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Abstract

The momentum acceleration technique is widely adopted in many optimization
algorithms. However, there is no theoretical answer on how the momentum affects
the generalization performance of the optimization algorithms. This paper studies
this problem by analyzing the implicit regularization of momentum-based optimiza-
tion. We prove that on the linear classification problem with separable data and
exponential-tailed loss, gradient descent with momentum (GDM) converges to the
L2 max-margin solution, which is the same as vanilla gradient descent. That means
gradient descent with momentum acceleration still converges to a low-complexity
model, which guarantees their generalization. We then analyze the stochastic and
adaptive variants of GDM (i.e., SGDM and deterministic Adam) and show they
also converge to the L2 max-margin solution. Technically, the implicit regular-
ization of SGDM is established based on a novel convergence analysis of SGDM
under a general noise condition called affine noise variance condition. To the
best of our knowledge, we are the first to derive SGDM’s convergence under such
an assumption. Numerical experiments are conducted to support our theoretical
results.

1 Introduction

It is widely believed that the optimizers have the implicit regularization in terms of selecting output
parameters among all the minima on the landscape [26, 17, 45]. Parallel to the analysis of coordinate
descent ([31, 40]), [34] shows that gradient descent would converge to the L2 max-margin solution
for the linear classification task with exponential-tailed loss, which mirrors its good generalization
property in practice. Since then, many efforts have been taken on analyzing the implicit regularization
of various local-search optimizers, including stochastic gradient descent [24], steepest descent [8],
AdaGrad [29] and optimizers for homogeneous neural networks [21, 14, 43].

However, though the momentum acceleration technique is widely adopted in the optimization
algorithms in both convex and non-convex learning tasks [37, 41, 38], the understanding of how
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Table 1: The algorithms investigated in this paper (GDM and Adam) along with algorithms (GD)
already investigated in the existing literature. We also compare the learning rates required to obtain
the characterization of implicit regularization. As for stochastic Adam with β1 ̸= 0, we leave its
implicit regularization as future work.

Method With Random Sampling Learning Rate Corresponding Literature

GD × Constant [34]

✓ Constant [24]

GDM × Constant This Work

✓ Constant This Work

Adam × Constant This Work

✓ Decaying
(

1√
t

)
β1 = 0 in this Work

the momentum would affect the generalization performance of the optimization algorithms is still
unclear, as the historical gradients in the momentum may significantly change the searching direction
of the optimization dynamics. A natural question is:

Can we theoretically analyze the implicit regularization of momentum-based optimizers?

In this paper, we take the first step to analyze the convergence of momentum-based optimizers
and unveil their implicit regularization. Our study starts from the classification problem with the
linear model and exponential-tailed loss using Gradient Descent with Momentum (GDM) optimizer.
Then the variants of GDM such as Stochastic Gradient Descent with Momentum (SGDM) and
deterministic Adam are also analyzed. We consider the optimizers with constant learning rate
and constant momentum hyper-parameters, which are widely adopted in practice, e.g., the default
setting in popular machine learning frameworks [27] and in experiments [46]. Our main results are
summarized in Theorem 1.
Theorem 1 (informal). With linearly separable dataset S, linear model and exponential-tailed loss:

• For GDM with a constant learning rate, the parameter norm diverges to infinity, with its
direction converging to the L2 max-margin solution. The same conclusion holds for SGDM
with a constant learning rate.

• For deterministic Adam with a constant learning rate and stochastic RMSProp (i.e., Adam
without momentum) with a decaying learning rate, the same conclusion holds.

Theorem 1 states that GDM and its variants converge to the L2 max-margin solution, which is the
same as their without-momentum versions, indicating that momentum does not affect the convergent
direction. Therefore, the good generalization behavior of the output parameters of these optimizers is
well validated as the margin of a classifier is positively correlated with its generalization error [16]
and is supported by existing experimental observations (e.g., [34, 23, 43]).

Our contributions are significant in terms of the following aspects:

• We establish the implicit regularization of the momentum-based optimizers, an open problem
since the initial work [34]. The momentum-based optimizers are widely used in practice, and
our theoretical characterization deepens the understanding of their generalization property,
which is important on its own.

• Technically, we design a two-stage framework to analyze the momentum-based optimiz-
ers, which generalizes the proof techniques in [34] and [24]. The first stage shows the
convergence of the loss. Specifically, we derive the first convergence analysis of SGDM
under affine noise variance condition [2], generalizing the results under bounded noise
variance condition in literature [47, 20]. The second stage shows the convergence of the
parameters. We propose an easy-to-check condition of whether the difference between
learned parameters and the scaled max-margin solution is bounded. This condition can be
generalized to implicit regularization analyses of other momentum-based optimizers.
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• We further verify our theory through numerical experiments.

