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(h) Var max correlation
Figure 7: Training loss, Adam variance norm/max element, and correlations between loss spikes and
variance norm/max during GPT-2 pre-training (without the proposed method) under different model
sizes, batch sizes (and LR), and sequence lengths.

A Appendix

A.1 Zoom in of Figure 1

Figure 7 zoom in the first 30B token in main paper Figure 1, where the training is the most unstable.

A.2 Learning rate decay for proposed approach

As discussed in main paper Section 5.1 GPT-2 experiments, proposed approach needs more training
steps than baseline in order to reach the same 157B training tokens. This makes it necessary to
modify the learning rate decay schedule for proposed approach. We first tried to increase the number
of learning rate decay steps by half of the proposed approach’s pacing function duration T (since the
proposed approach roughly needs T/2 additional steps to reach 157B tokens). However, we find that
simply increasing decay steps still leads to faster learning rate decay than baseline. At last we change
the learning rate decay to token-wise (same cosine decay over the 157B tokens) instead of step-wise.
This is because for the proposed approach there are fewer tokens per step at the beginning. So even
if we increase the LR decay steps, it still cannot avoid decaying faster token-wise at the beginning
compared to baseline. As shown in Figure 8, the proposed approach with step-wise LR decay (with
T/2 extra decay steps) has faster LR decay token-wise compared to baseline, which leads to a worse
validation perplexity curve. On the other hand, the same proposed approach case with token-wise LR
decay has the same token-wise LR decay schedule as baseline, which leads to better convergence.

A.3 Additional analysis about training hyperparameters

In main paper Section 4 we demonstrate that proposed approach’s two hyperparameters can be tuned
with very low cost only running the very beginning of the training (the third hyperparameter, ending
sequence length, does not require tuning since it will always be the full length). To understand more
about how proposed approach affects the choice and tuning of normal training hyperparameters, this
section provides additional analysis about learning rates and gradient clipping. Results demonstrate
that (a) Compared to baseline, proposed approach requires less tuning effort on these hyperparameters
to provide a stable training; (b) By enabling stable training on larger learning rates, proposed approach
could provide better training efficiency and convergence (as demonstrated in main paper Section 5);
(c) Tuning gradient clipping for baseline could not provide the same training stability as proposed
approach.

A.3.1 Learning rate

In Section 5.1 we demonstrate that proposed approach can provide stable and more efficient training
at larger batch size and learning rate, where baseline suffers from training instability. We increased
both batch size and learning rate at the same time because (a) Large-batch training is more efficient
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(c) Token-wise learning rate

Figure 8: Validation perplexity and learning rate during GPT-2 1.5B seqlen 1K pre-training with
batch size 512, comparing the baseline and proposed approach under different learning rate decay
schedules. “SLW 270K” means proposed approach with T=270K steps.
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Figure 9: Step-wise training loss during GPT-2 1.5B seqlen 1K pre-training (first 3K steps only) with
batch size 2K, seed 1236, and different learning rates for baseline and proposed approach (“SLW 8K”
means proposed approach with T=8K steps).

for large-scale distributed training, so larger batch was necessary in our study (b) In order to maintain
the same convergence speed, it is necessary to simultaneously increase the learning rate under larger
batch size. A well-known rule of thumb is that the learning rate should at least increase by the square
root of the batch size’s increase ratio.

As a controlled experiment, here we perform additional studies about what if we keep the batch size
the same and only tune learning rate for baseline and proposed approach. We do not consider the case
of “same learning rate, different batch sizes” due to the reason (b) above. Table 5 presents the number
of steps with training loss ratios (defined in main paper Section 3 as an indicative measurement
of training instability) larger than 1.5 during GPT-2 1.5B seqlen 1K pre-training (first 3K steps
only) with batch size 2K11, 5 different seeds, and different learning rates for baseline and proposed
approach. And Figure 9 illustrates some of the cases with seed 1236 to show how the loss spikes look

11Batch size 2K is used here because this analysis was performed at an early stage of this work, and we do not
have enough resource to rerun the same analysis with batch size 4K.
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Table 5: Number of steps with training loss ratios (defined in Section 3) larger than 1.5 during
GPT-2 1.5B seqlen 1K pre-training (first 3K steps only) with batch size 2K, 5 different seeds, and
different learning rates for baseline and proposed approach (SLW). Left/right number in each cell is
for baseline/SLW, respectively.

