the target is photo cat vs sketch202

cat. The condition that cross-domain expansion is larger than cross-class expansion will fail to explain203

the transferability for one of these settings—if ϕ(photo dog, sketch dog) < ϕ(photo dog, photo cat),204

then it cannot explain (a), whereas if ϕ(photo dog, sketch dog) > ϕ(photo dog, photo cat), it cannot205

explain (b). In contrast, our assumption only requires conditions such as ϕ(photo dog, sketch dog) >206

ϕ(photo dog, sketch cat), hence works for both settings.207

3In contrast, the positive-graph built only on empirical examples will barely have any edges, and does not
exhibit any nice properties. However, the sample complexity bound does not utilize the empirical graph at all.
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We will propose a simple and novel linear head that enables linear transferability. Let PS be the208

data distribution restricted to the source domain.4 For i ∈ [r], we construct the following average209

representation for class i in the source:5210

bi = E
x∼PS

[1 [x ∈ Si] · f(x)] ∈ Rk. (6)

One of the most natural linear head is to use the average feature bi’s as the weight vector for class i,211

as in many practical few shot learning algorithms [Snell et al., 2017].6 That is, we predict212

g(x) = argmax
i∈[r]

⟨f(x), bi⟩ . (7)

This classifier can transfer to the target under relatively strong assumptions (see the special cases in213

the proof sketch in Section 4), but is vulnerable to complex asymmetric structures in the graph. To214

strengthen the result, we consider a variant of this classifier with a proper preconditioning.215

To do so, we first define the representation covariance matrix which will play an important role:216

Σ = Ex∼PX [f(x)f(x)
⊤]. The computation of this matrix only uses unlabeled data. Since Σ ∈ Rk×k217

is a low-dimensional matrix for k not too large, we can accurately estimate it using finite samples218

from PX . For the ease of theoretical analysis, we assume that we can compute this matrix exactly.219

Now we define a family of linear heads on the target domain: for t ∈ Z+, define220

gt(x) = argmax
i∈[r]

〈
f(x),Σt−1bi

〉
. (8)

The case when t = 1 corresponds to the linear head in equation (7). When t is large, gt will care more221

about the correlation between f(x) and bi in those directions where the representation variance is222

large. Intuitively, directions with larger variance tend to contain information also in a more robust way,223

hence the preconditioner has a “de-noising” effect. See Section 4 for more on why the preconditioning224

improve the target error. Algorithm 1 gives the pseudocode for this linear classification algorithm.225

Algorithm 1 Preconditioned feature averaging (PFA)
Require: Pre-trained representation extractor f , unlabeled data PX , source domain labeled data PS ,

target domain test data x̃, integer t ∈ Z+

1: Compute the preconditioner matrix Σ := Ex∼PX

[
f(x)f(x)⊤

]
.

2: for every class i ∈ [r] do
3: Compute the mean feature of the class i: bi := E(x,y)∼PS

[1 [y = i] · f(x)] .
4: return prediction argmaxi∈[r]

〈
f(x),Σt−1bi

〉
.

We note that this linear head is different from prior work [Shen et al., 2022] where the linear head is226

trained with logistic loss. We made this modification since this head is more amenable to theoretical227

analysis. In Section 5 we show that this linear head also achieves superior empirical performance.228

The error of a head g on the target domain is defined as: ET (g) = Ex∼PT

[
1
[
x /∈ Tg(x)

]]
. The229

following theorem (proved in Appendix E) shows that the linear head gt achieves high accuracy on230

the target domain with a properly chosen t:231

Theorem 3.2. Suppose that Assumption 2.2 and 3.1 holds, PX (S)/PX (T ) ≤ O(1). Let f be a232

minimizer of the contrastive loss L2(·) and the head gt be defined in (8). Then, for any 1 ≤ t ≤233

ρ/(8α2), we have ET (gt) ≲ r
α2λ2

k+1
· exp(− 1

2 tλk+1), where λk+1 is the k+1-th smallest eigenvalue234

of the Laplacian of the positive-pair graph. Furthermore, suppose Assumption 2.3 also holds and235

k ≥ 2m, with t = ρ/(8α2), we have236

ET (gt) ≲
r

α2γ4
· exp

(
−Ω

(
ργ2

α2

))
. (9)

4Formally, we have PS(x) :=
w(x)
w(S)

· 1 [x ∈ S], and PT (x) is defined similarly.
5We assume access to independent samples from PS and thus bi can be accurately estimated with finite

labeled samples in the source domain.
6We note that few-shot learning algorithms do not necessarily consider domain shift settings.
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To see that RHS of equation (9) implies small error, one can consider a reasonable setting where237

the intra-cluster conductance is on the order of constants (i.e., γ ≥ Ω(1)). In this case, so long as238

ρ ≫ α2 log(r/α), we would have error bound ET (gt) ≪ 1. In general, as long as γ ≫ α1/2 (the239

intra-cluster conductance is much larger than cross-cluster connections or its square root) and ρ is240

comparable to α, we have ργ2 ≫ α2 and thus a small upper bound of the error.241

Theorem 3.2 shows that the error decreases as t increases. Intuitively, the PFA algorithm can be242

thought of as computing a low-rank approximation of a “smoothed” graph with normalized adjacency243

matrix Āt, where Ā is the normalized adjacency matrix of the original positive-pair graph. A larger t244

will make the low-rank approximation of Āt more accurate, hence a smaller error. However, there’s245

also an upper bound t ≤ ρ/(8α2), since when t is larger than this limit, the graph would be smoothed246

too much, hence the corresponding relationship in the graph between source and target classes would247

be erased. A more formal argument can be found in Section 4.248

We also note that our theorem allows “overparameterization” in the sense that a larger representation249

dimension k always leads to a smaller error bound (since λk+1 is non-decreasing in k). Moreover,250

our theorem can be easily generalized to the setting where only polynomial samples of data are used251

to train the representations and the linear head, assuming the realizability of the function class.252

3.1 Linear transferability with average relative expansion253

In this section, we relax Assumption 3.1 and only assume that the total connections from Ti to Si is254

larger than that from Ti to Sj , formalized below.255

Assumption 3.3 (Average relative expansion (weaker version of Assumption 3.1)). For some256

sufficiently large τ > 0, we assume that257

∀i, ϕ(Ti, Si) ≥ τ · α2 and ∀i ̸= j, ϕ(Ti, Si) ≥ τ · ϕ(Ti, Sj) (10)

The following theorem (proved in Appendix F) generalizes Theorem 3.2 in this setting.258

Theorem 3.4. Suppose Assumptions 2.2, 2.3 and3.3 hold, PX (S)/PX (T ) ≤ O(1), and feature259

dimension k ≥ 2m. Then, for some t = Ω
(

1
γ2 · log

(
1
α

))
, we have260

ET (gt) ≲
r

τγ8
· log2

( 1
α

)
. (11)

Again, consider a reasonable setting where the intra-cluster conductance is on the order of constants261

(i.e., γ ≥ Ω(1)). In this case, so long as τ , the gap between same-class cross-domain connection and262

cross-class cross-domain connection is sufficiently large (e.g., τ ≫ r log2(1/α)), we would have an263

error bound ET (gt) ≪ 1.264

We note that the intra-cluster connections (Assumption 2.3) are necessary, when we only use the265

average relative expansion (Assumption 3.3 as opposed to Assumption 3.1). Otherwise, there may266

exist subset T̃i ⊂ Ti that is completely disconnected from X\T̃i, hence no linear head trained on the267

source can be accurate on T̃i.268

4 Proof Sketch269

Key challenge: The analysis will involve careful understanding of how the spectrum of the normalized270

adjacency matrix of the positive-pair graph is influenced by three types of connections: (i) intra-cluster271

connections; (ii) connections between same-class cross-domain clusters (between Si and Ti), and272

(iii) connections between cross-class and cross-domain clusters (between Si and Tj for i ̸= j). Type273

(i) connections have the dominating contribution to the spectrum of the graph, contributing to the top274

eigenvalues. When analyzing the linear separability of the representations of the clusters, HaoChen275

et al. [2021] essentially show that type (ii) and (iii) are negligible compared to type (i) connections.276

However, this paper focuses on the linear transferability, where we need to compare how type (ii) and277

type (iii) connections influence the spectrum of the normalized adjancency matrix. However, such a278

comparison is challenging because they are both low-order terms compared to type (i) connections.279

Essentially, we develop a technique that can take out the influence of the type (i) connections so that280

they don’t negatively influence our comparisons between type (ii) and type (iii) connections.281

Below we give a proof sketch of a sligthly weaker version of Theorem 3.2 under a simplified setting.282