The technical difficulty to analyzing the implicit regularization of the momentum-based optimizers
mainly come from the historical information of training trajectory contained by the momentum
term. Specifically, the foundation of the analysis is to derive the convergence of the loss. It is not
trivial because, for momentum-based optimizers, the loss may not monotonously decrease due to the
mismatch between the direction of the gradient and the momentum. Furthermore, even if the loss
is proved to converge, the converging direction of the parameters is still hard to characterize as it’s
difficult to track the training trajectory due to the momentum term.

Organization of This Paper. Section 2 collects further related works on the implicit regularization
of the first-order optimizers and the convergence of momentum-based optimizers. Section 3 shows
basic settings and assumptions which will be used throughout this paper. Section 4 studies the
implicit regularization of GDM, while Section 5 and Section 6 explore respectively the implicit
regularization of SGDM and Adam. Discussions of these results are put in Section 7. Detailed proofs
and experiments can be found in the appendix.

2 Further related works

Implicit Regularization of First-order Optimization Methods. [34] prove that gradient descent on
linear classification problem with exponential-tailed loss converges to the direction of the max L2

margin solution of the corresponding hard-margin Support Vector Machine. [24] extend the results in
[34] to the stochastic case, proving that the convergent direction of SGD is the same as GD almost
surely. [29] go beyond the vanilla gradient descent methods and consider the AdaGrad optimizer
instead. They prove that the convergent direction of AdaGrad has a dependency on the optimizing
trajectory, which varies according to the initialization. [15] propose a primal-dual analysis framework
for the linear classification models and prove a faster convergent rate of the margin by increasing
the learning rate according to the loss. Based on [15], [12] design another algorithm with an even
faster convergent rate of margin by applying the Nesterov’s Acceleration Method on the dual space.
However, the corresponding form of the algorithm on the primal space is no longer a Nesterov’s
Acceleration Method nor GDM, which is significantly different from our settings.

On the other hand, another line of work is trying to extend the linear case result to deep neural
networks. [13, 9] study the deep linear network and [34] study the two-layer neural network
with ReLU activation. [21] propose a framework to analyze the asymptotic direction of GD on
homogeneous neural networks, proving that given there exists a time the network achieves 100%
training accuracy, GD will converge to some KKT point of the L2 max-margin problem. [43] extend
the framework of [21] to adaptive optimizers and prove RMSProp and Adam without momentum
have the same convergent direction as GD, while AdaGrad does not. The results [21, 43] indicate
that results in the linear model can be extended to deep homogeneous neural networks and suggest
that the linear model is an appropriate starting point to study the implicit bias.

Except for the exponential-tailed loss, there are also works on the implicit bias with squared loss.
Interested readers can refer to [30, 19, 1] etc. for details.

Convergence of Momentum-Based Optimization Methods. For convex optimization problems,
the convergence rate of Nesterov’s Acceleration Method [25] has been proved in various approaches
(e.g., [25, 35, 44]). In contrast, although GDM (Polyak’s Heavy-Ball Method) was proposed in [28]
before the Nesterov’s Acceleration Method, the convergence of GDM on convex loss with Lipschitz
gradient was not solved until [7] provides an ergodic convergent result for GDM, i.e., the convergent
result for the running average of the iterates. [36] provide a non-ergodic analysis when the training
loss is coercive (the training loss goes to infinity whenever parameter norm goes to infinity), convex,
and globally smooth. However, all existing results cannot be directly applied to exponential-tailed
loss, which is non-coercive.

There are also works on the convergence of SGDM under various settings. [47] prove SGDM
converges to a bounded region assuming both bounded gradient norm and bounded gradient variance.
The bounded gradient norm assumption is further removed by [48, 20]. Nevertheless, a converging-
to-stationary-point analysis is required in the implicit regularization analysis. Thus their results can
not be directly applied. [39] analyze a particular case when the momentum parameter increases over
iterations, which, however, does not agree with the practice where the momentum parameter is fixed.
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As for (stochastic) Adam, its convergence analysis is still an open problem, and the current analyses
are restricted to specific settings (e.g., bounded gradient, dynamical momentum hyperparameters).
We recommend interested readers to refer to [5, 4, 33, 10] for details.

3 Preliminaries

This paper focuses on the linear model with the exponential-tailed loss. We mainly investigate binary
classification. However, the methodology can be easily extended to the multi-class classification
problem (please refer to Appendix F.3 for details).