Baseline/SLW LR = LR = LR = LR =
#loss ratio > 1.5 1.5× 10−4 3× 10−4 6× 10−4 12× 10−4

Seed 1234 0/0 296/0 359/0 179/74
Seed 1235 0/0 302/0 408/0 555/459
Seed 1236 0/0 0/0 569/0 626/414
Seed 1237 7/0 0/0 548/0 614/139
Seed 1238 0/0 0/0 121/0 394/29
Total 7/0 598/0 2005/0 2368/1115

like. Results show that proposed approach provides stable training during this first 3K steps for all
five seeds at learning rates up to 6× 10−4, while baseline with seed 1237 still has 7 large loss ratios
at learning rate as low as 1.5× 10−4. At learning rate 12× 10−4 both cases have large loss ratios,
but proposed approach reduces the frequency by 2.1x. This demonstrates that (a) Larger learning
rates lead to higher training instability risk for both cases. (b) With the same amount of tuning effort,
proposed approach has a higher probability of providing a stable training because of the wider range
of learning rates it enables; (c) Since proposed approach enables stable training at larger learning rate,
it could provide better and faster training convergence as shown in main paper Section 5.

A.3.2 Gradient clipping

In main paper Section 5 we used gradient clipping at 1.0 (global gradient l2 norm is clipped to 1.0)
following the previous work [40]. Here we perform additional studies about what if we apply more
gradient clipping to baseline. Figure 10(a) presents the training loss during GPT-2 1.5B seqlen 1K
pre-training (first 5K steps only) with batch size 4K (the same hyperparameters as the second set in
Section 3), comparing the baseline and proposed approach under different gradient clipping levels12.
Results show that when applying more gradient clipping to baseline, the training has less and smaller
loss spikes. And the Adam varaince norm is also reduced as shown in Figure 10(c).

However, more gradient clipping does not fully resolve the training instability issue. Even baseline
with the lowest gradient clipping norm cannot avoid all training loss spikes, while proposed approach
with default gradient clipping has no loss spike. As described in main paper, we believe that this is a
limitation of common gradient clipping technique: Although gradient clipping can avoid too large
gradient at every single step, it cannot avoid the gradient variance getting accumulated at certain
dimensions (as shown in Figure 10(d)), especially for large batch sizes. Another concern about
applying more gradient clipping is that the momentum norm is also reduced due to more clipping
(Figure 10(b)). This indicates that when later the training reaches a more stable stage, more gradient
clipping could hurt the convergence speed. On the other hand, proposed approach will not affect the
convergence speed after the full sequence length is reached. Another thing to note is that proposed
approach relies less on gradient clipping: at gradient clipping norm 1.0, baseline has 798 clippings in
the first 5K steps while proposed approach has 628 clippings (21% less).

Overall, this analysis demonstrates that proposed approach requires less or no tuning on gradient
clipping, while baseline still has training stability issue with more gradient clipping. It is possible
that more complex and adaptive gradient/variance/activation clipping techniques could potentially
achieve the same level of training stability as proposed approach. However, inventing and applying
such techniques would require an effort no lower than the proposed approach, which is both easy to
integrate and low-cost to tune.

A.4 GPT-2 117M evaluation results

Figure 11 presents the validation perplexity and Adam variance norm/max element during GPT-2
117M pre-training, comparing the baseline and proposed work (SLW) under different batch sizes/LR
and sequence lengths. Table 6 presents the zero-shot evaluation of the trained 117M models on

12We also tried less than 0.25 gradient clipping, which triggered a silent crash without error messages after
around 100 steps. We did not have enough time to find the root cause, but it could be caused by the too extreme
gradient clipping.