First, we assume r = 2, that is, there are two source classes S1 and S2, and two target classes T1 and283
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T2. Second, we assume the marginal distribution over x is uniform, that is, w(x) = 1/N as this case284

typically capture the gist of the problem in spectral graph theory. Third, we will consider the simpler285

case where the normalized adjacency matrix Ā is PSD, and the regularization strength σ = 1.286

Let f̃(x) =
√

w(x) · f(x) and F̃ ∈ RN×k be the matrix with f̃(x) on its x-th row. HaoChen et al.287

[2021] (or Proposition C.1) showed that matrix F̃ F̃⊤ contains the top-k eigenvectors of Ā. We will288

first give a proof for the case where F̃ F̃⊤ exactly (Section 4.1) or near exactly (Section 4.2) recovers289

Ā. Then we’ll give a proof for the more realistic case where F̃ F̃⊤ is not guaranteed to approximate290

Ā accurately (Section 4.3).291

4.1 Warmup case: when k = ∞ and F̃ F̃⊤ = Ā292

In this extremely simplified setting, the inner product between the embeddings perfectly represents293

the graph (that is, ⟨f̃(x), f̃(x′)⟩ = Āx,x′ ). As a result, the connections between subsets of vertices, a294

graph quantity, can be written as a linear algebraic quantity involving F̃ :295

w(A,B) =
1

N
· 1⊤

AĀ1B =
1

N
· 1⊤

AF̃ F̃⊤1B (12)

where 1A ∈ {0, 1}N is the indicator vector for the set A,7 and we used the assumption w(x) = 1/N .296

We start by considering the simple linear classifier which computes the difference between the means297

of the representations in two clusters.298

v = E
x∼S1

[f(x)]− E
x∼S2

[f(x)] = F̃⊤(1S1
− 1S2

) ∈ Rk (13)

This classifier corresponds to the head g1 defined in Section 3,8 which suffices for the special case299

when F̃ F̃⊤ = Ā. Applying v to any data point x ∈ T1∪T2 results in the output ŷ(x) = f(x)⊤v. For300

notational simplicity, we consider ˆ̂y(x) = f̃(x)⊤v =
√
w(x)f(x)⊤F̃⊤(1S1 − 1S2). Because ŷ(x)301

and ˆ̂y(x) has the same sign, it suffice to show that ˆ̂y(x) > 0 for x ∈ T1 and ˆ̂y(x) < 0 for x ∈ T2.302

Using equation (12) that links the linear algebraic quantity to the graph quantity,303

ˆ̂y(x) = 1⊤
x F̃ F̃⊤(1S1

− 1S2
) = 1⊤

x Ā(1S1
− 1S2

) = N · (w(x, S1)− w(x, S2)) (14)

In other words, the output ˆ̂y depends on the relative expansions from x to S1 and from x to S2. By304

Assumption 3.1 or Assumption 3.3, we have that when x ∈ T1, x has more expansion to S1 than S2,305

and vice versa for x ∈ T2. Formally, by Assumption 3.1, we have that306

∀x ∈ T1, ϕ(x, S1) ≥ ρ ≳ ϕ(x, S2) and ∀x ∈ T2, ϕ(x, S2) ≥ ρ ≳ ϕ(x, S1) (15)

Because ϕ(x, Si) = w(x, Si)/w(x) = N ·w(x, Si), we have for x ∈ T1, w(x, S1) > w(x, S2), and307

therefore by equation (14), ˆ̂y(x) > 0. Similary when x ∈ T2, ˆ̂y(x) < 0.308

4.2 When k ≪ N and Ā is almost rank-k309

Assuming k = ∞ is unrealistic since in most cases the feature is low-dimensional, i.e., k ≪ N .310

However, so long as Ā is almost rank-k, the above argument still works with minor modification.311

More concretely, suppose Ā’s (k+1)-th largest eigenvalue, 1− λk+1, is less than ϵ. Then we have312

∥Ā− F̃ F̃⊤∥op = 1− λk+1 ≤ ϵ. It turns out that when ϵ ≪ 1, we can straightforwardly adapt the313

proofs for the warm-up case with an additional ϵ error in the final target performance. The error314

comes from second step of equation (14).315

4.3 When Ā is far from low-rank316

Unfortunately, a realistic graph’s λk+1 is typically not close to 1 when k ≪ N (unless there’s317

very strong symmetry in the graph as those cases in Shen et al. [2022]). We aim to solve the more318

realistic and interesting case where λk+1 is a relatively small constant, e.g., 1/3 or inverse polynomial319

in d. The previous argument stops working because F̃ F̃⊤ is a very noisy approximation of Ā:320

7Formally, we have (1A)x = 1 iff x ∈ A.
8Here because of the binary setting, the classifier can only involve one weight vector v in Rd; this is equivalent

to using two linear heads and then compute the maximum as in equation (7).
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the error ∥Ā − F̃ F̃⊤∥op = 1 − λk+1 is non-negligible and can be larger than ∥F̃ F̃⊤∥op = λk.321

Our main approach is considering the power of Ā, which reduces the negative impact of smaller322

eigenvalues. Concretely, though ∥Ā− F̃ F̃⊤∥op = 1− λk+1 is non-negligible, (F̃ F̃⊤)t is a much323

better approximation of Āt:324

∥Āt − (F̃ F̃⊤)t∥op = (1− λk+1)
t = ϵ (16)

when t ≥ Ω(log(1/ϵ)). Inspired by this, we consider the transformed linear classifier v′ =325

Σt−1F̃⊤(1S1
− 1S2

), where Σ = F̃⊤F̃ is the covariance matrix of the representations. Intuitively,326

multiplying Σ forces the linear head to pay more attention to those large-variance directions of the327

representations, which are potentially more robust. The classifier outputs the following on a target328

datapoint x (with a rescaling of
√
w(x) for convenience)329

ˆ̂y′(x) =
√
w(x)f(x)⊤v = 1⊤

x F̃Σt−1F̃ t(1S1 − 1S2)

= 1⊤
x (F̃ F̃⊤)t(1S1

− 1S2
) ≈ 1⊤

x Ā
t(1S1

− 1S2
) (17)

where the last step uses equation (16). Thus, to understand the sign of ˆ̂y′(x), it suffices to compare330

1⊤
x Ā

t1S1 with 1⊤
x Ā

t1S2 . In other words, it suffices to prove that for x ∈ T1, 1⊤
x Ā

t1S1 > 1⊤
x Ā

t1S2 .331

We control the quantity 1⊤
x Ā

t1S1
by leveraging the following connection between Ā and a random332

walk on the graph. First, let D = diag(w) be the diagonal matrix with Dxx = w(x), A ∈ RN×N be333

the adjacency matrix, i.e., Axx′ = w(x, x′). Observe that AD−1 is a transition matrix that defines334

a random walk on the graph, and (AD−1)t correspond to the transition matrix for t steps of the335

random walk, denoted by x0, xt, . . . , xt. Because Āt = (D−1/2AD−1/2)t = D1/2(D−1A)tD−1/2336

and D = 1/N · IN×N , we can verify that 1⊤
x Ā

t1S1
= Pr[xt ∈ S1 | x0 = x]. That is, 1⊤

x Ā
t1S1

337

and 1⊤
x Ā

t1S2 are the probabilities to arrive at S1 and S2, respectively. form x0 = x. Therefore, to338

prove that 1⊤
x Ā

t1S1 − 1⊤
x Ā

t1S2 > 0 for most x ∈ T1, it suffices to prove that a t-step random walk339

starting from T1 is more likely to arrive at S1 than S2. Intuitively, because T1 has more connections340

to S1 than S2, hence a random walk starting from T1 is more likely to arrive at S1 than at S2. In341

Section E, we prove this by induction.342

5 Simulations343

We empirically show that our proposed Algorithm 1 achieves good performance on the unsupervised344

domain adaptation problem. We conduct experiments on BREEDS [Santurkar et al., 2020]—a dataset345

for evaluating unsupervised domain adaptation algorithms (where the source and target domains346

are constructed from ImageNet images). For pre-training, we run the spectral contrastive learning347

algorithm [HaoChen et al., 2021] on the joint set of source and target domain data. Unlike the348

previous convention of discarding the projection head, we use the output after projection MLP as349

representations, because we find that it significantly improves the performance (for models learned350

by spectral contrastive loss) and is more consistent with the theoretical formulation. Given the351

pre-trained representations, we run Algorithm 1 with different choices of t. For comparison, we use352

the linear probing baseline where we train a linear head with logistic regression on the source domain.353

The table below lists the test accuracy on the target domain for Living-17 and Entity-30—two datasets354

constructed by BREEDS. Additional details can be found in Section A.355

Linear probe PFA (ours, t = 1) PFA (ours, t = 2)
Living-17 54.7 67.4 72.0
Entity-30 46.4 62.3 65.1

