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A Appendix

In this section, we provide additional results to support the main paper. The document is structured
as follows.

A.1 Unimodal robust deterministic autoencoders - Formulation of the proposed method for the
unimodal prior assumption.

A.2 Additional experimental results - An additional quantitative evaluation of the robustness of
the model based on the l2 distance as an alternative similarity metric to MSSSIM used in
the main paper.

A.3 Visual analysis of attacks - Qualitative evaluation of the adversarial attacks in MNIST,
FASHIONMNIST, SVHN, and CELEBA images.

A.4 Experimental details - Detailed description of the network architectures, implementation
details, and evaluation setup to reproduce the experimental results in the main paper.

A.5 Sensitivity analysis of the number of modes - A sensitivity study of the model robustness to
the number of components in the chosen GMM prior in MNIST images.

A.6 Sensitivity analysis of the coupling strength - A sensitivity study of the coupling strength
parameter α.

A.7 Additional evaluation of the decoder quality - Quantitative evaluation of the decoder quality
in terms of similarity between the reconstructions of the reference images and the adversarial
images.

A.1 Unimodal robust deterministic autoencoders

The objective of the model is to regularize D-dimensional latent representations {z1, ..., zN} of
input datapoints {x1, ...,xN} learned by the encoder g of the model towards a unimodal Gaussian
Z ∼ N (µ,Σ) with mean µ and covariance matrix Σ. Inspired by the statistical Kolmogorov-
Smirnov (KS) test, the empirical cumulative distribution function (CDF) of the latent samples is
regularized towards the CDF Φ(z) of the prior distribution [13],

Φ(z) =

∫ z1

−∞
· · ·
∫ zD

−∞

exp− 1
2 (t− µ)⊤Σ−1(t− µ)

√
2π

d|Σ|
dt1 . . . dtD, (1)

where z = (z1, . . . , zD), t = (t1, . . . , tD).

To avoid the computational complexity of considering in the original KS-distance formulation that
requires computing joint CDFs, the minimization of this KS-distance can be approximated by
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marginalization, i.e. by regularizing the empirical marginal CDFs

F̄d(z) =
1

n

N∑
n=1

1[zn]d≤z (2)

of the latent representations {z1, ..., zN} in dimensions d = 1, . . . , D towards the marginal CDFs

FN ,d(z) = Φ

(
z − [µ]d
[Σ]d,d

)
= Φ

(
z − µd

σd

)
, (3)

of the Gaussian prior. Here, [·]d indicates the d-th dimension of a vector, i.e. [µ]d is the d-th entry of
the mean vector µ = (µ1, . . . , µD). Similarly, [·]d,d indicates the entry in row and column d of the
matrix Σk = diag(σ1, . . . , σD). The respective loss is computed as

LKS,k(z1,...,N ) =
1

D

D∑
d=1

N

MSE
n=1

(
F̄d([zn]d), FN ,d([zn]d)

)
. (4)

To account for the correlations between the different latent dimensions, an additional covariance
based loss is defined as follows,

LCV,k(z1,...,N ) =
1

D2

D∑
ℓ,d=1

(
[Σ̄]ℓ,d − [Σ]ℓ,d

)2
(5)

where Σ̄ is the empirical covariance matrix of the latent representations and Σ stands for the
prior covariance. The total loss of the model is a combination of both regularization terms and a
reconstruction loss.

To improve the robustness of the model we utilize adversarial training [11, 15] similar to the main
paper. That is, during training we augment the input data points with adversarial samples whose
latents zadvn are explicitly optimized to fall in an ϵ− ball around the original latent representations zn
for n ≤ N and to decode to semantically altered images. To ensure that the adversarial examples
remain in close proximity to the original mapping in the learned latent space, we establish a strong
coupling between the two distributions by introducing two-point KS-test [14] loss.