Problem setting. The dataset used for training is denoted as S = (xi,yi)
N
i=1, where xi ∈ Rd is the

i-th input feature, and yi ∈ R is the i-th label (i = 1, 2, · · · , N ). We will use the linear model to fit
the label: for any feature x ∈ Rd and parameter w ∈ Rd, the prediction is given by ⟨w,x⟩.
For binary classification, given any data zi = (xi,yi) ∈ S, the individual loss for parameter w
is given as ℓ(yi⟨w,xi⟩). As only yixi is used in the loss, we then ensemble the feature and label
together and assume yi = 1 (∀i ∈ {1, · · · , N}) without the loss of generality. We then drop yi for
brevity and redefine S = (xi)

N
i=1. The spectral norm of the data matrix (x1, · · · ,xN ) is defined as

σmax. We use ℓ̃(w,x) ≜ ℓ(⟨w,x⟩) for brevity.

The optimization target is defined as the averaged loss: L(w) =
∑N

i=1 ℓ̃(w,xi)

N .

Optimizer. Here we will introduce the update rules of GDM, SGDM and deterministic Adam.
GDM’s update rule is

m(0) = 0,m(t) = βm(t− 1) + (1− β)∇L(w(t)),w(t+ 1) = w(t)− ηm(t). (1)

SGDM can be viewed as a stochastic version of GDM by randomly choosing a subset of the dataset
to update. Specifically, SGDM changes the update of m(t) into

m(t) = βm(t− 1) + (1− β)∇Lξ(t)(w(t)), (2)

where ξ(t) is the gradient noise of the t-th step, independent of the randomness of the previous
steps and satisfying Eξ(t)∇Lξ(t)(w) = ∇L(w), ∀w. In this paper, ξ(t) comes from the random
sampling of a subset B(t) of S with size b (either with replacement (abbreviated as "w/. r") or
without replacement (i.e., with random shuffling, abbreviated as "w/o. r")), and Lξ(t) is defined

as Lξ(t)(w) = LB(t)(w) =
∑

x∈B(t) ℓ̃(w,x)

b . We also define Ft as the sub-sigma algebra over the
gradient noise collecting randomness before the t-th step. Therefore, w(t) is adapted with respect to
the sigma algebra flow Ft.

The Adam optimizer can be viewed as a variant of SGDM in which the preconditioner is adopted,
whose form is characterized as follows:

m(0) = 0,m(t) = β1m(t− 1) + (1− β1)∇LB(t)(w(t)),

ν(0) = 0,ν(t) = β2ν(t− 1) + (1− β2)∇L(w(t))⊙∇L(w(t))

m̂(t) =
1

1− βt
1

m(t), ν̂(t) =
1

1− βt
2

ν(t),

(Update Rule) : w(t) = w(t− 1)− η
1√

ν̂(t− 1) + ε1d

⊙ m̂(t− 1), (3)

where 1√
ν̂(t−1)+ε1d

is called the preconditioner.

Assumptions: The analysis of this paper are based on three common assumptions in existing
literature (first proposed by [34]). They are respectively on the separability of the dataset, the
individual loss behavior at the tail, and the smoothness of the individual loss. We list them as follows:
Assumption 1 (Linearly Separable Dataset). There exists one parameter w ∈ Rd, such that

⟨w,xi⟩ > 0, ∀i ∈ [N ].

Assumption 2 (Exponential-tailed Loss). The individual loss ℓ is exponential-tailed, i.e.,

• Differentiable and monotonically decreasing to zero, with its derivative converging to zero at
positive infinity and to non-zero at negative infinity, i.e., limx→∞ ℓ(x) = limx→∞ ℓ′(x) = 0,
limx→−∞ ℓ′(x) < 0, and ℓ′(x)<0, ∀x ∈ R;
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• Close to exponential loss when x is large enough, i.e., there exist positive constants
c, a, µ+, µ−, x+, and x−, such that,

∀x > x+ : −ℓ′(x) ≤ c(1 + e−µ+x)e−ax, (4)

∀x > x− : −ℓ′(x) ≥ c(1− e−µ−x)e−ax. (5)

Assumption 3 (Smooth Loss). Either of the following assumptions holds regarding the case:

(D): (Without Stochasticity) The individual loss ℓ is locally smooth, i.e., for any s0 ∈ R, there exists a
positive real Hs0 , such that ∀x, y ≥ s0, |ℓ′(x)− ℓ′(y)| ≤ Hs0 |x− y|.
(S): (With Stochasticity) The individual loss ℓ is globally smooth, i.e., there exists a positive real H ,
such that ∀x, y ∈ R, |ℓ′(x)− ℓ′(y)| ≤ H|x− y|.

