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Abstract

The susceptibility of Variational Autoencoders (VAEs) to adversarial attacks indi-
cates the necessity to evaluate the robustness of the learned representations along
with the generation performance. The vulnerability of VAEs has been attributed
to the limitations associated with their variational formulation. Deterministic au-
toencoders could overcome the practical limitations associated with VAEs and
offer a promising alternative for image generation applications. In this work, we
propose an adversarially robust deterministic autoencoder with superior perfor-
mance in terms of both generation and robustness of the learned representations.
We introduce a regularization scheme to incorporate adversarially perturbed data
points to the training pipeline without increasing the computational complex-
ity or compromising the generation fidelity when compared to the robust VAEs
by leveraging a loss based on the two-point Kolmogorov–Smirnov test between
representations. We conduct extensive experimental studies on popular image
benchmark datasets to quantify the robustness of the proposed approach based
on the adversarial attacks targeted at VAEs. Our empirical findings show that the
proposed method achieves significant performance in both robustness and fidelity
when compared to the robust VAE models. An implementation is available at
https://github.com/boschresearch/Robust_GMM_DAE.

1 Introduction

Variational autoencoders (VAEs) offer a powerful probabilistic framework to learn deep generative
models. They are widely employed in various domains such as computer vision, natural language
processing and representation learning [24, 16, 25, 26, 10]. A VAE is composed of two coupled
but independently parameterized models, an encoder or a recognition model that computes a latent
representation of the input space with stochastic latent variables and a decoder or a generative
model to map the latent representations back to the original input space [18]. One of the major
advantages of VAEs is that they provide semantically meaningful latent representations of high-
dimensional complex input distributions which can be further utilized for various downstream
tasks [17, 14, 28, 11]. However, VAEs are often limited due to theoretical and practical limitations
such as over-regularization, prior-posterior mismatch resulting in trade-offs between generation and
reconstruction fidelity [31, 9, 12]. Recently proposed deterministic versions of VAEs offer promising
alternatives to overcome these limitations [12, 27].

The semantically meaningful representations learned by VAEs can still be corrupted by so-called
adversarial attacks [30, 19, 20], where even small but specifically crafted changes to the input can
lead to very different reconstructions. This observation reveals a lack of generalization within such
models and is therefore a serious concern with respect to many practical applications. While it
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is harder to attack VAEs when compared to classifier networks [13] it is essential to analyze the
robustness of VAEs along with their generative performance, to validate whether the learned latent
representations are meaningful. Hence, there has been increasing research interest in the deep learning
field towards training robust models, both for classifier models and for autoencoders, i.e. for robust
representation learning. Borrowed from the training of robust classification models [22, 33], the
concept of adversarial training has proven to be able to smoothen the VAE encoder and improve the
robustness of the learned representations [6]. Other attempts toward learning robust representation
spaces introduce either complex network architectures or expensive regularization mechanisms to
improve the robustness of VAEs [32, 2]. Further, it has been pointed out in previous works that
the robustness of VAEs can be improved by generating disentangled latent representations or by
encouraging the smoothness or consistency of the encoding-decoding process [32, 5]. However,
regularizing the VAE objective to enhance robustness often leads to poor generation ability compared
to its non-robust counterpart. Hence, we seek to focus on improving the robustness of autoencoders
while still maintaining the generation performance.

In this work, we introduce a simple and easy to train deterministic autoencoder which exhibits
superior performance in terms of both generation and adversarial robustness. We argue that the deter-
ministic approach enhances the robustness of VAEs when the latent codes are properly regularized.
Consequently, we extend the training objective of the multi-modal deterministic autoencoders [27] to
incorporate adversarially perturbed input data points in the latent space. The proposed adversarial
learning scheme is comparatively less expensive and easier to implement than existing adversarially
trained robust VAE models. We conduct extensive experimental analysis to evaluate the robustness of
the trained model on popular benchmarks such as MNIST, FASHIONMNIST, SVHN and CELEBA
images. Our empirical evaluations show that the proposed model consistently exhibits high adversar-
ial robustness and significantly better generation performance compared to state-of-the-art robust
VAE baseline models. We also show that by improving the robustness of the learned representations,
a classifier trained on the learned latent space of the model also exhibits better robustness.