Two-Point KS-distance loss for unimodal prior The first regularization loss of the adversarially
extended model with pairwise coupling takes the following form,

Ladv
KS,k(z1,...,N , zadv1,...,N ) =

2

3
Laug
KS,k(z1,...,N , zadv1,...,N )+

1

3D

D∑
d=1

N

MSE
n=1

(
F̄d([zn]d), F̄

adv
d ([zadvn ]d)

)
(6)

where F̄d, F̄
adv
d are the empirical CDFs of z and zadv respectively.

The correlations between the latent representations and their adversarial samples need to be considered
separately as before. The covariance loss of the extended model is defined as follows,

Ladv
CV,k(z1,...,N , zadv1,...,N ) =

1

2D2

2D∑
ℓ,d=1

([
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−
[
Σ αΣ
αΣ Σ

]
ℓ,d

)2

. (7)

where α ≤ 1 is the coupling parameter. Since we consider a Gaussian prior with zero mean and
identity covariance, Z ∼ N (0, I), the covariance loss becomes,

Ladv
CV,k(z1,...,N , zadv1,...,N ) =

1

2D2

2D∑
ℓ,d=1

([
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−
[
I αI
αI I

]
ℓ,d

)2

. (8)

The total training objective of the model takes the following form,

L(x1,...,N ,xadv
1,...,N ) = λRECLREC(x

ϵ
1,...,N ) + λKSLadv

KS,k(z1,...,N , zadv1,...,N )+

λCVLadv
CV,k(z1,...,N , zadv1,...,N ). (9)

The weights λKS and λCV can be calculated by taking the statistics of samples from the Gaussian
prior [13], similar to eq. (10).
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Table 1: Additional ablation study on MNIST images. Here xr refers to reference image, xa to
adversarial image and x̃r, x̃a to their corresponding reconstructions. The maximum input noise
perturbation level λ is limited to 1, 3 and 5. The best values observed for the ablation study on
unimodal prior assumption are underlined. And the best values observed for the ablation on adversarial
training method used are marked in bold.

Method Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(x̃r, x̃a)(↑)

1 3 5 1 3 5

VAE 0.55 0.78 0.89 0.64 0.27 0.08 43.21
β-VAE 0.52 0.73 0.86 0.65 0.36 0.22 42.72
β-TCVAE 0.53 0.69 0.83 0.73 0.38 0.28 45.61
LipschitzVAE 0.50 0.68 0.79 0.75 0.41 0.33 59.45
SE 0.49 0.62 0.68 0.90 0.60 0.54 47.34
AVAE 0.49 0.59 0.62 0.80 0.65 0.59 48.47
Unimodal-Ours 0.48 0.62 0.70 0.89 0.73 0.62 41.41

PGD-Ours 0.39 0.46 0.58 0.93 0.83 0.71 39.10
Ours 0.38 0.47 0.60 0.92 0.82 0.69 39.37

A.2 Additional experimental results

Additional robustness evaluation In this section, we consider an additional metric to quantitatively
evaluate the robustness of the model. To be precise, we compute the l2 distance between the reference
image xr and the reconstructions x̃a of the adversarially perturbed variants xa. Similar to the main
paper, under latent space attacks, we consider the target image xr = xt as the reference images and
report the l2 distance with the reconstruction x̃a = f(zx+δ) of the perturbed latent representation.
For a maximum damage attack, we consider the original images xr = x as the reference images and
consider the l2 distance with the reconstructions, x̃a. The observed values are given in Figure 1.

Additional ablation study We conduct two ablation studies in this section. First, we consider an
expensive PGD-based adversarial learning in our training pipeline and report the evaluation metrics
for MNIST images in Table 1. We observe a slight increase in the performance of our model when
PGD adversarial learning is employed. However, it should be also noted that with PGD-based
training, the computational time is two times more expensive than our original method. For the
second experiment, we consider a unimodal prior assumption, to train our model and report the values
for MNIST images in Table 1. It can be inferred that the unimodal version of the proposed method
also performs better or is comparable with the other robust baseline models.