We provide explanations of these three assumptions, respectively. Based on Assumption 1, we can
formally define the margin and the maximum margin solution of an optimization problem:
Definition 1. Let the margin γ̂(w) of parameter w defined as the lowest score of the prediction of w
over the dataset S, i.e., γ̂(w) = minx∈S⟨w,x⟩. We then define the maximum margin solution ŵ
and the L2 max margin γ of the dataset S as follows:

ŵ
△
= arg min

γ̂(w)≥1
∥w∥2, γ △

=
1

∥ŵ∥

Since ∥ · ∥2 is strongly convex and set {w : γ̂(w) ≥ 1} is convex, ŵ is uniquely defined.

Assumption 2 constraints the loss to be exponential-tailed, which is satisfied by many popular choices
of ℓ, including the exponential loss (ℓexp(x) = e−x) and the logistic loss (ℓlog(x) = log(1 + e−x)).
Also, as c and a can be respectively absorbed by resetting the learning rate and data as η = cη and
xi = axi, without loss of generality, in this paper we only analyze the case that c = a = 1.

The globally smooth assumption (Assumption 3. (S)) is strictly stronger than the locally smooth
assumption (Assumption 3. (D)). One can easily verify that both the exponential loss and the logistic
loss meet Assumption 3. (D), and the logistic loss also meets Assumption 3. (S).

4 The implicit regularization of GDM

In this section, we analyze the implicit regularization of GDM with a two-stage framework 3. Later,
we will use this framework to investigate SGDM further and deterministic Adam. The formal
theorem of the implicit regularization of GDM is as follows:

Theorem 2. Let Assumptions 1, 2, and 3. (D) hold. Let β ∈ [0, 1) and η < 2 N
σ2
maxHℓ−1 (NL(w1))

(ℓ−1 is the inverse function of ℓ). Then, for almost every data set S, with arbitrary initialization point
w(1), GDM (Eq. equation 1) satisfies that ∥ w(t)

∥w(t)∥ − ŵ
∥ŵ∥∥ = O(1/ log(t)) and L(w(t)) = O( 1t ).

Theorem 2 shows that the implicit regularization of GDM agrees with GD in linear classification with
exponential-tailed loss (c.f. [34] for results on GD). This consistency can be verified by existing and
our experiments (c.f. Section 7 for detailed discussions).

Remark 1 (On the hyperparameter setting). Firstly, the learning rate upper bound
2 N
σ2
maxHℓ−1 (NL(w1))

agrees with that of GD exactly [34], indicating our analysis is tight. Sec-
ondly, Theorem 2 adopts a constant momentum hyper-parameter, which agrees with the practical use
(e.g., β is fixed to be 0.9 [46]). Also, Theorem 2 puts no restriction on the range of β, which allows
wider choices of hyper-parameter tuning.

We then present a proof sketch of Theorem 2, which is divided into two parts: we first prove that the
sum of squared gradients is bounded, which indicates both the loss and the norm of gradient converge
to 0 and the parameter diverges to infinity; these properties will then be applied to show the difference
between w(t) and ln(t)ŵ is bounded, and therefore, the direction of ŵ dominates as t → ∞.

3It should be noticed that the proof sketches in Sections 4, 5, and 6 only hold for almost every dataset (means
except a zero-measure set in Rd×N ), as we want the presentation more simple and straightforward. However,
the proof can be extended to every dataset with a more careful analysis (please refer to Appendix F.1 for details).
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Stage I: Loss Dynamics. The goal of this stage is to characterize the dynamics of the loss and prove
the convergence of GDM. The core of this stage is to select a proper potential function ξ(t), which is
required to correlate with the training loss L and be non-increasing along the optimization trajectory.
For GD, since L is non-increasing with a properly chosen learning rate, we can pick ξ(t) = L(t).
However, as the update of GDM does not align with the direction of the negative gradient, training
loss L(t) in GDM is no longer monotonously decreasing, and the potential function requires special
construction. Inspired by [36], we choose the following ξ(t):

Lemma 1. Let all conditions in Theorem 2 hold. Define ξ(t)
△
= L(w(t))+ 1−β

2βη ∥w(t)−w(t−1)∥2.4

Define C1 as a positive real with C1 ≜ σ2
maxHℓ−1 (NL(w1))

2N η. We then have

ξ(t) ≥ ξ(t+ 1) +
1− C1

η
∥w(t+ 1)−w(t)∥2. (6)

Remark 2. Although this potential function is obtained by [36] by directly examining Taylor’s
expansion at w(t), the proof here is non-trivial as we only require the loss to be locally smooth
instead of globally smooth in [36]. We need to prove that the smoothness parameter along the
trajectory is upper bounded. We defer the detailed proof to Appendix C.1.1.