2 Related Work

The ability to defend against adversarial attacks is closely related to the sensitivity of the learned
latent representations to slight changes in the input data points. In this section we first discuss seminal
works proposed to generate rich and meaningful latent codes. This is followed by the review on
adversaries for VAEs and strategies proposed to defend against such adversarial attacks.

Variational Autoencoders (VAEs) In standard VAEs, the encoder and the decoder are jointly
trained to maximize the evidence lower bound (ELBO) of the log likelihood of the model. The
resulting training objective is a combination of a reconstruction loss and the Kullback–Leibler (KL)
divergence between the learned latent representations and a chosen prior - usually a uni-modal
Gaussian normal distribution. Higgins et.al [16] improved the learned representation in VAEs by
encouraging disentanglement in the latent space and introduces β-VAE for disentangled factor
learning. β-VAE modifies VAEs by introducing a hyperparameter to balance the latent regularization
term with the reconstruction performance. Chen et.al [7] further decompose the ELBO term in VAEs
to introduce total correlation (TC) regularization and propose β-TCVAE as a promising alternative to
β-VAEs. Willets et.al. [32] show that addition of TC term to the VAE objective also improves the
robustness of VAEs. Several methods were proposed to include complex and flexible priors to the
training pipeline of VAEs to enhance the semantics of the learned latent representations [8, 35, 31].
Miao et.al. [23] introduces an approach to incorporate the inductive bias into VAEs without explicitly
changing the prior by utilizing intermediary set of latent variables. Hierarchical VAEs [26, 3, 34, 21]
extend the standard VAE framework by introducing a hierarchy of latent variables and offer superior
modelling capabilities. Gosh et.al. [12] question the variational formulation of VAEs and introduce
a simple and effective deterministic model without any prior assumptions followed by a post-hoc
density estimation to approximate the learned posterior. A multimodal version to this approach, that
utilizes the capacity of expressive multi-modal latent distributions to yield high quality generation,
was proposed in [27].

Adversarial attacks on VAEs Adversarial attacks targeted towards autoencoders were first discussed
in [13]. Common attacks on VAEs follow procedures similar to attacks against classifiers, i.e. they aim
to maximize the network’s loss. Usually, slight perturbations are added to the input images to make the
reconstructions similar to a specific target image (targeted/supervised attack) or a completely different
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image (untargeted/unsupervised) [30, 19] such as to maximize the reconstruction loss. In [32] Willets
et.al. show that applying the TC regularization introduced in TC-VAEs to hierarchical VAEs yields
robust representations. Although the resulting model improves adversarial robustness, the training
complexity is high when compared to a VAE. Cemgil at.al [6] relate the robustness of VAEs to the
smoothness of the encoding process. Similarly to Madry et.al. [22], they introduce a regularization
scheme based on a selection mechanism in the latent space to generate additional data points to
minimize the entropy regularized Wasserstein distance between latent representations. Following the
same direction, Cemgil et.al. [5] argue that the lack of consistency between the encoding-decoding
process cause the susceptibility to adversarial attacks in VAES. In contrast to the previous works,
Camuto et.al. [4] provide a theoretical insight to the robustness of VAEs and introduce a novel
criterion for robustness in VAEs. Barret et.al. [2] propose to constrain the Lipschitz constants for
both encoder and decoder to ensure certifiable adversarial robustness of VAEs. Although these
methods comparatively improve the adversarial robustness of VAEs, they are often accompanied by
complex network architectures and expensive training procedures. In contrast, our approach adopts
an inexpensive adversarial training scheme to the latent space of deterministic autoencoders by an
elegant extension to the regularization proposed in [27] to ensure both robustness and fidelity.