Our experiments show that Algorithm 1 achieves better domain adaptation performance than linear356

probing given the pre-trained representations. When t = 1, our algorithm is simply computing the357

mean features of each class in the source domain, and then using them as the weight of a linear358

classifier. Despite having a lower accuracy than linear probing on the source domain (see section A359

for the source domain accuracy), this simple algorithm achieves much higher accuracy on the target360

domain. When t = 2, our algorithm incorporates the additional preconditioner matrix into the linear361

classifier, which further improves the domain adaptation performance. We note that our results on362

Entity-30 is better than Shen et al. [2022] who compare with many state-of-the-art unsupervised363

domain adaptation methods, suggesting the superior performance of our algorithm.364
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A Experiment details555

Unlike the previous convention of discarding the projection head and using the pre-MLP layers as the556

features Chen et al. [2020a], we use the final output of the neural nets as representations, because we557

find that it significantly improves the performance (for models learned by spectral contrastive loss)558

and is more consistent with the theoretical formulation.559

For the architecture, we use ResNet50 followed by a 3-layer MLP projection head, where the560

hidden and output dimensions are 1024. For pre-training, we use the spectral contrastive learning561

algorithm HaoChen et al. [2021] with hyperparameter µ = 10, and use the same augmentation562

strategy as described in Chen and He [2020]. We train the neural network using SGD with momentum563

0.9. The learning rate starts at 0.05 and decreases to 0 with a cosine schedule. We use weight decay564

0.0001 and train for 800 epochs with batch size 256.565

For linear probe experiments, we train a linear head using SGD with batch size 256 and weight decay566

0 for 100 epochs, learning rate starts at 30.0 and is decayed by 10x at the 60th and 80th epochs. The567

classification accuracy on the source and target domains are listed in Table 1:

linear probe Ours (t=1) Ours (t=2)
Living-17 91.3 / 54.7 92.6 / 67.4 90.5 / 72.0
Entity-30 84.8 / 46.4 82.8 / 62.3 77.3 / 65.1

Table 1: Accuracy (%) of linear probing and Algorithm 1 on the source and target domain. The
number before and after slash are on the source and target domains, respectively. The numbers after
slash are the same as in Table 5.

568

A.1 Additional datasets and comparison with algorithms569

In addition to experiments in Table 5, we include additional experiments to show that PFA works570

competitively as a domain adaptation method. In particular, we add results on the STL→CIFAR10571

dataset, and compare with more adapataion baseline methods (ERM, DANN and SENTRY). We also572

report linear probing results after discarding the mlp layer of a contrastive learned model. The results573

are listed below:574

ERM SENTRY DANN Linear Probe Linear Probe PFA
(pre-mlp) (pre-mlp) (post-mlp)

Living-17 63.3 75.5 71.3 79.1 54.7 72.0
Entity-30 52.5 56.1 57.5 63.8 46.4 65.1

STL→CIFAR10 57.4 53.8 55.2 79.8 73.1 80.0

Table 2: Accuracy (%) of PFA and baseline methods on the target domain. PFA consistently
improves upon direct linear probing on the post-mlp contrastive representation. Furthermore, PFA is
competitive and usually better than other baseline domain adaptation algorithms.

We provide details about the additional dataset and methods below:575

STL→CIFAR10: In addition to datasets Living-17 and Entity-30, we add experiment results on576

STL→CIFAR10Coates et al. [2011], Krizhevsky et al. [2009], French et al. [2017], which are two577

classical image recognition datasets often paired together as a domain adaptation benchmark. We578

resize the STL-10 images from 96 × 96 to 32 × 32 to match the resolution of CIFAR10, and remove579

the two non-overlapping classes (“monkey” in CIFAR-10 and “frog” in STL10), making the task a580

9-class classification problem.581

ERM: The standard ERM method trained on the labeled source data. The augmentation is set to be582

the same as in SimCLR (hence stronger than default supervised learning augmentation) due to its583

better performance on the target domain.584

SENTRY[Prabhu et al., 2021]: A state-of-the-art unsupervised domain adaptation method that is585

capable of handling simultaneous data and label distribution shift.586
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DANN[Ganin et al., 2016]: A strong domain adaptation algorithm that tries to collapse the587

representations on the source and target domains. The augmentation is set to be the same as in588

SimCLR due to its better performance on the target domain.589

The numbers of ERM, SENTRY and DANN are reported in Shen et al. [2022].590

Linear probe (pre-mlp): Linear probe performance on the representations before the mlp layers591

of a contrastive trained model. Our models are trained using spectral contrastive learning HaoChen592

et al. [2021] for 800 epochs with batch size 256. The learning rate starts from 0.05 and decays with a593

cosine schedule. For Living-17 and Entity-30, we use a ResNet-50 with a 3-layer mlp, and set both594

the hidden and the output dimension of the mlp to be 1024. For STL→CIFAR10, we use a ResNet-18595

with a 2-layer mlp, and set both the hidden and the output dimension of the mlp to be 1000.596

Linear probe (post-mlp): Linear probe performance on the representations after the mlp layer. The597

model is trained the same way as in “linear probe (pre-mlp)”. This is the linear probe accuracy598

reported in Table 5.599

PFA (post-mlp): Our proposed PFA method, where the feature is that after the mlp layer in a600

contrastive trained model. The model is trained the same way as in “linear probe (pre-mlp)”.601

A.2 Sensitivity to the amount of labeled source data602

We including additional experiments where we change the amount of labeled source data, where we603

set the labeled data to be 10%, 1% and 0.1% of the original living-17 / entity-30 dataset. Our results604

show that PFA consistently outperform linear probing (on post-mlp contrastive learned features):605

% of Labeled Data Linear Probe PFA
Living-17 100% 54.7 72.0

10% 53.7 66.6
1% 49.0 64.6

0.1% 25.5 43.3
Entity-30 100% 46.4 65.1

10% 41.5 62.3
1% 46.1 62.1

0.1% 35.6 55.6

Table 3: Accuracy (%) of PFA and linear probing with different amount of labeled source data.

B The generalized spectral contrastive loss606

Recall that the spectral contrastive loss HaoChen et al. [2021] is defined as607

Lscl(f) = −2 · E
(x,x+)∼P+

[
f(x)⊤f(x+)

]
+ E

x,x′∼PX

[
(f(x)⊤f(x′))2

]
(18)

The following proposition shows that the generalized spectral contrastive loss Lσ recovers the spectral608

contrastive loss when σ = 1.609

Proposition B.1. For all f : X → Rk, we have610

L1(f) = Lscl(f) + c, (19)

where c does not depend on f .611
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Proof of Proposition B.1. Define matrix F̃ ∈ RN×k be such that the x-th row of it contains
√

w(x) ·612

f(x). We have613

Lσ(f) = E
(x,x+)∼P+

[∥∥f(x)− f(x+)
∥∥2
2

]
+ σ ·

∥∥∥∥ E
x∼PX

[
f(x)f(x)⊤

]
− Ik

∥∥∥∥2
F

(20)

=
∑

x,x′∈X
w(x, x′) ∥f(x)− f(x′)∥22 + σ ·

∥∥∥F̃⊤F̃ − Ik

∥∥∥2
F

(21)

= 2
∑
x∈X

w(x) ∥f(x)∥22 − 2
∑

x,x′∈X
w(x, x′)f(x)⊤f(x′) + σ · Tr

((
F̃⊤F̃ − Ik

)2)
(22)

= 2Tr
(
F̃ F̃⊤

)
− 2 E

(x,x+)∼P+

[
f(x)⊤f(x+)

]
+ σTr

((
F̃⊤F̃

)2)
− 2σTr

(
F̃⊤F̃

)
+ const.