By Lemma 1, we have that ξ(t) is monotonously decreasing by gap 1−C1

η ∥w(t + 1) − w(t)∥2.
As ξ(1) = L(w(1)) is a finite number, we have

∑∞
t=1 ∥w(t + 1) − w(t)∥2 < ∞. By that (1 −

β)η∇L(w(t)) = (w(t + 1) − w(t)) − β(w(t) − w(t − 1)), it immediately follows that
∑∞

t=1

∥∇L(w(t))∥2 < ∞.

Stage II. Parameter Dynamics. The goal of this stage is to characterize the dynamics of the
parameter and show that GDM asymptotically converges (in direction) to the max-margin solution

ŵ. To see this, we define a residual term r(t)
△
= w(t)− ln(t)ŵ − w̃ with some constant vector w̃

(specified in Appendix C.1.2). If we can show the norm of r(t) is bounded over the iterations, we
complete the proof as ln(t)ŵ will then dominates the dynamics of w(t).

For simplicity, we use the continuous dynamics approximation of GDM [36] to demonstrate why
r(t) is bounded:

β

1− β

d2w(t)

dt2
+

dw(t)

dt
+∇L(w(t)) = 0. (7)

We start by directly examining the evolution of ∥r(t)∥, i.e.,

1

2
∥r(T )∥2 − 1

2
∥r(1)∥2 =

∫ T

1

1

2

d∥r(s)∥2

ds
ds

=

∫ T

1

〈
r(s),−∇L(w(s))− 1

s
ŵ

〉
ds+

∫ T

1

β

1− β

〈
r(s),−d2w(s)

ds2

〉
ds,

which by integration by part leads to

RHS =

∫ T

1

〈
r(s),−∇L(w(s)) −

1

s
ŵ

〉
ds +

β

1 − β

(〈
r(T ),−

dw(T )

dt

〉
−

〈
r(1),−

dw(1)

dt

〉
+

∫ T

1

〈
dr(s)

ds
,
dw(s)

ds

〉
ds

)
,

We then check the terms one by one:

•
∫ T

1

〈
r(s),−∇L(w(s))− 1

s ŵ
〉
ds: This term also occurs in the analysis of GD [34], the

analysis of which can be generalized as it does not depend on the form of w(s);

• ⟨r(T ),−dw(T )
dt ⟩: as shown in Stage I, dw(T )

dt → 0 (i.e., w(T ) − w(T − 1) → 0 in the
discrete case) as T → ∞. Thus, this term is o(∥r(T )∥);

•
∫ T

1

〈
dr(s)
ds , dw(s)

ds

〉
ds: finite due to dr(s)

ds = dw(s)
ds − 1

s ŵ,
∫∞
1

∥dw(s)
ds ∥2ds is finite 5(i.e.,∑∞

t=1 ∥w(t + 1) − w(t)∥2 < ∞ in the discrete case) by Stage I, and the mean-value
inequality.

4Please note that ξ(t) ≥ 0 regardless of t.
5The derivation of this property is in the same manner as in the discrete case: we choose the potential function

as ξ(t) = L(w(t)) + β
2(1−β)

∥dw(t)
dt

∥2. The derivative of ξ(t) is dξ(t)
dt

= ⟨∇L(w(t)), dw(t)
dt

⟩+ β
1−β

⟨d
2w(t)

dt2
,

dw(t)
dt

⟩ = −∥dw(t)
dt

∥2. Therefore, ξ(0)− ξ(T ) =
∫ T

0
∥dw(t)

dt
∥2dt. Then, taking T → ∞ yields the conclusion.

6



Putting them together, we show that ∥r(T )∥2 + o(∥r(T )∥) is upper bounded over the iterations,
which immediately leads to that ∥r(T )∥ is bounded. Applying similar methodology to the discrete
update rule, we have the following lemma (the proof can be found in Appendix C.1.2).

Lemma 2. Define potential function g : Z+ → R as

g(t)
△
=

1

2
∥r(t)∥2 + β

1− β
⟨r(t),w(t)−w(t− 1)⟩.

g(t) is upper bounded, which further indicates ∥r(t)∥ is upper bounded.

Remark 3. Our technique for analyzing GDM here is essentially more complex and elaborate than
that for GD in [34] due to the historical information of gradients GDM. The approach in [34]
cannot be directly applied. It is worth mentioning that we provide a more easy-to-check condition for
whether r(t) is bounded, i.e., "is g(t) upper-bounded?". This condition can be generalized for other
momentum-based implicit regularization analyses. E.g., SGDM and Adam later in this paper.