3 Towards robust deterministic autoencoders

Deterministic Autoencoders [12, 27] offer a promising alternative to VAEs for learning meaningful
representations of complex input spaces with high fidelity. Motivated by this fact, we aim to further
explore the robustness of the learned representations of the resulting model. We are particularly inter-
ested in the multimodal prior setting in [27], since a flexible and expressive Gaussian mixture model
(GMM) prior assumption facilitates encoding similar data points closer together while distancing
dissimilar points far in the latent space - a behaviour that has also been found to be beneficial in
learning robust classifier models [11]. Consequently, we propose to adopt the regularization technique
proposed in [27] to regularize the learned latent representations of our model towards a predefined
GMM prior. For a model to be inherently robust, slight perturbations in the input space should not
result in substantial variations in the encoding space and the corresponding reconstructions. This
could be also attributed to the smoothness of the learned encoder. Hence, it is essential to investigate
the smoothness of the learned representations and the reconstructions of the model. In the following
subsections, we resume the regularization loss from [27] for the sake of completeness and illustrate
how it can be extended to adversarial training samples.

3.1 Regularization of the learned representations – Encoder smoothness

Following the idea from [27], we aim to regularize the D-dimensional latent representations
{z1, ..., zN} of input datapoints {x1, ...,xN} learned by the encoder g of the model towards a
k-modal GMM prior. For k ≤ K, let µk and Σk be the mean and covariance matrix of the k-th mode
in the model. Further, let wk > 0 be the weight of the k-th mode,

∑K
k=1 wk = 1. Inspired by the

statistical Kolmogorov-Smirnov (KS) test, the authors propose to regularize the empirical cumulative
distribution function (CDF) of the latent samples towards the CDF Φ(z) of the prior distribution,

Φ(z) =

∫ z1

−∞
· · ·
∫ zD

−∞

K∑
k=1

wk

exp− 1
2 (t− µk)

⊤Σ−1
k (t− µk)

√
2π

d|Σk|
dt1 . . . dtD, (1)

where z = (z1, . . . , zD), t = (t1, . . . , tD).

While the original KS-test quantifies a metric between joint CDFs, the minimization of this KS-
distance can be approximated by marginalization, i.e. by regularizing the empirical marginal CDFs

F̄d(z) =
1

n

N∑
n=1

1[zn]d≤z (2)

of the latent representations {z1, ..., zN} in dimensions d = 1, . . . , D towards the marginal CDFs

FGMM,d(z) =

K∑
k=1

pkΦ

(
z − [µk]d
[Σk]d,d

)
=

K∑
i=k

pkΦ

(
z − µk,d

σk,d

)
, (3)
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of the GMM prior. Here, [·]d indicates the d-th dimension of a vector, i.e. [µk]d is the d-th entry
of the mean vector µk = (µk,1, . . . , µk,D) of mixture component k, i.e. a scalar. Similarly, [·]d,d
indicates the entry in row and column d of the matrix Σk = diag(σk,1, . . . , σk,D). The respective
loss is computed as

LKS,k(z1,...,N ) =
1

D

D∑
d=1

N

MSE
n=1

(
F̄d([zn]d), FGMM,d([zn]d)

)
. (4)

An additional loss compensates for the ambiguities on the target distribution introduced by the
marginalization, i.e.

LCV,k(z1,...,N ) =
1

D2

D∑
ℓ,d=1

(
[Σ̄]ℓ,d − [ΣGMM]ℓ,d

)2
(5)

with ΣGMM =
∑K

k=1 wkΣk +
∑K

k=1 wk (µk − µ̄) (µk − µ̄)
T
, µ̄ = 1

k

∑K
k=1 µk and Σ̄ being the

empirical covariance matrix of the latent representations.

The total loss of the model in [27] is a combination of both regularization terms to enforce the
latent representations of the encoded data to match a predefined multi-modal prior distribution and a
reconstruction loss. Motivated by [11], for equidistantly chosen modes µi as in Figure 1, we expect
such a model to already provide not only an improved generation fidelity as observed in [27] but also
a more robust behavior. We provide empirical evidence for this conjecture in an ablation study in
Section 4. The GMM regularization implicitly clusters latent points such that similar points are close
to one another while dissimilar points are distant.

To further improve the robustness of our model we employ adversarial training - a widely popular
defense strategy utilized to learn robust deep networks [22, 33]. That is, during training we utilize
adversarial samples zadvn that are explicitly optimized to fall in an ϵ− ball around the original latent
representations zn for n ≤ N and to decode to damaged or semantically altered images. In [1] it
was observed that such adversarial samples tend to explore the underrepresented regions in the latent
space. In the following, we extend the losses in (4) and (5) to overcome this undesired behaviour.
This approach allows for a cheaper yet very effective adversarial training, while preserving the
reconstruction and generation ability of the original model from [27].