(23)

When σ = 1, notice that Tr
(
F̃ F̃⊤

)
= Tr

(
F̃⊤F̃

)
and Tr

((
F̃ F̃⊤

)2)
= Tr

((
F̃⊤F̃

)2)
, we614

have615

L1(f) = −2 E
(x,x+)∼P+

[
f(x)⊤f(x+)

]
+Tr

((
F̃ F̃⊤

)2)
+ const (24)

= −2 E
(x,x+)∼P+

[
f(x)⊤f(x+)

]
+ E

x,x′∼PX

[(
f(x)⊤f(x′)

)2]
+ const. (25)

= Lscl(f) + const. (26)

616

C Relationship between contrastive representations and spectral617

decomposition618

HaoChen et al. [2021] showed that minimizing spectral contrastive loss is equivalent to spectral619

clustering on the positive-pair graph. We introduce basic concepts in spectral graph theory and extend620

this result slightly to the generalized spectral contrastive loss. We call Ā ∈ RN×N the normalized621

adjacency matrix of G(X , w) if Āxx′ = w(x, x′)/
√
w(x)w(x′).9 Let L := IN×N − Ā be the622

Laplacian of G(X , w). It is well-known [Chung and Graham, 1997] that L is a PSD matrix with623

all eigenvalues in [0, 2]. We use λi to denote the i-th smallest eigenvalue of L. For a symmetric624

matrix M , we say M[k] is the best rank-k PSD approximation of M if it is a rank-k PSD matrix that625

minimizes
∥∥M[k] −M

∥∥2
F

.626

Representations learned from Lσ turn out to be closely related to the low-rank approximation of Ā,627

as shown in the following Proposition.628

Proposition C.1. Let f : X → Rk be a minimizer of L1(·), F ∈ RN×k be the matrix where the x-th629

row contains f(x), and D = diag(w) be the diagonal matrix with Dxx = w(x). Then, we have630

D1/2FF⊤D1/2 = Ā[k]. (27)

More generally, when f : X → Rk is a minimizer of Lσ(·), D1/2FF⊤D1/2 is the best rank-k PSD631

approximation of 1
σ · Ā+ (1− 1

σ ) · IN×N .632

Remark C.2. Proposition C.1 can be seen as a simple extension of Lemma 3.2 in HaoChen et al.633

[2021], which correspond to the case when σ = 1. The extension is helpful because we will work634

with σ > 1. E.g., we set σ = 2 in Section 3, which makes 1
σ · Ā + (1 − 1

σ ) · IN×N a PSD matrix;635

hence its best rank-k PSD approximation is the same as best rank-k approximation.636

9We index Ā by (x, x′) ∈ X × X . Generally, we will index the N -dimensional axis of an array by x ∈ X .
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Proof of Proposition C.1. Define F̃ := D
1
2F . Following the Proof of Proposition B.1, we have637

Lσ(f) = 2Tr
(
F̃ F̃⊤

)
− 2 E

(x,x+)∼P+

[
f(x)⊤f(x+)

]
+ σTr

((
F̃⊤F̃

)2)
− 2σTr

(
F̃⊤F̃

)
+ const.

(28)

Notice that Tr
(
F̃ F̃⊤

)
= Tr

(
F̃⊤F̃

)
and Tr

((
F̃ F̃⊤

)2)
= Tr

((
F̃⊤F̃

)2)
, we have638

Lσ(f) = σTr

((
F̃ F̃⊤

)2)
− 2Tr

((
Ā+ (σ − 1)IN×N

)
F̃ F̃⊤

)
+ const (29)

= σ

∥∥∥∥F̃ F̃⊤ −
(
1

σ
Ā+ (1− 1

σ
)IN×N

)∥∥∥∥2
F

+ const. (30)

Therefore, directly applying Eckart-Young-Mirsky theorem finishes the proof.639

D Improved bound on linear separability640

Let f : X → Rk be a representation function with dimension k > m. For a matrix B ∈ Rk×m, we641

define the linear head as gB(x) = argmaxi∈[m](B
⊤f(x))i. The linear probing error of f is the642

minimal possible error of using such a linear head to predict which cluster a datapoint belongs to:643

E(f) := min
B∈Rk×m

E
x∼PX

[
1
[
x /∈ CgB(x)

]]
. (31)

We say the representation f has linear separability if the linear probing error is small.644

HaoChen et al. [2021] prove the linear separability of spectral contrastive representations. In particular,645

they prove that E(f) ≤ O(α/λk+1) where λk+1 is the (k+1)-th smallest eigenvalue of the Laplacian.646

When k is set to be large enough—larger than the total number of distinct semantic meanings in the647

graph—G cannot be partitioned into k disconnected clusters, hence λk+1 is big (e.g., on the order of648

constant) according to Cheeger’s inequality, and we have E(f) ≤ O(α).10649

The lemma below shows that Assumption 2.2 enables a better bound on the linear probing errors.650

Lemma D.1. Suppose that Assumption 2.2 holds. Let f : X → Rk be a minimizer of the generalized651

spectral contrastive loss Lσ(·) for σ ≥ λk. Then, the linear probing error satisfies652

E(f) ≲ mα2/λ2
k+1. (32)

where λk+1 is the (k + 1)-th smallest eigenvalue of the Laplacian matrix of G(X , w).653

Remark D.2. Since the separation assumption inherently implies small λm (according to Cheeger’s654

inequality), one needs to choose the representation dimension k > m for the bound to be non-vacuous.655

When m ≤ O(1) and λk+1 ≥ Ω(1), Lemma D.1 implies that the linear probing error of f is at most656

O(α2), which improves upon the previous O(α) bound.657

We first introduce the following claim, which controls the Rayleigh quotient for Laplacian square L2658

and the indicator vector of one cluster.659

Claim D.3. Suppose that Assumption 2.2 holds. Let i ∈ [m] be the index of one cluster. Let gi ∈ RN660

be a vector such that its x-th dimension is
√
w(x) when x ∈ Ci, 0 otherwise. Then, we have661

g⊤i L2gi ≤ 2α2 ∥gi∥22 . (33)

10High-order Cheeger’s inequality establishes a precise connection between λk and the clusterabilty of the
graph. Loosely speaking, when the graph cannot be partition into k/2 pieces with expansion at most γ, then
λk ≳ γ2 (see Lee et al. [2014], Louis and Makarychev [2014], c.f. Lemma B.4 of HaoChen et al. [2021].)
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Proof of Claim D.3. We first bound every dimension of the vector Lgi = (I − Ā)gi. Let x ∈ Ci, we662

have663

(Āgi)x =
∑
x̃∈Ci

w(x, x̃)√
w(x)

√
x̃

√
x̃ (34)

=

(∑
x̃∈Ci

w(x, x̃)

)
· 1√

w(x)
(35)≥ 1√

w(x)(1−α)
·
∑

x̃∈X w(x, x̃) = (1− α)
√

w(x).

≤ 1√
w(x)

·
∑

x̃∈X w(x, x̃) =
√
w(x).

(36)

Let x′ /∈ Ci, we have664

(Āgi)x′ =
∑
x̃∈Ci

w(x′, x̃)√
w(x′)

√
w(x̃)

·
√

w(x̃) (37)

=
1√
w(x′)

·
∑
x̃∈Ci

w(x′, x̃) (38)

{
≤ α

√
w(x′)

≥ 0.
(39)

Therefore, we have ((I−Ā)gi)x ∈ [0, α
√
w(x)] for any x ∈ Ci, and ((I−Ā)gi)x′ ∈ [−α

√
w(x′), 0]665

for any x′ /∈ Ci. Let g′i ≜ (I − Ā)gi as a shorthand, we have666

g⊤i Āg
′
i =

∑
x̃∈Ci,x∈Ci

w(x̃, x)√
w(x̃)

√
w(x)

·
√

w(x̃) · (g′i)x +
∑

x̃∈Ci,x′ /∈Ci

w(x̃, x′)√
w(x̃)

√
w(x′)

·
√

w(x̃) · (g′i)x′

(40)

=
∑

x̃∈Ci,x∈Ci

w(x̃, x)√
w(x)

· (g′i)x +
∑

x̃∈Ci,x′ /∈Ci

w(x̃, x′)√
w(x′)

· (g′i)x′ . (41)

Also notice that667

g⊤i Ig
′
i =

∑
x∈Ci

√
w(x) · (g′i)x. (42)

Therefore, we have668

g⊤i (I − Ā)g′i = Q1 +Q2, (43)

where669

Q1 ≜
∑
x∈Ci

√
w(x) · (g′i)x −

∑
x̃∈Ci,x∈Ci

w(x̃, x)√
w(x)

· (g′i)x (44)

=
∑
x∈Ci

(∑
x̃/∈Ci

w(x̃, x)√
w(x)

(g′i)x

)
∈

[
0, α2

∑
x∈Ci

w(x)

]
, (45)

and670

Q2 ≜ −
∑

x̃∈Ci,x′ /∈Ci

w(x̃, x′)√
w(x′)

(g′i)x′ ∈

[
0, α2

∑
x∈Ci

w(x)

]
. (46)

As a result, we have671

g⊤i L2gi = g⊤i (I − Ā)g′i ≤ 2α2
∑
x∈Ci

w(x) = 2α2 ∥gi∥22 . (47)

672
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Now we use the above claim to prove Lemma D.1.673

Proof of Lemma D.1. Define matrix F̃ ∈ RN×k be such that the x-th row of it contains
√
w(x)·f(x).674