18



0 1K 2K 3K 4K 5K
Steps

2
4
6
8

10
12
14
16
18

Tr
ai

ni
ng

 lo
ss Baseline grad clip 1.0

Baseline grad clip 0.5
Baseline grad clip 0.25
SLW 45K grad clip 1.0

(a) Step-wise training loss

0 1K 2K 3K 4K 5K
Steps

0
500

1000
1500
2000
2500
3000

M
om

en
tu

m
 n

or
m

Baseline grad clip 1.0
Baseline grad clip 0.5
Baseline grad clip 0.25
SLW 45K grad clip 1.0

(b) Step-wise Adam momentum l1 norm

0 1K 2K 3K 4K 5K
Steps

0
2500
5000
7500

10000
12500
15000
17500
20000

Va
ria

nc
e 

no
rm Baseline grad clip 1.0

Baseline grad clip 0.5
Baseline grad clip 0.25
SLW 45K grad clip 1.0

(c) Step-wise Adam variance l1 norm

0 1K 2K 3K 4K 5K
Steps

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Va
ria

nc
e 

m
ax Baseline grad clip 1.0

Baseline grad clip 0.5
Baseline grad clip 0.25
SLW 45K grad clip 1.0

(d) Step-wise Adam variance max element

Figure 10: Training loss, Adam momentum l1 norm, and Adam variance l1 norm/max element during
GPT-2 1.5B seqlen 1K pre-training (first 5K steps only) with batch size 4K, comparing the baseline
and proposed approach under different gradient clipping levels. Grad clip 1.0 indicates that the global
gradient l2 norm is clipped to 1.0. ‘SLW 45K” means proposed approach with T=45K steps.
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Figure 11: Validation perplexity and Adam variance norm/max element during GPT-2 117M pre-
training, comparing the baseline and proposed work (SLW) under different batch sizes/LR and
sequence lengths. “SLW 60K” means proposed work with T=60K steps.

the WikiText-103 and LAMBADA datasets for baseline and proposed work with different pacing
function duration.

A.5 GPT-3 125M evaluation results

Table 7 presents the zero-shot evaluation of the trained GPT-3 125M models on the 11 tasks used by
the original GPT-3 work [6].
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Table 6: Zero-shot evaluation of the GPT-2 117M models on the WikiText-103 and LAMBADA
datasets, following the evaluation methodology from [40].

Case Pre-training Pre-training Pre-training WikiText-103 LAMBADA
parameters steps, tokens, time test perplexity ↓ perplexity ↓ accuracy ↑

1: Baseline bsz512-seqlen1K 300K, 157B, 37Hr 20.75 27.78 33.19%
2: SLW 20K bsz512-seqlen1K 310K, 157B, 30Hr 20.49 27.43 34.60%
3: SLW 60K bsz512-seqlen1K 330K, 157B, 33Hr 20.11 27.01 34.41%
4: SLW 100K bsz512-seqlen1K 350K, 157B, 35Hr 20.16 26.91 34.21%
5: SLW 140K bsz512-seqlen1K 370K, 157B, 35Hr 20.17 27.17 33.92%
6: Baseline bsz4K-seqlen1K 37.5K, 157B, 16Hr 20.99 28.09 32.54%
7: SLW 10K bsz4K-seqlen1K 42.5K, 157B, 16Hr 20.34 27.22 33.98%
8: SLW 20K bsz4K-seqlen1K 47.5K, 157B, 16Hr 20.25 27.13 34.54%
9: SLW 30K bsz4K-seqlen1K 52.5K, 157B, 16Hr 20.22 27.15 34.16%
10: SLW 40K bsz4K-seqlen1K 57.5K, 157B, 16Hr 20.26 27.11 33.53%
13: Baseline bsz512-seqlen2K 150K, 157B, 32Hr 20.87 28.19 32.99%
15: SLW 70K bsz512-seqlen2K 185K, 157B, 31Hr 19.82 26.04 33.46%
17: SLW 110K bsz512-seqlen2K 205K, 157B, 31Hr 19.64 26.03 34.58%
18: SLW 150K bsz512-seqlen2K 215K, 157B, 32Hr 19.64 25.99 33.32%
15: SLW 190K bsz512-seqlen2K 245K, 157B, 33Hr 19.64 26.09 33.09%

Table 7: GPT-3 125M zero-shot evaluation results
Baseline Baseline SLW

Case Original [6] repro 30x LR 40x LR
Model size 125M 125M 125M 125M
Train tokens 300B 300B 30B 30B
Batch size 256 256 2K 2K
Bsz warmup 4B 4B 4B N/A
LR 6e-4 6e-4 1.8e-2 2.4e-2
min LR 6e-5 6e-5 0 0
LR warmup 375M 375M 375M 375M
LR decay 260B 260B 30B 30B
decay style cosine cosine cosine cosine
SLW N/A N/A N/A 11.5K steps