A.3 Visual analysis of attacks

For qualitative analysis, we provide visual results for MNIST, FASHIONMNIST, SVHN, and
CELEBA images for both adversarial attacks - latent space and maximum damage attacks. For latent
space attacks, we compare the source image, clean reconstruction, adversarial image, adversarial
reconstruction and target images across dataset as shown in Figures 2, 3, 4 and 5. For a successful
attack, the adversarial reconstruction would strongly resemble the target image. As observed from the
Figure, it can be seen that the proposed method remains more robust under latent space attacks when
compared to the baseline models. For maximum damage attacks, we compare the source images,
the corresponding clean reconstructions, adversarial images and their corresponding reconstructions
across dataset as shown in Figures 6, 7, 8 and 9. These attacks are more successful when the
adversarial reconstructions are less similar in appearance to the clean reconstructions. As shown
in the Figure, we observe that both of these attacks get more successful with an increase in noise
perturbation. However, for a given noise perturbation the proposed method is more robust when
compared to other models.
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A.4 Experimental details

Network architectures We use a consistent network architecture for the encoder-decoder pair
during training. For MNIST and FASHIONMNIST images, we train a fully connected network
architecture, a 4-layer multi-layer perceptron (MLP) with 200 neurons and ReLU activation at
each layer. For SVHN and CELEB images we use a convolution network architecture similar
to [13]. The encoder includes a 4-layer convolution network with the number of output channels
(128, 256, 512, 1024) respectively, with strides equal to 2 and a kernel size of (4, 4). And the decoder
comprises a 4-layer de-convolution network with the number of output channels (1024, 512, 256, 128)
respectively, with strides equal to 2 and a kernel size of (4, 4). The latent space dimension of 10 is
used for MNIST and FASHIONMNIST images, 100 for SVHN, and 64 for CELEBA images.

Dataset For empirical analysis, we consider four image benchmark datasets: MNIST (GNU
General Public License v3.0) [9], FASHIONMNIST (MIT License) [16], SVHN (GNU General
Public License v3.0) [12] and CELEBA (non-commercial research) [10]. Similar to [13], for MNIST,
FASHIONMNIST, and SVHN, images of size 32× 32 are used. For CELEBA, images resized to
64× 64 after center cropping to 140× 140 are used.

Implementation details We carried out all the experiments on a single GTX1080 GPU with 16 GB
RAM. All the conducted experiments were part of a carbon-neutral framework-based GPU cluster
and hence did not contribute to climate change. We will open-source the code to implement the
proposed method upon acceptance of the paper.

For training the encoder-decoder network of our model, we utilize an ADAM [7] optimizer with a
batch size of 100 and an initial learning rate of 0.002 with exponential decay based on the validation
loss. For the multi-modal prior definition, we follow the same setup as in [13]. The coupling
parameter is chosen as 0.95 for MNIST and FASHIONMNIST images, and 0.92 for SVHN and
CELEBA images. For the classification downstream application, we train a simple two-layer MLP-
based classifier. The network is trained for 25 epochs with an ADAM [7] based optimizer with a
learning rate of 0.01, batch size of 100.

To avoid expensive hyperparameter tuning of the loss hyperparameters λKS and λCV mentioned in
the training objective of the model in eq:11(main paper), we extend the simple heuristic mentioned
in [13] to our model definition. Consider a target GMM prior, for a model trained with latent space
dimension D and batch size N , the loss hyperparameters are calculated as follows, for m = 1, . . . ,M

samples z(m)
1 , . . . , z

(m)
N and z′

(m)
1 , . . . , z′

(m)
N independently sampled from the prior GMM,

λ−1
KS =

1

M
LKS

(
z
(m)
1,...,N , z′

(m)
1,...,N

)
, λ−1

CV =
1

M
LCV

(
z
(m)
1,...,N , z′

(m)
1,...,N

)
). (10)

In our experiments, we consider a simple approach by independently sampling from the GMM
prior instead of the coupled prior definition since we observed good empirical results with this
approximation. The hyperparameter λREC can be approximated as the inverse of the best obtained
loss obtained by training an autoencoder model.