3.2 Adversarial training data augmentation – Improving Robustness

To generate adversarial inputs, we adapt the fast gradient sign method [33] to the latent space
of the model. For a given ϵ > 0 and datapoint xn, the objective of the attack is to find the
corresponding adversary xadv

n that would introduce maximum distance in the encoding space. That
is, xadv

n = xn + δxn , where δxn is the solution to the optimization problem

argmax
δ

∥g(xn + δ)− g(xn)∥2 s.t. ∥δ∥∞ ≤ ϵ, (6)

where g is the encoder of the model. To prevent adversarial samples from exploring unexplored
regions of the latent space, we assume that the joint distribution of latent encodings (zn, zadvn ) (here
zn = g(xn) and zadvn = g(xn + δxn

)) of data points and their adversarial samples (xn,x
adv
n ) to

follow the same multi-modal GMM prior (Figure 1). One possible straight forward extension of
the approach in [27] would be to consider adversarial examples as a specific data augmentation and
regularize z1,...,N and zadv1,...,N to the same GMM prior independently and ignoring cross-covariance
between z1,...,N and zadv1,...,N (here the off-diagonal elements in the covariance matrix of the GMM
prior, that is the last matrix mentioned in equation (8), are zero) . The corresponding losses in eqs. (4)
and (5) take the form

Laug
KS,k(z1,...,N , zadv1,...,N ) =

1

2
LKS,k(z1,...,N ) +

1

2
LKS,k(z

adv
1,...,N ) (7)

and

Laug
CV,k(z1,...,N , zadv1,...,N ) =

1

4D2

2D∑
ℓ,d=1

([
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−
[
ΣGMM 0

0 ΣGMM

]
ℓ,d

)2

, (8)
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Figure 1: Left: Learned latent representations in a deterministic autoencoder regularized towards a
GMM prior with two components (blue shaded regions). Consider a set of latent points z1, . . . , zN
(blue dots), in a subspace (green shaded region) within a component and the corresponding adversarial
examples zadv1 , . . . , zadvN (red crosses). The adversarial examples tend to explore regions not covered
by the input samples. If we assume that z and zadv follow the same prior assumptions independently,
the adversarial examples tend to move closer to the original samples (blue crosses). In the worst case
scenario, an adversarial example might reside in a different component. Right: By establishing a
strong coupling via a 2-point KS-distance regularization, the adversarial examples tend to move more
closer to the original samples (orange crosses) after regularization.

where Σ̄ and Σ̄
adv are the empirical covariance matrices of the latent representations z1,...,N and

their adversaries zadv1,...,N respectively, and Σ̄cross is the empirical cross-covariance between benign
and adversarial samples. While such a regularization preserves the overall distribution even under
adversarial attacks, it can not control the distance of a specific adversarial sample to its benign
zn. In the worst case scenario, an adversarial example zadvn can be mapped to a different Gaussian
mixture component than zn and therefore cause maximum damage in the reconstruction as shown in
Figure 1(left).

To evenly spread out the learned representations, we inject Gaussian noise to the latent vectors during
training. Let xϵ,n be the output of the decoder at zn + ϵn, where ϵn ∼ N (0, ID). The reconstruction
loss equals the mean squared error between inputs xn and their noisy reconstructions xϵ,n.

3.3 Coupling of z and zadv – A Two-Point KS-distance loss

To ensure that the adversarial examples remain in close proximity to the original mapping in the
learned latent space, we establish a strong coupling between the two distributions, z1,...,N and zadv1,...,N .
Hence we propose to match the the empirical CDFs of z1,...,N and zadv1,...,N and introduce a novel
regularization based on the two-point KS-test [29]. By analogy to the one-point KS-test that tests
whether a sample is drawn from a given, continuous distribution, the two-sample KS test determines
whether two samples with empirical CDF are drawn from the same distribution. To this end, the
two-sample KS test evaluates the supremum of the distance between the two CDFs. Here, we propose
to minimize this distance computed from the marginalized two-point KS-test in order to align the
distributions of benign points and their adversaries. The resulting loss is consistent with the previous
regularization and allows to efficiently establish the desired coupling between the representations.
The first regularization loss of the adversarially extended model with pairwise coupling takes the
following form

Ladv
KS,k(z1,...,N , zadv1,...,N ) =

2

3
Laug
KS,k(z1,...,N , zadv1,...,N ) +

1

3D

D∑
d=1

N

MSE
n=1

(
F̄d([zn]d), F̄

adv
d ([zadvn ]d)

)
(9)

where F̄d, F̄
adv
d are the empirical CDFs of z and zadv respectively.