5 Tackle the difficulty brought by random sampling

In this section, we analyze the implicit regularization of SGDM. Parallel to GDM, we establish the
following implicit regularization result for SGDM:

Theorem 3. Let Assumption 1, 2, and 3. (S) hold. Let β ∈ [0, 1) and η < 1
Hβσ3

max√
Nbγ(1−β)

+
Hσ4

max
2bγ2

. Then,

with arbitrary initialization point w(1), SGDM (w/. r) satisfies ∥ w(t)
∥w(t)∥ − ŵ

∥ŵ∥∥ = O(1/ log(t))

and L(w(t)) = O( 1t ), almost surely (a.s.).

Similar to the GDM case, Theorem 3 shows that the implicit regularization of SGDM under this
setting is consistent with SGD (c.f. [24] for the implicit regularization of SGD). This matches the
observations in practice (c.f. Section 7 for details), and is later supported by our experiments (e.g.,
Figure 1). We add two remarks on the learning rate upper bound and extension to SGDM (w/. r).

Remark 4 (On the learning rate). Firstly, our learning rate upper bound 1/(
Hβσ3

max√
Nbγ(1−β)

+
Hσ4

max

2bγ2 )

exactly matches that of SGD 2 bγ2

Hσ4
max

[24] when β = 0, and matches that of SGD in terms of the
order of σmax, H , and b when β ̸= 0. This indicates our analysis is tight. Secondly, as the bound is
monotonously increasing with respect to batch size b, Theorem 3 also sheds light on the learning rate
tuning, i.e., the larger the batch size is, the larger the learning rate is.

Remark 5. (On SGDM (w/o. r)) Theorem 3 can be similarly extended to SGDM (w/o. r). We defer
the detailed description of the corresponding theorem together with the proof to Appendix F.2.

Next, we show the proof sketch for Theorem 3. The proof also contains two stages, where Stage II is
similar to that for GDM. However, we highlight that Stage I for SGDM is not a trivial extension
of that for GDM. The methodology used to construct GDM’s potential function fails for SGDM:
roughly speaking, the change of ξ(t) (defined in Lemma 1) can be spitted into the "decrease term"
and the "error term". The "decrease term" comes from the alignment between directions of the update
of GDM and the negative gradient, and contributes to the decrease of ξ(t). However, a gap remains
between the directions of the update of GDM and the negative gradient. The "error term" measures
this gap and potentially contributes to the increase of ξ(t). For GDM, both the terms are in the order
of ∥∇L(w(t))∥2 while the "decrease term" has a larger coefficient, leading to the decrease of ξ(t).
For SGDM, the "decrease term" is in the order of (E∥∇L(w(t))∥)2, while the "error term" is in the
order of E(∥∇L(w(t))∥2), bigger than the "decrease term" in an unbounded magnitude. Therefore,
ξ(t) may no longer decrease. We defer a detailed discussion to Appendix C.2.3.

On the other hand, we find the stochastic gradient ∇LB(t)(w) is special, in the sense that it satisfies
the strong growth condition [32] as follows.

Lemma 3. Let all the assumptions in Theorem 3 hold. Then, for every t, ∇LB(t)(w) satisfies the

strong growth condition, i.e., ∀w, EB(t)∥∇LB(t)(w)∥2 ≤ C2∥∇L(w)∥2, where C2 ≜ Nσ2
max

γ2b .

The proof is deferred to Appendix B.2. SGD has been known to converge faster when the strong
growth condition holds compared to the case when the variance of the stochastic gradient norm is
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bounded [32, 42]. However, to the best of our knowledge, convergence of SGDM under the strong
growth condition has not been established. We then bridge this gap by proposing the following
theorem.
Theorem 4. Consider SGDM defined in Eq. (2) with general L and ξ(t). Let ∇Lξ(t)(w) satisfy the
following properties:

• (Affine noise variance condition). ∀w, Eξ(t)∥∇Lξ(t)(w)∥2 ≤ σ1∥∇L(w)∥2 + σ0.

• (Bounded smoothness condition). ∀w1,w2, ∥∇L(w1)−∇L(w2)∥ ≤ L∥w1 −w2∥.

Then, with learning rate η ≤ 1

2
Lβ

√
σ1

1−β +Lσ1

, we have

1

T

T∑
t=1

E∥∇L(w(t))∥2 ≤ O
(

1

Tη

)
+O(ησ0).

To the best of our knowledge, Theorem 4 is the first to establish the convergence of SGDM under
the affine noise variance condition [6], which generalizes the strong growth condition and the
bounded gradient variance condition. Note that the affine noise variance condition with σ0 = 0 is
exact the strong growth condition, in which case Theorem 4 shows that 1

T

∑T
t=1 E∥∇L(w(t))∥2

decays with rate 1
T . Combining Lemma 3 and Theorem 4 completes the proof of Stage I for SGDM.