For a fair comparison, we use similar architecture for all the baseline models considered. We used
the Pytorch implementation in the Githib repository1 for training the baseline models, VAE [8],
β−VAE [6] and β−TCVAE [4] . For LipschitzVAE [1] we used the official Pytorch implementation2.
For SE [3], we re-implemented the method in Pytorch and for AVAE [2] we reimplemented a
Pytorch version of the official JAX-based version3. Since the official Github implementation for
AVAEs only provides an MLP-based training pipeline, we only report AVAE results for MNIST and
FASHIONMNIST images.

Evaluation setup To evaluate the robustness of the model, we consider mainly two types of
adversarial attacks, latent space attacks, and maximum damage attacks. For experimental analysis,
under these attacks, we consider 100 randomly chosen test images from the corresponding dataset and
run 10 simulations to report the results. The noise perturbation levels of 1, 3 and 5 are chosen. While
choosing the target image for latent space attacks, we explicitly choose an image from a different

1https://github.com/YannDubs/disentangling-vae
2https://github.com/FabianBarrett/Lipschitz_VAEs
3https://github.com/deepmind/deepmind-research/tree/master/avae
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Table 2: Sensitivity analysis of the number of modes in the GMM prior on MNIST images.

Number of modes Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

1 0.48 0.62 0.70 0.99 0.93 0.86 0.89 0.73 0.62 0.98 0.92 0.86 42.45
5 0.43 0.53 0.66 0.98 0.92 0.83 0.91 0.76 0.65 0.98 0.91 0.82 40.11
10 0.38 0.47 0.60 0.95 0.90 0.80 0.92 0.82 0.69 0.98 0.89 0.78 39.37
15 0.37 0.45 0.58 0.95 0.89 0.80 0.93 0.82 0.70 0.97 0.89 0.77 39.04
20 0.37 0.45 0.57 0.94 0.88 0.79 0.93 0.83 0.71 0.97 0.88 0.78 38.49
25 0.36 0.43 0.58 0.94 0.88 0.78 0.94 0.83 0.71 0.97 0.88 0.77 38.02

Table 3: Sensitivity analysis of the hyperparameter alpha on MNIST images.

Coupling parameter Latent space attack Maximum damage attack FID(↓)

α MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

0.1 0.46 0.56 0.68 0.98 0.91 0.84 0.80 0.59 0.50 0.98 0.91 0.80 40.18
0.3 0.44 0.55 0.65 0.97 0.92 0.82 0.81 0.65 0.61 0.97 0.90 0.80 39.84
0.5 0.43 0.53 0.64 0.97 0.90 0.82 0.85 0.75 0.63 0.98 0.89 0.80 40.01
0.7 0.40 0.49 0.63 0.96 0.90 0.81 0.90 0.79 0.67 0.98 0.89 0.79 39.28
0.9 0.39 0.48 0.62 0.95 0.90 0.80 0.91 0.81 0.68 0.98 0.89 0.78 39.61
0.95 0.38 0.47 0.60 0.95 0.90 0.80 0.92 0.82 0.69 0.98 0.89 0.78 39.37
1.0 0.38 0.47 0.59 0.95 0.89 0.80 0.92 0.83 0.69 0.97 0.87 0.78 41.86

class than of original image for MNIST, FASHIONMNIST, and SVHN images. For evaluating the
fidelity of the learned representations, we report Fréchet Inception Distance (FID) [5] of the generated
samples in the main paper. We calculate the FID between 10000 generated images and validation
images for the corresponding dataset and report the average value obtained after five different runs.
The FIDs observed for the proposed method along with error bars (for different runs) are as follows,
MNIST: 39.37±0.9, FASHION-MNIST: 64.89±0.9, SVHN: 38.89±1.2 and CELEBA: 51.98±1.3.
We report the error bar for all the robustness evaluation metrics reported in Table 1 in the main paper
in Figure 10. The observed attack loss similar to Figure.2 in the main paper for MNIST images is
shown in Figure 11.