The correlations between the latent representations and their adversarial samples need to be considered
separately. The degree or strength of the coupling is controlled by a coupling parameter | α |≤ 1,
where α = 1 indicates the border condition where z = zadv. The covariance loss of the extended
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model becomes,

Ladv
CV,k(z1,...,N , zadv1,...,N ) =

1

4D2

2D∑
ℓ,d=1

([
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−
[
ΣGMM αΣGMM

αΣGMM ΣGMM

]
ℓ,d

)2

.

(10)

The total training objective of the model takes the following form,

L(x1,...,N ,xadv
1,...,N ) = λRECLREC(x

ϵ
1,...,N ) + λKSLadv

KS,k(z1,...,N , zadv1,...,N )+

λCVLadv
CV,k(z1,...,N , zadv1,...,N ). (11)

The weights λREC, λKS and λCV can be calculated by taking the statistics of samples from the GMM
prior [27], see Appendix.

4 Experiments

We conduct an extensive experimental analysis to evaluate the robustness of the proposed model.
We consider the state of the art latent space attacks targeted at VAEs [13, 19, 2] and evaluate the
robustness based on the quantitative metrics as described in Section 4. Since the latent spaces of
VAEs are often further utilized for various downstream applications, we also consider the impact
of such adversarial attacks on a classifier trained in the latent space of the model. To evaluate
the fidelity of the learned representations, we report the Fréchet inception distance (FID) [15] of
the generated images. Our model is compared with the following baseline models, Variational
Autoencoder (VAE) [18], β-VAE [16], β-TCVAE [7], LipschitzVAE [2], Smooth Encoders (SE) [6]
and Autoencoding Variational Autoencoder (AVAE) [5]. The experimental study is conducted on
important image benchmark datasets such as MNIST, FASHIONMNIST, SVHN and CELEBA.
For simplicity we consider a fully connected network architecture for experiments on MNIST and
FASHIONMNIST images and a convolutional architecture for experiments on SVHN and CELEBA
images. Further details of the experiments are given in the Appendix1.

Adversarial attacks. Adversarial attacks targeted at VAEs attempt to add small noise perturbations
to the input data points that fool the model to reconstruct the input image to a target adversarial
image or a completely different image. Following recent literature [2, 32], we consider two types of
adversarial attacks in our experiments.

Latent space attacks or supervised attacks are considered the most effective mode of attacks on
VAEs. Here, the attacker tries to add a noise perturbation δ to a data point x, such that the latent
representation zx+δ of the perturbed input x+ δ is close to the latent representation zt of a chosen
target adversarial image, xt. The attack involves solving the following optimization problem,

arg min
∥δ∥2≤λ

∥(zx+δ − zt)∥2. (12)

Further, we consider maximum damage or output space attack. In this setting, the adversary perturbs
the input data point to cause maximum damage in the reconstruction of the decoder f of the model
and optimizes the following objective,

arg max
∥δ∥2≤λ

∥f(zx+δ)− f(zx)∥2. (13)

In both scenarios, the noise perturbation is explicitly constrained by some constant λ > 0 to ensure a
consistent comparison with the baseline models.

Evaluation. The qualitative results for CELEBA images for latent space and maximum damage
attack are shown in Figure 3. We consider three evaluation metrics to quantitatively estimate the
robustness of the different models for the above-mentioned adversarial attacks. First, we evaluate
the attack loss of the adversary. That is, we report the achieved value of the optimization objectives
in (12) and (13). The observed attack losses for the two forms of adversarial attacks are shown
in Figure 2 (MNIST results are given in the Appendix). Higher attack losses correspond to less

1All the conducted experiments were part of a carbon-neutral framework based GPU cluster and hence did
not contribute to climate change.
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(a) Latent space attack.
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(b) Maximum damage attack.