We then briefly state the proof idea of Theorem 4. Inspired by SGD’s simple update rule, we rearrange
the update rule of SGDM such that only the gradient information of the current step is contained, i.e.,

w(t+ 1)− βw(t)

1− β
=

w(t)− βw(t− 1)

1− β
− η∇Lξ(t)(w(t)).

By defining u(t) ≜ w(t)−βw(t−1)
1−β = w(t) + β

1−β (w(t)−w(t− 1)), we have that u(t) is close to
w(t) (differs by order of one-step update w(t)−w(t− 1)), and the update rule of u(t) only contains
the current-step-gradient information ∇L(w(t)). We then select potential function as L(u(t)), and a
simple Taylor’s expansion directly leads to:

E[L(u(t+ 1))|Ft] ≈ L(u(t))− η⟨∇L(w(t)),∇L(u(t))⟩ ≈ L(u(t))− η∥∇L(w(t))∥2,

i.e., L(u(t)) is a proper potential function. Summing the above equation across iterations completes
the proof.

6 Analyze the effect of preconditioners

6.1 Implicit regularization of deterministic Adam

This section presents the implicit regularization of deterministic Adam, i.e., Adam without random
sampling.
Theorem 5. Let Assumption 1, 2, and 3. (D) hold. Let 1 > β2 > β4

1 ≥ 0, and the learning rate
η is a small enough constant (The upper bound of learning rate is complex, and we defer it to
Appendix D.1). Then, with arbitrary initialization point w(1), deterministic Adam (Eq. 3) satisfies
that ∥ w(t)

∥w(t)∥ − ŵ
∥ŵ∥∥ = O(1/ log(t)) and L(w(t)) = O( 1t ).

Remark 6 (On the β1 and β2 range). Almost all existing literature assume a time-decaying hyper-
parameter choice of β1 or β2 (c.f., [18, 3]). On the other hand, our result proves that deterministic
Adam converges with constant settings of β1 and β2, which agrees with the practical use.
Remark 7 ((Discussion on the results in [34])). [34] observe that, on a synthetic dataset, the direction
of the output parameter by Adam still does not converge to the max-margin direction after 2× 106

iterations (but is getting closer). At the same time, GD seems to converge to the max-margin direction.
However, this example does not contradict Theorem 5, as we study the asymptotic behavior. In the
example, it can be observed that the angle gap keeps decreasing after 105 iteration, which stands
with our result. Furthermore, in Figure 3 and 4 of our paper, we reproduce the experiment and find
that the angle gap still keeps decreasing after extending the training time. Secondly, this synthetic
dataset is ill-posed, which has large singular value and makes the training rather slow, and it can be
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observed that the training loss of Adam does not vary much until 104 iteration. On the well-posed
dataset adopted by (Figure 1, [34]), we observe that Adam will converge to the max-margin solution
rapidly (please refer to Figure 1 for details).

We simply introduce the proof idea here and put the full proof in Appendix D. The proof of determin-
istic Adam is very similar to that of GDM with minor changes in potential functions. Specifically, ξ(t)

in Lemma 1 is changed to ξ(t) ≜ L(w(t)) + 1
2

1−βt−1
1

η(1−β1)
∥ 4
√
ε1d + ν̂(t− 1)⊙ (w(t)−w(t− 1))∥2,

and g(t) in Lemma 2 is changed to

g(t)
△
=
〈
r(t), (1− βt−1

1 )
√

ε1d + ν̂(t− 1)⊙ (w(t)−w(t− 1))
〉 β1

1− β1
+

√
ε

2
∥r(t)∥2.

The rest of the proof then flows similarly to the GDM case.

6.2 What if random sampling is added?

We have obtained the implicit regularization for GDM, SGDM, and deterministic Adam. One may
wonder whether the implicit regularization of stochastic Adam can be obtained. Unfortunately, the
gap can not be closed yet. This is because an implicit regularization analysis requires the knowledge
of the loss dynamics, little of which, however, has been ever known even for stochastic RMSProp
(i.e., Adam with β1 = 0 in Eq. (3)) with constant learning rates. Specifically, the main difficulty lies
in bounding the change of conditioner 1√

ε1d+ν̂(t)
across iterations, which is required to make the

drift term ⟨∇L(w(t)),E(w(t+ 1)−w(t))⟩ (derived by Taylor’s expansion of the epoch start from
Kt) negative to ensure a non-increasing loss.