According to Proposition C.1, the column span of F̃ is exactly the span of the k largest positive675

eigenvectors of 1
σ · Ā+ (1− 1

σ ) · IN×N , hence is the span of the k smallest eigenvectors of L. For676

every i ∈ [m], define vector gi ∈ RN be a vector such that its x-th dimension is
√
w(x) when677

x ∈ Ci, 0 otherwise. Let vector Bi ∈ Rk be such that F̃Bi is the projection of gi onto the span of678

the k smallest eigenvectors of L. Let B ∈ Rk×m be the matrix where Bi is the i-th column.679

For any i ∈ [m], we have680 ∑
x∈X

w(x)
(
B⊤

i f(x)− 1 [τ(x) = c]
)2

=
∥∥∥F̃Bi − gi

∥∥∥2
2
≤ g⊤i L2gi

λ2
k+1

≤ 2α2

λ2
k+1

, (48)

where the first inequlity uses the fact that F̃Bi is the projection of gi onto the top k eigenspan, and681

the second inequality is by Claim D.3. Let τ : X → [m] be the cluster index function such that682

x ∈ Cτ(x) for x ∈ X . Summing the above equation over i ∈ [m] gives683

E
x∼PX

[∥∥B⊤f(x)− eτ(x)
∥∥2
2

]
≤ 2mα2

λ2
k+1

. (49)

Finally, we finish the proof by noticing that gf,B(x) ̸= τ(x) only if
∥∥B⊤f(x)− eτ(x)

∥∥2
2
≥ 1

2 .684

685

E Proof of Theorem 3.2686

We prove the following theorem which directly implies Theorem 3.2.687

Theorem E.1. Suppose that Assumption 2.2 and 3.1 holds, and PX (S)/PX (T ) ≤ O(1). Let688

f be a minimizer of the contrastive loss L2(·) and the head gt be defined in (8). Then, for any689

1 ≤ t ≤ ρ/(8α2), we have690

ET (gt) ≲
r

α2λ2
k+1

·
(
1− λk+1/2

)t
, (50)

where λk+1 is the k+1-th smallest eigenvalue of the Laplacian of the positive-pair graph.691

We first introduce the following lemma, which says that the indicator vector of a cluster wouldn’t692

change much after multiplying Ā a few times.693

Lemma E.2. Suppose Assumption 2.2 holds. For every i ∈ [m], define gi ∈ RN be such that the694

x-th dimension of it is695

(gi)x =

{√
w(x) if x ∈ Ci

0 otherwise
(51)

Then, for any two clusters i ̸= j in [m], the following holds for any integer t ∈ [0, 1
α ]:696

• For any x ∈ Ci, we have697 ((
1

2
I +

1

2
Ā

)t

gi

)
x

∈
[
(1− tα)

√
w(x),

√
w(x)

]
. (52)

• For any x /∈ Ci, we have698 ((
1

2
I +

1

2
Ā

)t

gi

)
x

∈
[
0, tα

√
w(x)

]
. (53)
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Proof of Lemma E.2. We prove this lemma by induction. When t = 0, obviously equations (52) and699

(53) are all true. Assume they are true for t = l, we prove that they are still true at t = l + 1 so long700

as l ≤ 1
α . We define shorthands g′i =

(
1
2I +

1
2 Ā
)l
gi and g′j =

(
1
2I +

1
2 Ā
)l
gj .701

For the induction of Equation (52), let x ∈ Ci. On one hand, we have702 √
w(x)

(
Āg′i
)
x
=
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

(g′i)x̃ +
∑
x̃/∈Ci

w(x, x̃)√
w(x̃)

(g′i)x̃ (54)

≤
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

√
w(x̃) +

∑
x̃/∈Ci

w(x, x̃)(lα) (55)

≤
∑
x̃∈X

w(x, x̃) = w(x), (56)

where the first inequality uses Equations (52) and (53) at t = l, and the second inquality uses l ≤ 1
α .703

On the other hand, we have704 √
w(x)

(
Āg′i
)
x
=
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

(g′i)x̃ +
∑
x̃/∈Ci

w(x, x̃)√
w(x̃)

(g′i)x̃ (57)

≥
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

(1− lα)
√

w(x̃) (58)

≥ (1− lα)(1− α)w(x) ≥ (1− (l + 1)α)w(x), (59)

where the first inequality uses Equations (52) and (53) at t = l, and the second inquality uses705

the definition of α-max-connection. Combining them gives us
√
w(x)

(
Āg′i
)
x

∈ [(1 − (l +706

1))
√

w(x),
√
w(x)], which directly leads to707 ((

1

2
I +

1

2
Ā

)l+1

gi

)
x

=
1

2
(g′i)x +

1

2
(Āg′i)x ∈

[
(1− (l + 1)α)

√
w(x),

√
w(x)

]
. (60)

For the induction of Equation (53), let x /∈ Ci. Since Ā and gi are both element-wise nonnegative,708

we have Āg′i is element-wise nonnegative, hence (Āg′i)x ≥ 0. On the other hand, we have709 √
w(x)

(
Āg′i
)
x
=
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

(g′i)x̃ +
∑
x̃/∈Ci

w(x, x̃)√
w(x̃)

(g′i)x̃ (61)

≤
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

√
w(x̃) + lα ·

∑
x̃/∈Ci

w(x, x̃)√
w(x̃)

√
w(x̃) (62)

≤ αw(x) + lαw(x) = (l + 1)αw(x), (63)

where the first inequality uses Equations (52) and (53) at t = l, and the second inequality is by710

α-max-connection. Hence we have (Āg′i)x ∈ [0, (l + 1)αw(x)] which directly leads to711 ((
1

2
I +

1

2
Ā

)l+1

gi

)
x

=
1

2
(g′i)x +

1

2
(Āg′i)x ∈

[
0, (l + 1)α

√
w(x)

]
. (64)

712

The following lemma shows that a random walk starting from Ti is more likely to arrive at Si than in713

Sj for j ̸= i.714

Lemma E.3. Suppose that Assumptions 2.2 and 3.1 hold. For every i ∈ [r], define gi ∈ RN be such715

that the x-th dimension of it is716

(gi)x =

{√
w(x) if x ∈ Si

0 otherwise
(65)
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Then, for any two classes i ̸= j in [r], we have the following holds for any integer t ∈ [0, ρ
8α2 ] and717

x ∈ Ti:718 ((
1

2
I +

1

2
Ā

)t

gi

)
x

−

((
1

2
I +

1

2
Ā

)t

gj

)
x

≥
{
0 if t = 0
1
4ρ
√
w(x) if t ≥ 1

. (66)

Proof of Lemma E.3. We prove this lemma by induction. When t = 0, obviously equation (66) is719

true. Assume it is true for t = l, we prove that they are still true at t = l + 1 so long as l ≤ ρ
8α2 .720

We define shorthands g′i =
(
1
2I +

1
2 Ā
)l
gi and g′j =

(
1
2I +

1
2 Ā
)l
gj .721

Let x ∈ Ti, we notice that722 √
w(x)

(
Āg′i − Āg′j

)
x
=
∑
x̃∈Si

w(x, x̃)
√
xx̃

(
(g′i)x̃ − (g′j)x̃

)
︸ ︷︷ ︸

Q1

+
∑
x̃∈Sj

w(x, x̃)
√
xx̃

(
(g′i)x̃ − (g′j)x̃

)
︸ ︷︷ ︸

Q2

(67)

+
∑
x̃∈Ti

w(x, x̃)
√
xx̃

(
(g′i)x̃ − (g′j)x̃

)
︸ ︷︷ ︸

Q3

+
∑

x̃/∈Si∪Sj∪Ti

w(x, x̃)
√
xx̃

(
(g′i)x̃ − (g′j)x̃

)
︸ ︷︷ ︸

Q4

(68)

Since ρ ≤ α must be true for the assumptions to be valid, we know l ≤ ρ
8α2 ≤ 1

α , hence we apply723

Lemma E.2 and have Equations (52) and (53) hold at t = l. Using them together with Equation (66)724

at t = l and Assumption 3.1, we have725

Q1 ≥
∑
x̃∈Si

w(x, x̃)√
w(x̃)

(1− 2lα)
√
w(x̃) ≥ (1− 2lα)ρw(x), (69)

726

Q2 ≥ −
∑
x̃∈Sj

w(x, x̃)√
w(x̃)

√
w(x̃) ≥ −ρ

c
w(x), (70)

727

Q3 ≥ 0, (71)

and728

Q4 ≥ −
∑

x̃/∈Si∪Sj∪Ti

w(x, x̃)√
w(x̃)

(lα)
√

w(x) ≥ −lα2w(x). (72)