A.5 Sensitivity analysis of the number of modes in the GMM prior

The number of modes in the chosen prior is a hyperparameter of the proposed model. Hence we
report a sensitivity analysis of the number of modes of the GMM prior and the observed robustness of
the model. We analyze the robustness and generation performance of our model on MNIST images
for different number of components in the chosen prior in Table 2. We use the same number of modes
used in Saseendran et.al for all our experiments. As expected from previous analysis in Saseendran
et.al., with an increased number of modes in the GMM prior the generation performance of our
extended model also improved. Most importantly, we observe a similar trend for robustness as well.
That is, with a higher number of components in the chosen GMM prior the model exhibits improved
robustness.

A.6 Sensitivity analysis of the Coupling strength

In this section, we study the sensitivity of our model towards the coupling strength α (see Table 3).
We observe that a larger coupling strength α leads to improved robustness against both latent space
and maximum damage attacks. However, as mentioned in the limitations section a strong coupling
strength, i.e. α = 1, compromises the generation fidelity of the model. In our experiments, we tuned
the coupling strength on each individual dataset. We observed that a coupling strength in the range
of 0.9 ≤ α < 1 yields the best trade-off between generation and robustness across all datasets. In
our experiments, we chose α = 0.95 for MNIST and FASHIONMNIST images, and α = 0.92 for
SVHN and CELEBA images.
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A.7 Additional evaluation of the decoder quality

In this section, we further study the quality of the decoder of the proposed model. Here we evaluate
the MSSSIM between the reference images xr and its reconstructions x̃r and the adversarial images
xa and its corresponding reconstructions x̃a for both attack modes. The results are reported in
the Table 4. Compared to the non-robust variants (VAE, β-VAE, β-TCVAE), the quality of the
reconstructions of the reference images is compromised in robust VAE models (LipschitzVAE, SE,
AVAE), whereas the proposed model exhibits comparatively better performance. This further aligns
with the observation that our model yields better reconstruction fidelity than all the baselines. Further,
we observe higher similarity between the adversarial images and their reconstructions for all robust
VAE models. This is due to the fact that all these models employ adversarial training.
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Table 4: Decoder quality - Similarity between images and its corresponding reconstructions. We
consider the MSSSIM between the reference image(xr) and its reconstruction(x̃r) and the adversarial
image(xa) and its reconstruction(x̃a) for both latent space and maximum damage attack. For latent
space attack the reference image is the target image and for the maximum damage attack the reference
image is the input image.

MNIST MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.94 0.71 0.42 0.24 0.66 0.35 0.31
β-VAE 0.93 0.73 0.48 0.31 0.64 0.38 0.35
β-TCVAE 0.93 0.72 0.47 0.25 0.64 0.40 0.38
LipschitzVAE 0.85 0.70 0.46 0.38 0.66 0.44 0.39
SE 0.91 0.71 0.53 0.48 0.69 0.58 0.50
AVAE 0.92 0.70 0.55 0.50 0.71 0.62 0.59
Ours 0.97 0.89 0.79 0.55 0.82 0.70 0.61

FASHIONMNIST MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.88 0.61 0.52 0.50 0.45 0.33 0.29
β-VAE 0.87 0.61 0.57 0.51 0.53 0.26 0.29
β-TCVAE 0.88 0.62 0.59 0.53 0.54 0.23 0.31
LipschitzVAE 0.84 0.77 0.58 0.55 0.58 0.29 0.35
SE 0.86 0.78 0.67 0.60 0.67 0.65 0.48
AVAE 0.87 0.80 0.75 0.61 0.85 0.65 0.47
Ours 0.91 0.79 0.76 0.62 0.89 0.71 0.56

SVHN MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.85 0.71 0.62 0.57 0.68 0.58 0.50
β-VAE 0.84 0.72 0.60 0.58 0.68 0.57 0.52
β-TCVAE 0.85 0.71 0.61 0.59 0.69 0.58 0.51
LipschitzVAE 0.80 0.74 0.63 0.58 0.68 0.60 0.54
SE 0.83 0.79 0.69 0.62 0.82 0.78 0.62
Ours 0.90 0.81 0.73 0.66 0.84 0.80 0.65