Figure 2: Observed attack losses for (a) latent space attack (eqn (12)) and (b) maximum damage attack
(eqn (13)) with varying λ values. We report the observed mean and standard deviation by attacking
100 randomly chosen test images in 10 different trials. Higher loss indicates more robustness.

successful attacks and hence better robustness. Due to the different regularization methods used in
the baseline models, the inherent scale of the aggregated posterior changes and hence the value of
the attack objective in eqn 12. Hence for latent space attacks, the values reported in Figure 2 might
not be directly comparable. Another strong indicator for the robustness of the considered models
is the similarity between the reference image xr and the reconstructions x̃a of the adversarially
perturbed variants xa. In the case of latent space attacks, we consider the target image xr = xt as
the reference images and compare with the reconstruction x̃a = f(zx+δ) of the perturbed latent
representation. For a maximum damage attack, we consider the original images xr = x as the
reference images and compare them to x̃a. Similar to [20], we use the perception-based similarity
metric Multi-Scale Structural Similarity Index Measure (MSSSIM ∈ [0, 1] ) to compare the images.
We also report the l2-distance as an alternative similarity metric to MSSSIM in the Appendix. Lower
values of MSSSIM(xr, x̃a) indicate less similarity between the reference (target) image and the
adversarial reconstructions and correspond to less successful latent space attacks. And higher value
of MSSSIM(x̃r, x̃a) corresponds to less successful maximum damage attacks as they correspond
to high similarity between reference (original) and the adversarial reconstructions. We report the
observed values in Table 1. Finally, it is also essential to evaluate how similar the adversarial images
are to the original image. Ideally, a successful attack implies that both adversarial and original images
look similar in appearance (MSSSIM ≈ 1). Hence we consider the MSSSIM between the original
and adversarial images in Table 1. We also report the FID of the generated samples to compare the
fidelity of the representations.

Results. Overall we see that the proposed model outperforms all the considered baselines in terms of
both robustness and offers superior generation performance. Even for complex datasets like SVHN
and CELEBA, we observe the same trend with FID and robustness measures. These results are
especially promising since we did not employ any extensive hyperparameter search for training.
Our results further confirm that both robust and high fidelity models are possible. Since we employ
an FGSM based adversarial training, the training time required is cheaper when compared to the
expensive PGD-based training used in smooth encoders (SE). The computation time for a single
iteration of SEs is two times more when compared to our method.

Ablation Study. In this section, we compare three different variants of regularized deterministic
autoencoders to evaluate the importance of joint regularization of the original and adversarial samples.
We begin with the model proposed in [27], which we denote as GMM-DAE. Second, we study the
augmented model defined by equations (7) and (8) in Section 3.2, but without the coupling of original
and adversarial latent representations (Augmented). We compare the robustness and fidelity of these
models with our proposed model, i.e. where original and adversarial latent representations are not
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Table 1: Robustness evaluation across dataset - similarities between images in the event of latent
space and maximum damage attacks in terms of MSSSIM. Here randomly chosen 100 test images
are attacked in 10 different trials. xr refers to reference image, xa to adversarial image and x̃r, x̃a to
their corresponding reconstructions. The maximum input noise perturbation levels λ are limited to
1, 3 and 5. Fidelity analysis - based on the FID of the generated images.

MNIST Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.55 0.78 0.89 0.99 0.94 0.87 0.64 0.27 0.08 0.98 0.93 0.86 43.21
β-VAE 0.52 0.73 0.86 0.99 0.92 0.86 0.65 0.36 0.22 0.98 0.93 0.87 42.72
β-TCVAE 0.53 0.69 0.83 0.98 0.92 0.86 0.73 0.38 0.28 0.98 0.93 0.87 45.61
LipschitzVAE 0.50 0.68 0.79 0.98 0.93 0.89 0.75 0.41 0.33 0.98 0.93 0.86 59.45
SE 0.49 0.62 0.68 0.98 0.92 0.86 0.90 0.60 0.54 0.98 0.93 0.86 47.34
AVAE 0.49 0.59 0.62 0.98 0.91 0.83 0.80 0.65 0.59 0.97 0.89 0.86 48.47