Combining them gives us729 √
w(x)

(
Āg′i − Āg′j

)
x
≥
(
ρ−

(ρ
c
+ 2lαρ+ lα2

))
w(x). (73)

Since ρ
c ≤ 1

8ρ, l ≤ ρ
8α2 and ρ ≤ α, we have

√
w(x)

(
Āg′i − Āg′j

)
x
≥ 1

2ρw(x) hence (Āg′i −730

Āg′j)x ≥ 1
2ρ
√
w(x). As a result, we have731 ((

1

2
I +

1

2
Ā

)l+1

gi

)
x

−

((
1

2
I +

1

2
Ā

)l+1

gj

)
x

≥ 1

4
ρ
√
w(x). (74)

732

The following lemma shows that the power of Ā can be low-rank approximated with a small error.733

Lemma E.4. Suppose that Assumption 2.2 holds. For every i ∈ [r], define gi ∈ RN be such that the734

x-th dimension of it is735

(gi)x =

{√
w(x) if x ∈ Si

0 otherwise
(75)

21



Let f : X → Rk be a minimizer of the generalized spectral contrastive loss L2(·). Define matrix736

F̃ ∈ RN×k be such that the x-th row of it contains
√
w(x) · f(x). Then, we have737 ∥∥∥∥∥

(
1

2
I +

1

2
Ā

)t

gi −
(
F̃ F̃⊤

)t
gi

∥∥∥∥∥
2

2

≤ 2ϵtα
2

λ2
k+1

∥gi∥22 , (76)

where738

ϵt = (1− 1

2
λk+1)

2t. (77)

Proof of Lemma E.4. Let Πk(gi) be the projection of gi onto the column span of F̃ . Notice that739

every eigenvalue of L is in the range [0, 2], by Theorem D.1 we have740

∥gi −Πk(gi)∥22 ≤ 2α2

λ2
k+1

. (78)

Therefore, notice that F̃ F̃⊤ is exactly the top k components of 1
2I +

1
2 Ā, we have741 ∥∥∥∥∥

(
1

2
I +

1

2
Ā

)t

gi −
(
F̃ F̃⊤

)t
gi

∥∥∥∥∥
2

2

≤
(
1− 1

2
λk+1

)2t

∥gi −Πk(gi)∥22 ≤ 2ϵtα
2

λ2
k+1

∥gi∥22 . (79)

742

Using the above lemmas, we finish the proof of Theorem E.1.743

Proof of Theorem E.1. For every i ∈ [r], define gi ∈ RN be such that the x-th dimension of it is744

(gi)x =

{√
w(x) if x ∈ Si

0 otherwise
(80)

Define matrix F̃ ∈ RN×k be such that the x-th row of it contains
√
w(x) · f(x).745

Let i ̸= j be two different classes in [r]. By Lemma E.4 we know that746 ∥∥∥∥∥
(
1

2
I +

1

2
Ā

)t

gi −
(
F̃ F̃⊤

)t
gi

∥∥∥∥∥
2

2

≤ 2ϵtα
2

λ2
k+1

∥gi∥22 , (81)

and747 ∥∥∥∥∥
(
1

2
I +

1

2
Ā

)t

gj −
(
F̃ F̃⊤

)t
gj

∥∥∥∥∥
2

2

≤ 2ϵtα
2

λ2
k+1

∥gj∥22 . (82)

Define shorthand748

Qi,j =

((
F̃ F̃⊤

)t
gi −

(
F̃ F̃⊤

)t
gj

)
−

((
1

2
I +

1

2
Ā

)t

gi −
(
1

2
I +

1

2
Ā

)t

gj

)
. (83)

From Equations (81) and (82) we have749

∥Qi,j∥22 ≤ 4ϵtα
2

λ2
k+1

(
∥gi∥22 + ∥gj∥22

)
. (84)

Recall that750

Σ = E
x∼PX

[
f(x)f(x)⊤

]
= F̃⊤F̃ , (85)

and for i ∈ [r],751

bi = E
x∼PS

[1 [x ∈ Si] · f(x)] =
F̃⊤gi
PX (S)

. (86)

22



We can rewrite the prediction for any x ∈ T ,752

gt(x) = argmax
i∈[r]

f(x)⊤Σt−1bi = argmax
i∈[r]

(
(F̃ F̃⊤)tgi

)
x
. (87)

Therefore, for x ∈ Ti, in order for gt(x) = j ̸= i, there must be753 ((
F̃ F̃⊤

)t
gi −

(
F̃ F̃⊤

)t
gj

)
x

≤ 0. (88)

On the other hand, we know from Lemma E.3 that754 ((
1

2
I +

1

2
Ā

)t

gi −
(
1

2
I +

1

2
Ā

)t

gj

)
x

≥ 1

4
ρ
√

w(x). (89)

Therefore, whenever x ∈ Ti, in order for gt(x) = j, there has to be755

(Qij)x ≤ −1

4
ρ
√
w(x). (90)

Finally, we can bound the target error as follows:756

E
x∼PT

[1 [gt(x) ̸= y(x)]] =
1

PX (T )

∑
x∈T

1 [gt(x) ̸= y(x)] · w(x) (91)

=
1

PX (T )

∑
i∈[r]

∑
j ̸=i

∑
x∈Ti

1 [gt(x) = j] · w(x) (92)

≤ 1

PX (T )

∑
i∈[r]

∑
j ̸=i

∑
x∈Ti

(Qij)
2
xw(x)

1
16ρ

2w(x)
(93)

≤ 1

PX (T )

32r

ρ2
· 4ϵtα

2

λ2
k+1

∑
i∈[r]

∥gi∥22 (94)

=
128ϵtrα

2

ρ2λ2
k+1

· PX (S)

PX (T )
, (95)

where the first inequality is from Equation (90) and the second inequality follows Equation (84).757

Notice that Assumption 3.1 we have α2 ≲ ρ, hence we finish the proof.758

759

F Proof of Theorem 3.4760

We prove the following theorem which directly implies Theorem 3.4.761

Theorem F.1. Suppose Assumptions 2.2, 3.3 and 2.3 hold and PX (S)/PX (T ) ≤ O(1). Let gt be762

defined the same as in Theorem 3.2. Then, for any 1 ≤ t ≤ 1
α , we have763

ET (gt) ≲
r

λ2
k+1

·max
{ 1

τ2α4

(
1− 1

4
min{γ2, λk+1}

)t
,
t2

τ

}
, (96)

where λk+1 is the k+1-th smallest eigenvalue of the Laplacian of the positive-pair graph.764

For every i ∈ [r], we consider a graph G(Ti, w) that is G(X , w) restricted on Ti. We use λTi to765

denote the second smallest eigenvalue of the Laplacian of G(Ti, w). For x ∈ Ti, we use ŵx =766 ∑
x′∈Ti

w(x, x′) to denote the total weight of x in the restricted graph G(Ti, w). We use ĀTi
to767

denote the normalized adjacency matrix of G(Ti, w).768

The following lemma shows the relationship between intra-class expansion and the eigvenvalue of769

the restricted graph’s Laplacian.770
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Lemma F.2. Suppose that Assumption 2.3 holds. Then, we have771

λTi ≥
γ2

2
. (97)

Proof. For set H ⊂ Ti, we use ŵ(H) =
∑

x∈H,x′∈Ti
w(x, x′) to denote the size of set S in restricted772

graph G(Ti, w). Clearly ŵ(H) ≤ w(H). We have773

min
H⊆Ti

w(H,Ti\H)

min{ŵ(H), ŵ(Ti\H)}
≥ min

H⊆Ti

w(H,Ti\H)

min{w(H), w(Ti\H)}
≥ γ. (98)

Directly applying Cheeger’s Inequality finishes the proof.774

For every i ∈ [r], define gi ∈ RN be such that the x-th dimension of it is775

(gi)x =

{√
w(x) if x ∈ Si

0 otherwise
(99)

The following lemma lower bounds the probability that a random walk starting from Ti arrives at Si.776

Lemma F.3. Suppose that Assumption 2.2 holds. For every i ∈ [r] and t ≥ 0, there exists vectors777

∆i ∈ R|Ti| such that for any x ∈ Ti,778 ((
1

2
I +

1

2
Ā

)t

gi

)
x

≥ 1

2
(1− α)tρi

√
w(x) + (∆i)x, (100)

where ρi := ϕ(Ti, Si), and779

∥∆i∥2 ≤
(
1− λTi

2

)2(t−1)

PX (Ti). (101)

Proof of Lemma F.3. Recall that ĀTi
is the normalized adjacency matrix of the restircted graph on780

Ti. We first notice that for any x, x′ ∈ Ti,781 (
1

2
I +

1

2
Ā

)
xx′

≥ (1− α)