On the other hand, if we adopt decaying learning rates ηt = η1√
t
, [33] shows β2 close enough to 1, the

following equation holds for stochastic RMSProp (w/o. r) (recall that K ≜ N
b is the epoch size)

T∑
t=0

1√
t+ 1

∥∇L (w (Kt))∥ = O(lnT ). (8)

Based on this result, we have the following theorem for stochastic RMSProp (w/o. r):

Theorem 6. Let Assumptions 1, 2, and 3. (S) hold. Let β2 be close enough to 1. Then, with
arbitrary initialization point w(1) and decaying learning rate ηt = η1√

t
, stochastic RMSProp satisfies

∥ w(t)
∥w(t)∥ − ŵ

∥ŵ∥∥ = O(1/ log(t)) and L(w(t)) = O( 1√
t
).

Remark 8 (On the decaying learning rate). The decaying learning rate is a "stronger" setting
compared to the constant learning rate, both in the sense that GDM, SGDM, and deterministic Adam
can be shown to converge to the max-margin solution following the same routine as Theorems 2, 3,
and 5, and in the sense that we usually adopt constant learning rate in practice.

The proof is on the grounds of a novel characterization of the loss convergence rate derived from Eq.
(8), and readers can find the details in Appendix E.

(a) Margin Gap (b) Angle gap (c) Norm (d) Loss

Figure 1: Comparison of the implicit regularization of the optimizers. We use the synthetic dataset in
[34] with learning rate 1

σ2
max

. Figure (b) shows (1). all the optimizers converge to the max margin
solution, and (2). the asymptotic behaviors with & without momentum are similar. The experimental
observation support our theoretical results.
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7 Discussions

Consistency with the Experimental Results. We conduct experiments to verify our theoretical
findings. Specifically, we (1). run GD, GDM, SGD, SGDM, and Adam on a synthetic dataset to
observe their implicit regularization; (2). run GD and Adam on ill-posed dataset proposed in [34]
to verify Theorem 5; (3). run SGD and SGDM on neural networks to classify the MNIST dataset
and compare their implicit regularization. The experimental observations stand with our theoretical
results. Furthermore, it is worth mentioning that experimental phenomenons that adding momentum
will not change the implicit regularization have also been observed by existing literature [34, 23, 43].

Influence of hyperparameters on convergence rates. Our results can be further extended to provide
a precise characterization of the influence of the hyperparameters η and β on the convergence rate of
(S)GDM. Specifically, in Appendix F.4, we show that the asymptotic convergence rate of (S)GDM
is C 1

η
1
t , where C is some constant independent of β and η. Therefore, increase η can lead to a

faster convergence rate (with learning rate requirements in Theorems 2 and 3 satisfied). However,
changing β does not affect the convergence rate, which is also observed in our experiments (e.g.,
Figure 1). Furthermore, to the best of our knowledge, there still lacks the theoretical justification of
the acceleration effect of the momentum except the strongly convex case. On the other hand, we still
can not provide a precise characterization of the exact convergence behavior of Adam in this case
due to the ever-changing preconditioner. As this work mainly focuses on the linear model, whether
momentum and preconditioner can accelerate the training of non-linear model with the non-convex
landscape is an exciting future direction and deserves further investigation.

Generalization Behavior of Adam. Our results characterize the implicit regularization behavior of
optimizers when the time is large enough, which can be changed by early stopping, especially for
Adam. This is because the proof of Theorem 5 relies on that when the training time is large enough,
the gradient is small and the adaptive learning rate 1√

ν(t)+ε1d

is dominated by 1
ε1d, and then Adam

behaves like GDM and thus converges to the max margin solution. This can also be verified by Figure
1, as the angle gap of deterministic Adam and RMSProp only start to decrease late in the training.

Gap Between The Linear Model and Deep Neural Networks. While our results only hold for
the linear classification problem, extending the results to the deep neural networks is possible.
Specifically, existing literature [21, 43] provide a framework for deriving implicit regularization for
deep homogeneous neural networks. However, the approach in [21, 43] can not be trivially applied
to the momentum-based optimizers, as their proofs require the specific gradient-based updates to
lower bound a smoothed margin (c.f., Theorem 4.1, [21]). It remains an exciting work to see how our
results can be expanded to GDM and Adam for deep neural networks.

8 Conclusion

This paper studies the implicit regularization of momentum-based optimizers in linear classification
with exponential-tailed loss. Our results indicate that for SGD and the deterministic version of Adam,
adding momentum will not influence the implicit regularization, and the direction of the parameter
converges to the L2 max-margin solution. Our theoretical results stand with existing experimental
observations, and developed techniques such as the potential functions may inspire the analyses on
other momentum-based optimizers. Motivated by the results and techniques for linear cases in this
paper, it has the potential to extend them to the homogeneous neural network in the future. Another
topic left for future work is to derive the implicit regularization of constant learning rate stochastic
Adam. As discussed in Section 6.2, this topic is non-trivial, and it requires new techniques and
assumptions to be developed.
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