Ours 0.38 0.47 0.60 0.95 0.90 0.80 0.92 0.82 0.69 0.98 0.89 0.78 39.37

FASHIONMNIST Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.61 0.65 0.71 0.98 0.91 0.82 0.58 0.29 0.13 0.99 0.94 0.87 70.22
β-VAE 0.59 0.61 0.68 0.98 0.92 0.82 0.66 0.32 0.15 0.99 0.94 0.85 73.82
β-TCVAE 0.55 0.58 0.64 0.98 0.92 0.82 0.69 0.35 0.27 0.99 0.94 0.87 73.94
LipschitzVAE 0.43 0.59 0.67 0.99 0.94 0.89 0.71 0.34 0.30 0.99 0.94 0.88 79.45
SE 0.24 0.43 0.53 0.98 0.92 0.81 0.90 0.62 0.43 0.99 0.94 0.86 72.29
AVAE 0.32 0.34 0.35 0.98 0.92 0.82 0.79 0.52 0.45 0.99 0.94 0.92 74.45

Ours 0.22 0.26 0.39 0.97 0.91 0.81 0.92 0.77 0.63 0.97 0.92 0.83 64.89

SVHN Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.46 0.76 0.87 0.98 0.87 0.77 0.55 0.46 0.38 0.99 0.93 0.89 58.98
β-VAE 0.44 0.70 0.81 0.99 0.89 0.77 0.52 0.49 0.47 0.99 0.93 0.88 61.65
β-TCVAE 0.39 0.65 0.72 0.99 0.89 0.77 0.63 0.60 0.54 0.99 0.92 0.88 62.59
LipschitzVAE 0.35 0.62 0.71 0.99 0.89 0.76 0.66 0.65 0.55 0.99 0.93 0.88 65.58
SE 0.19 0.33 0.34 0.99 0.92 0.81 0.79 0.69 0.60 0.99 0.96 0.94 61.28

Ours 0.16 0.26 0.28 0.98 0.77 0.76 0.84 0.79 0.75 0.98 0.92 0.86 38.89

CELEBA Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.59 0.60 0.66 0.99 0.99 0.97 0.64 0.58 0.55 0.99 0.98 0.98 69.48
β-VAE 0.55 0.58 0.64 0.99 0.99 0.97 0.68 0.60 0.59 0.99 0.98 0.97 75.65
β-TCVAE 0.54 0.51 0.61 0.99 0.99 0.97 0.76 0.71 0.64 0.98 0.99 0.96 75.11
LipschitzVAE 0.49 0.51 0.55 0.99 0.98 0.97 0.73 0.70 0.64 0.98 0.98 0.96 77.89
SE 0.27 0.31 0.34 0.99 0.98 0.96 0.97 0.91 0.76 0.99 0.98 0.98 72.68

Ours 0.28 0.29 0.32 0.99 0.98 0.96 0.97 0.93 0.80 0.99 0.98 0.96 51.98

Table 2: Ablation study on MNIST images. Augmented refers to the model definition in eqs 7, 8. Here
xr refers to reference image, xa to adversarial image and x̃r, x̃a to their corresponding reconstructions.
The maximum input noise perturbation level λ is limited to 1, 3 and 5.

Method Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(x̃r, x̃a)(↑)

1 3 5 1 3 5

GMM-DAE [27] 0.54 0.70 0.82 0.75 0.37 0.30 38.89
Augmented 0.47 0.59 0.71 0.79 0.56 0.54 40.16

Ours 0.38 0.47 0.60 0.92 0.82 0.69 39.37
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Latent space attack Maximum damage attack

(a) VAE.

(b) β-TCVAE.

(c) LipschitzVAE.

(d) SE.

(f) Ours.

Figure 3: Visual appraisal of attacks - Qualitative analysis across models on CELEBA images with
maximum input noise perturbation level λ limited to 5 for latent space and maximum damage attack.
(from left to right) Images in each row correspond to input image(x), clean reconstruction, adversarial
image(xa), adversarial reconstruction(x̃a) and target image(xt) (for latent space attacks) respectively.

Table 3: Robustness of downstream classifier trained in the latent space of the model under adversarial
attack - we report the clean accuracy and the accuracy during attack defined in eqn 12, for λ = 1.