(
1

2
I +

1

2
ĀTi

)
xx′

, (102)

where we use the Assumption 2.2. Thus, we have782 ((
1

2
I +

1

2
Ā

)t

gi

)
Ti

≥ 1

2
(1− α)t−1

(
1

2
I +

1

2
ĀTi

)t−1 (
Āgi
)
Ti

, (103)

here we use (·)Ti
to denote restricting a vector in RN to those dimensions in Ti.783

Let vector u ∈ R|Ti| be such that its x-th dimension is
√
wx, ũ ∈ R|Ti| be such that its x-th dimension784

is
√
ŵx. It’s standard result that u is the top eigenvector of ĀTi

with eigenvalue 1. Let v1 be the785

projection of vector
(
Āgi
)
Ti

onto ũ and v2 =
(
Āgi
)
Ti

− v1. We have786 (
1

2
I +

1

2
ĀTi

)t−1

v1 = v1 =
ũ⊤ (Āgi

)
Ti

∥ũ∥2
ũ ≥ (1− α)

u⊤ (Āgi
)
Ti

∥u∥2
u ≥ (1− α)ρiu. (104)

787 ∥∥∥∥∥
(
1

2
I +

1

2
ĀTi

)t−1

v2

∥∥∥∥∥ ≤
(
1− λTi

2

)t−1

∥v2∥ ≤
(
1− λTi

2

)t−1 ∥∥∥(Āgi
)
Ti

∥∥∥ (105)

≤
(
1− λTi

2

)t−1

∥u∥ ≤
(
1− λTi

2

)t−1√
PX (Ti). (106)

Setting ∆i =
1
2 (1− α)t−1

(
1
2I +

1
2 ĀTi

)t−1
v2 finishes the proof.788
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The following lemma upper bounds the probability that a random walk starting from Ti arrives at Sj789

for j ̸= i.790

Lemma F.4. Suppose that Assumption 2.2 holds. For every i ̸= j in [r] and t ∈ [0, 1
α ], we have791

∑
x∈Ti

√
w(x)

((
1

2
I +

1

2
Ā

)t

gj

)
x

≤ (t2α2 + tβi,j)PX (Ti), (107)

where βi,j := ϕ(Ti, Sj) .792

Proof of Lemma F.4. We prove with induction. When t = 0 clearly Equation 107 is true. Assume793

Equation 107 holds for t = l. Define shorthand794

g′j =

(
1

2
I +

1

2
Ā

)l

gj . (108)

We have795 ∑
x∈Ti

√
w(x)

((
1

2
I +

1

2
Ā

)l+1

gj

)
x

=
1

2

∑
x∈Ti

√
w(x)(g′j)x +

1

2

∑
x∈Ti

∑
x′∈Ti

√
w(x)Āxx′(g′j)x′︸ ︷︷ ︸
Q1

(109)

+
1

2

∑
x∈Ti

∑
x′∈Sj

√
w(x)Āxx′(g′j)x′

︸ ︷︷ ︸
Q2

+
1

2

∑
x∈Ti

∑
x′ /∈Ti∪Sj

√
w(x)Āxx′(g′j)x′

︸ ︷︷ ︸
Q3

(110)

Using Equation 107 at t = l, we have796

Q1 ≤
∑
x′∈Ti

√
w(x′)(g′j)x′ ≤ (l2α2 + lβi,j)PX (Ti). (111)

Lemma E.2 tells us (g′j)x′ ≤
√
w(x′) for x′ ∈ Sj , so by the definition of βi,j we have797

Q2 ≤
∑
x∈Ti

∑
x′∈Sj

√
w(x)Āxx′

√
w(x′) ≤ βi,jPX (Ti). (112)

Lemma E.2 also tells us (g′j)x′ ≤ lα
√
w(x′) for x′ /∈ Sj , so by Assumption 2.2 we have798

Q3 ≤ lα
∑
x∈Ti

∑
x′ /∈Ti∪Sj

√
w(x)Āxx′

√
w(x′) ≤ lα2PX (Ti). (113)

Adding these three terms finishes the proof for t = l + 1.799

Now we use the above lemmas to finish the proof of Theorem F.1.800

Proof of Theorem F.1. For i ̸= j ∈ [r], define801

Qi,j :=

((
F̃ F̃⊤

)t
gi −

(
F̃ F̃⊤

)t
gj

)
Ti

−

((
1

2
I +

1

2
Ā

)t

gi −
(
1

2
I +

1

2
Ā

)t

gj

)
Ti

. (114)

Let ∆i be the vector in Lemma F.3, and802

Λj :=

((
1

2
I +

1

2
Ā

)t

gj

)
Ti

. (115)
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Using Lemma F.3 and t ≤ 1
2α , we know for x ∈ Ti,803 ((

F̃ F̃⊤
)t

gi −
(
F̃ F̃⊤

)t
gj

)
x

≥ 1

2
(1− α)tρ

√
w(x) + (Qi,j)x + (∆i)x − (Λj)x (116)

≥ 1

4
ρi
√

w(x) + (Qi,j)x + (∆i)x − (Λj)x , (117)

where ρi = ϕ(Ti, Si).804

When gt(x) = j, at least one of | (∆i)x |, |(Qi,j)x| and (Λj)x is at least 1
12ρi

√
w(x). Thus, we have805 ∑

x∈Ti

w(x)1 [gt(x) = j] ≤
∑
x∈Ti

w(x)1

[
(∆i)

2
x ≥ 1

144
ρ2iw(x)

]
+
∑
x∈Ti

w(x)1

[
(Qi,j)

2
x ≥ 1

144
ρ2iw(x)

]
(118)

+
∑
x∈Ti

w(x)1

[
(Λj)x ≥ 1

12
ρi
√
w(x)

]
(119)

≤ 144

ρ2i
∥∆i∥22 +

144

ρ2i
∥Qi,j∥22 +

12

ρi

∑
x∈Ti

√
w(x)

((
1

2
I +

1

2
Ā

)t

gj

)
x

(120)

Using Lemma E.4 we know806

∥Qi,j∥22 ≤ 4ϵtα
2

λ2
k+1

(PX (Si) + PX (Sj)) , (121)

where807

ϵt := (1− 1

2
λk+1)

2t. (122)

Using Lemma F.3 and Lemma F.2 we know808

∥∆i∥22 ≤
(
1− γ2

4

)2(t−1)

PX (Ti). (123)

Using Lemma F.4 we know809 ∑
x∈Ti

√
w(x)

((
1

2
I +

1

2
Ā

)t

gj

)
x

≤ (t2α2 + tβi,j)PX (Ti), (124)

where βi,j := ϕ(Ti, Sj) .810

Let ρ := mini∈[r] ρi. Plugging Equations (121), (123) and (124) into Equation (120) and summing811

over all i and j gives812

∑
x∈T

w(x)1 [gt(x) ̸= y(x)] ≤ 144r

ρ2

(
1− γ2

4

)2(t−1)

PX (T ) +
1152rϵtα

2

ρ2λ2
k+1

PX (S)

+
12rt2α2

ρ
PX (T ) + max

i ̸=j

{
βi,j

ρi

}
12rtPX (T ). (125)

Noticing that ρ ≥ τα2 and ρi ≥ τβi,j finishes the proof.813

814

G Relaxing Assumption 2.2815

We introduce the following relaxed version of Assumption 2.2. Intuitively, it says that after ignoring ζ816

proportion of data, the remaining data satisfies the nice clustering structure stated in Assumption 2.2.817
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Assumption G.1 (Cross-cluster connections with noise, relaxation of Assumption 2.2). For some818

α ∈ (0, 1), we assume that the vertices of the positive-pair graph G can be partition into m + 1819

disjoint clusters C1, . . . , Cm+1 such that for any i ∈ [m],820

ϕ̄(Ci,X\Ci) ≤ α, (126)

and the last cluster satisfies821

PX (Cm+1) ≤ ζ. (127)

Intuitively, Cm+1 contains all the outliers in the data distribution that doesn’t cleanly belong to a822

semantic cluster. We will work in a regime where the source and target classes are disjoint clusters823

among C1, · · · , Cm, but the noise data Cm+1 also exists during the self-supervised contrastive824

learning.825

In the rest of this section, we will prove the following theorem, which is a relaxed version of826

Theorem F.1827

Theorem G.2. Suppose Assumptions G.1, 3.3 and 2.3 hold and PX (S)/PX (T ) ≤ O(1). Let gt be828

defined the same as in Theorem 3.2. Then, for any 1 ≤ t ≤ 1
α , we have829

ET (gt) ≲
r

λ2
k+1

·max

{
1

τ2α4

(
1− 1

4
min{γ2, λk+1}

)t
,
t2

τ
,

tζ

ρ · PX (T )