CELEBA MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.84 0.79 0.72 0.65 0.76 0.71 0.65
β-VAE 0.83 0.74 0.71 0.67 0.75 0.73 0.69
β-TCVAE 0.83 0.73 0.68 0.64 0.75 0.70 0.68
LipschitzVAE 0.79 0.74 0.70 0.67 0.75 0.72 0.69
SE 0.80 0.79 0.75 0.70 0.78 0.76 0.74
Ours 0.86 0.80 0.77 0.70 0.80 0.79 0.77
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(a) MNIST.
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(b) FASHIONMNIST.
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(c) SVHN.
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(d) CELEBA.

Figure 1: Observed l2 distance between images in the event of latent space and maximum damage
attacks across datasets. Here, randomly chosen 100 test images are attacked in 10 different trials. xr

refers to reference image and x̃a to the corresponding reconstruction of the adversarial image xa.
The maximum input noise perturbation levels λ are limited to 1, 3 and 5.
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λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(e) AVAE.

(f) Ours.

Figure 2: Visual appraisal of latent space attacks - Qualitative analysis across models on MNIST
images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from left to right)Images
in each row correspond to source image, clean reconstruction, adversarial image, adversarial recon-
struction and target image respectively.
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λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(e) AVAE.

(f) Ours.

Figure 3: Visual appraisal of latent space attacks - Qualitative analysis across models on FASH-
IONMNIST images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from left
to right) Images in each row correspond to source image, clean reconstruction, adversarial image,
adversarial reconstruction and target image respectively.

λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(f) Ours.

Figure 4: Visual appraisal of latent space attacks - Qualitative analysis across models on SVHN
images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from left to right)
Images in each row correspond to source image, clean reconstruction, adversarial image, adversarial
reconstruction and target image respectively.
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λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(f) Ours.

Figure 5: Visual appraisal of latent space attacks - Qualitative analysis across models on CELEBA
images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from left to right)
Images in each row correspond to source image, clean reconstruction, adversarial image, adversarial
reconstruction and target image respectively.
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λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(e) AVAE.

(f) Ours.

Figure 6: Visual appraisal of maximum damage attacks - Qualitative analysis across models on
MNIST images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from left to
right) Images in each row correspond to source image, clean reconstruction, adversarial image and
adversarial reconstruction respectively.

12



λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(e) AVAE.

(f) Ours.

Figure 7: Visual appraisal of maximum damage attacks - Qualitative analysis across models on
FASHIONMNIST images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from
left to right) Images in each row correspond to source image, clean reconstruction, adversarial image
and adversarial reconstruction respectively.
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λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(f) Ours.

Figure 8: Visual appraisal of maximum damage attacks - Qualitative analysis across models on
SVHN images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from left to
right) Images in each row correspond to source image, clean reconstruction, adversarial image and
adversarial reconstruction respectively.

λ ≤ 1 λ ≤ 3 λ ≤ 5

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(f) Ours.

Figure 9: Visual appraisal of maximum damage attacks - Qualitative analysis across models on
CELEBA images with maximum input noise perturbation level λ limited to 1, 3 and 5. (from left to
right) Images in each row correspond to source image, clean reconstruction, adversarial image and
adversarial reconstruction respectively.
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(a) MNIST.
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(b) FASHIONMNIST.
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(c) SVHN.
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(d) CELEBA.

Figure 10: Observed MSSSIM with error bar between images in the event of latent space and
maximum damage attacks across dataset. Here randomly chosen 100 test images are attacked in 10
different trials and we report the mean and standard deviation. xr refers to reference image and x̃a to
the corresponding reconstruction of the adversarial image xa. The maximum input noise perturbation
levels λ are limited to 1, 3 and 5.
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Figure 11: Observed attack losses for (a) latent space attack and (b) maximum damage attack with
varying λ values for MNIST images. We report the observed mean and standard deviation by attacking
100 randomly chosen test images in 10 different trials. Higher loss indicates more robustness.
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