Method MNIST FASHIONMNIST SVHN

clean acc.(↑) λ = 1(↑) clean acc.(↑) λ = 1(↑) clean acc.(↑) λ = 1(↑)

VAE 92.16 58.85 80.65 59.15 61.70 25.63
β-TCVAE 93.02 61.06 81.25 60.77 62.02 30.12

LipschitzVAE 90.78 62.00 80.50 62.06 60.99 33.99
SE 93.81 68.65 80.10 66.83 62.36 44.40

Ours 96.08 91.78 85.96 78.86 70.96 59.20

only regularized towards the same prior but coupled according to equations (9), (10), and (11) in
Section 3.3 (Ours). The observed metrics are reported in Table 2. We observe that the proposed
method yields comparatively better performance in terms of robustness while still maintaining the
generation fidelity when compared to the non-robust version, GMM-DAE. It can also be seen that
enforcing coupling between the latent representations of the original and adversarial samples (Ours)
leads to better performance than simply augmenting them (Augmented). It is worth pointing out
that the GMM-DAE maintains better performance than a standard VAE model (Table 1, MNIST
VAE results). This is due to the well-structured latent space in GMM-DAE. This observation further
confirms our hypothesis in Section 3 that when similar-looking samples are modelled together in the
latent space of the model, robustness can be improved.

Robustness to downstream applications. Since the learned representations of VAEs are often used
for various downstream tasks, it is also vital to verify how adversarial attacks affect the performance
of the same. To showcase the effect of adversarial attacks to downstream classification tasks, we
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train a MLP classifier on the latent space of the model and observe the accuracy drop in the presence
of the latent space attacks for a constrained noise norm λ = 1. The observed values along with the
clean accuracy are shown in Table 3. The classifier trained on the latent space of the proposed model
achieves better accuracies when compared to the baseline models under latent space attack.

5 Discussion & Conclusion

Limitations. Although cheaper when compared to the current adversarially trained robust VAE
models, the FGSM based adversarial training scheme is still expensive when compared to the non-
robust counterpart. The coupling parameter in the proposed method is an additional hyperparameter
to tune and enforcing strong coupling i.e. α = 1, might compromise the generation fidelity of the
resulting model. While we need the coupling to perform adversarial training, overly strong coupling
will necessarily lead to deteriorated reconstructions, similar as in VAEs. It is worth noting that we
did not perform intensive hyperparameter optimization in this line of experiments. Hyperparameter
optimization might be needed in other datasets for this reason. Further, datasets with large inter class
variance might not benefit from the underlying multimodal prior assumptions in the current approach.
It would be interesting to explore the impact of the adversarial attacks in other potential downstream
applications such as optimization in the latent space of VAE models.

Potential societal impact. Variational autoencoders enable learning meaningful representations of
complex high dimensional data without any supervision. This further enhances the usability of these
learned representations for various downstream tasks and applications where limited data is available
for example, due to privacy/security concerns. Hence, it is important to study the robustness of these
representations along with their accuracy, especially when employed in real-world applications. In the
present paper, we propose a method to train robust VAEs with high fidelity in the learned latent space.
Since our work is a step towards more robust models, we hope to see a positive social impact. There
is currently limited work in this direction and we believe that our method encourages potential future
work in developing robust VAE models. On the other hand, we should take into consideration the
possible negative social impact of this research, especially in safety-critical applications. Although we
observe superior robustness in our model against the existing attacks, similar performance cannot be
guaranteed on newly discovered attacks on VAEs. Hence, when deployed in real-world applications
we highly recommend testing the model continuously against newly designed attacks. We also urge
the machine learning community to pursue this work responsibly to enable potential future research
without any misuse.

Conclusion. Developing robust VAE models is crucial since the learned representations of VAEs
are frequently used for various applications. Motivated by the recent research towards deterministic
alternatives to VAEs, we study the robustness of deterministic autoencoders. We extend recently
developed regularization schemes to efficiently couple the adversarial examples and the learned
representations during training. Our experiments show that with proper regularization, adversarially
trained multimodal deterministic autoencoders offer significantly improved adversarial robustness
and high fidelity in the learned latent space.
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