}
, (128)

where λk+1 is the k+1-th smallest eigenvalue of the Laplacian of the positive-pair graph, and830

ρ = mini∈[r] ϕ(Ti, Si).831

The effect of noise in data: To see how much the noise (i.e., the existence of Cm+1) influences the832

result, we can consider a typical setting where the probability of target domain is on the constant level,833

i.e., PX (T ) ≥ Ω(1). Furthermore, notice that t usually only needs to be set as a small integer, let’s834

assume t is on the order of constant (t ≤ O(1)). In this case, so long as ζ ≪ ρ = mini∈[r] ϕ(Ti, Si),835

the additional term due to noise is negligible. This suggests that our analysis is robust to “outliers”836

in the data distribution, so long as the total amount of connections to outliers is smaller than837

the amount of connections between corresponding source-target classes.838

We note that assuming ζ being smaller than ϕ(Ti, Si) is to some extent necessary for domain839

adaptation to succeed. Otherwise, one can construct a set of “adversarial” outliers that connect to840

both a target domain Ti and an incorrent source domain Sj where j ̸= i. In this case, any natural841

domain adaptation algorithm would think Ti is closer to Sj rather than Si, hence misclassify those842

data in the target domain Ti.843

We will prove Theorem G.2 using the a similar plan as Theorem F.1. First, we note that Lemma F.2844

doesn’t rely on Assumption 2.2 so it still holds in this setting. We also note that Lemma F.3 only uses845

max-expansion of Ti which is still true under Assumption G.1, so Lemma F.3 also holds.846

We introduce the following relaxed version of Lemma E.2847

Lemma G.3 (Relaxation of Lemma E.2). Suppose Assumption G.1 holds. For every i ∈ [m], define848

gi ∈ RN be such that the x-th dimension of it is849

(gi)x =

{√
w(x) if x ∈ Ci

0 otherwise
(129)

Then, for any two clusters i ̸= j in [m], the following holds for any integer t ∈ [0, 1
α ]:850

• For any x ∈ X , we have851 ((
1

2
I +

1

2
Ā

)t

gi

)
x

≤
√
w(x). (130)

• For any x /∈ Ci ∪ Cm+1, we have852 ((
1

2
I +

1

2
Ā

)t

gi

)
x

∈

[
0, tα

√
w(x) +

t∆t
x√

w(x)

]
, (131)

where ∆t ∈ RN satisfies
∑

x∈X ∆t
x ≤ ζ and ∆t

x ≥ 0.853
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Proof of Lemma G.3. We prove this lemma by induction. When t = 0, obviously equations (130)854

and (131) are all true. Assume they are true for t = l, we prove that they are still true at t = l + 1 so855

long as l ≤ 1
α . We define shorthands g′i =

(
1
2I +

1
2 Ā
)l
gi and g′j =

(
1
2I +

1
2 Ā
)l
gj .856

For the induction of Equation (130), we have857

√
w(x)

(
Āg′i
)
x
=
∑
x̃∈X

w(x, x̃)√
w(x̃)

(g′i)x̃ ≤
∑
x̃∈X

w(x, x̃)√
w(x̃)

√
w(x̃) = w(x), (132)

where the inequality uses Equations (130) at t = l.858

For the induction of Equation (131), let x /∈ Ci. Since Ā and gi are both element-wise nonnegative,859

we have Āg′i is element-wise nonnegative, hence (Āg′i)x ≥ 0. On the other hand, we have860

√
w(x)

(
Āg′i
)
x
=
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

(g′i)x̃ +
∑

x̃/∈Ci∪Cm+1

w(x, x̃)√
w(x̃)

(g′i)x̃ +
∑

x̃∈Cm+1

w(x, x̃)√
w(x̃)

(g′i)x̃ (133)

≤
∑
x̃∈Ci

w(x, x̃)√
w(x̃)

√
w(x̃) +

∑
x̃/∈Ci∪Cm+1

w(x, x̃)√
w(x̃)

(
lα
√

w(x̃) +
l∆l

x̃√
w(x̃)

)
+

∑
x̃∈Cm+1

w(x, x̃)√
w(x̃)

√
w(x̃)

(134)

≤ (l + 1)αw(x) + l
∑

x̃/∈Ci∪Cm+1

w(x, x̃)

w(x̃)
∆l

x̃ +
∑

x̃∈Cm+1

w(x, x̃), (135)

where the first inequality uses Equations (130) and (131) at t = l, and the second inequality is by α861

max-expansion. Define862

∆̄l+1
x =

l

l + 1

∑
x̃/∈Ci∪Cm+1

w(x, x̃)

w(x̃)
∆l

x̃ +
1

l + 1

∑
x̃∈Cm+1

w(x, x̃), (136)

we have863 ∑
x∈X

∆̄l+1
x ≤ l

l + 1

∑
x̃∈X

∆l
x̃ +

1

l + 1
ζ ≤ ζ. (137)

Setting ∆l+1
x = 1

2∆
l
x + 1

2∆̄
l+1
x finishes the proof.864

Now we use the above lemma to prove a generalized version of Lemma F.4.865

Lemma G.4 (Relaxation of Lemma F.4). Suppose that Assumption G.1 holds. For every i ̸= j in [r]866

and t ∈ [0, 1
α ], we have867

∑
x∈Ti

√
w(x)

((
1

2
I +

1

2
Ā

)t

gj

)
x

≤ (t2α2 + tβi,j)PX (Ti) + 2tζ, (138)

where βi,j := ϕ(Ti, Sj) .868

Proof of Lemma G.4. We prove with induction. When t = 0 clearly Equation 138 is true. Assume869

Equation 138 holds for t = l. Define shorthand870

g′j =

(
1

2
I +

1

2
Ā

)l

gj . (139)
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We have871 ∑
x∈Ti

√
w(x)

((
1

2
I +

1

2
Ā

)l+1

gj

)
x

=
1

2

∑
x∈Ti

√
w(x)(g′j)x +

1

2

∑
x∈Ti

∑
x′∈Ti

√
w(x)Āxx′(g′j)x′︸ ︷︷ ︸
Q1

(140)

+
1

2

∑
x∈Ti

∑
x′∈Sj

√
w(x)Āxx′(g′j)x′

︸ ︷︷ ︸
Q2

+
1

2

∑
x∈Ti

∑
x′ /∈Ti∪Sj∪Cm+1

√
w(x)Āxx′(g′j)x′

︸ ︷︷ ︸
Q3

(141)

+
1

2

∑
x∈Ti

∑
x′∈Cm+1

√
w(x)Āxx′(g′j)x′

︸ ︷︷ ︸
Q4

(142)

Using Equation 138 at t = l, we have872

Q1 ≤
∑
x′∈Ti

√
w(x′)(g′j)x′ ≤ (l2α2 + lβi,j)PX (Ti). (143)

Lemma G.3 tells us (g′j)x′ ≤
√
w(x′) for x′ ∈ Sj , so by the definition of βi,j we have873

Q2 ≤
∑
x∈Ti

∑
x′∈Sj

√
w(x)Āxx′

√
w(x′) ≤ βi,jPX (Ti), (144)

and874

Q4 ≤
∑
x∈Ti

∑
x′∈Cm+1

√
w(x)Āxx′

√
w(x′) ≤ ζ. (145)

Lemma G.3 also tells us (g′j)x′ ≤ lα
√
w(x′) + l∆x′√

w(x′)
for x′ /∈ Sj , where

∑
x′∈X ∆x′ ≤ ζ. Thus,875

by Assumption G.1 we have876

Q3 ≤ lα
∑
x∈Ti

∑
x′ /∈Ti∪Sj∪Cm+1

√
w(x)Āxx′

√
w(x′) + l

∑
x∈Ti

∑
x′ /∈Ti∪Sj∪Cm+1

w(x, x′)

w(x′)
∆x′ (146)

≤ lα2PX (Ti) + lαζ. (147)

Adding these three terms finishes the proof for t = l + 1.877

We use the above lemma to prove Theorem G.2.878

Proof of Theorem G.2. The proof is exactly the same as Theorem F.1 before Equation (124). Using879

Lemma F.4 we know880 ∑
x∈Ti

√
w(x)

((
1

2
I +

1

2
Ā

)t

gj

)
x

≤ (t2α2 + tβi,j)PX (Ti) + tζ, (148)

where βi,j := ϕ(Ti, Sj). Notice that the only difference from Equation (124) is the additional tζ881

term, which in turn leads to an additional 12rtζ
ρ term in Equation (125) and finishes the proof.882
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