Avg. accuracy 33.6 31.4 29.8 31.1

(0) HellaSwag 33.7 30.4 28.2 28.9
(1) LAMBADA 42.7 39.3 30.4 34.2
(2) TriviaQA 4.15 1.72 0.76 1.45
(3) WebQs 1.77 0.197 0 0.394
(4) Winogrande 52.0 49.3 50.9 51.9
(5) PIQA 64.6 61.9 59.8 62.7
(6) ARC Challenge 26.6 23.3 21.7 22.3
(7) ARC Easy 43.6 39.9 36.0 39.1
(8) ANLI R1 33.4 32.8 33.1 33.4
(9) ANLI R2 33.2 33.3 33.3 33.6
(10) ANLI R3 33.6 33.3 33.2 34.7

A.6 GPT-3 1.3B evaluation results

In this section we evaluate the proposed SLW method on the larger GPT-3 1.3B model. Compared
to the GPT-3 125M evaluation in main paper section 5.2 there are two differences on the setup: (1)
The GPT-3 125M evaluation aims to explore whether the proposed method can retain the accuracy
performance while greatly reducing the training tokens, while this GPT-3 1.3B evaluation aims to
explore that, under same amount of training tokens, does proposed method provides better training
stability and better accuracy performance. (2) To improve the training data quality, for GPT-3 1.3B
pre-training we added two additional sub-datasets (CC-Stories [45] and RealNews [54]), together
with additional data cleaning on all data following the process in [42].

Similar to previous experiments, we test two set of hyperparameters on both baseline and proposed
method: The first set follows the original GPT-3 setup: 300B training tokens, seqlen 2K, batch size
512 (baseline case includes batch size warmup that starts with 16 then gradually increase to 512 in
first 8B tokens), learning rate 2 × 10−4 with a linear warmup of 375M tokens and a single cycle
cosine decay over 260B tokens (2× 10−5 min. learning rate). The second set changes the batch size
to 4K (8x) and learning rate to 8× 10−4 (4x).
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Table 8: GPT-3 1.3B zero-shot evaluation results
Baseline SLW

Case Original [6] repro 8x Bsz
Model size 1.3B 1.3B 1.3B
Train tokens 300B 300B 300B
Batch size 512 512 4K
Bsz warmup 8B 8B N/A
LR 2e-4 2e-4 8e-4
min LR 2e-5 2e-5 2e-5
LR warmup 375M 375M 375M
LR decay 260B 260B 260B
decay style cosine cosine cosine
SLW N/A N/A 11K steps

Avg. accuracy 44.4 41.6 41.9

(0) LAMBADA 63.6 63.7 65.0
(1) TriviaQA 19.7 10.1 11.3
(2) WebQs 4.63 3.25 2.36
(3) PIQA 75.1 73.4 73.8
(4) RACE-h 40.9 35.6 37.1
(5) BoolQ 62.4 63.4 61.8

The baseline case only enables stable training on the first set of hyperparameters. Under larger batch
size and learning rate, a training divergence (similar to main paper Figure 5 blue line) happened and
the training cannot continue. On the other hand, the proposed SLW method is able to provide stable
training under 8x larger batch size and 4x larger learning rate. Under the same number of training
tokens, the 8x larger batch size leads to better training efficiency and 2x training time speedup, similar
to what we obserbe in GPT-2 pre-training (main paper Table 2 case 10 vs. 15). This demonstrate the
stability-efficiency benefit of the proposed method.

In addition, Table 8 and 9 present the zero-shot and few-shot evaluations of the trained GPT-3 1.3B
models on 6 tasks used by the original GPT-3 work [6]: LAMBADA [28], TriviaQA [15], WebQs [3],
PIQA [4], RACE-h [20], BoolQ [47]. Results show that similar to the original GPT-3, under few-shot
prompts the average accuracy is better than zero-shot results for both models trained with baseline
batch size warmup (from 41.6 to 44.8) and proposed SLW method (from 41.9 to 45.3).13 The change
on each task also follows the same pattern: TriviaQA and WebQs accuracy improve a lot under
few-shot; PIQA, RACE-h, and BoolQ have similar accuracy under zero and few-shot; LAMBADA
accuracy becomes worse under few-shot. More importantly, under the same 300B training tokens
the proposed SLW method provides better average accuracy (zero-shot from 41.6 to 41.9, few-shot
from 44.8 to 45.3) than the baseline, demonstrating that the proposed method (in addition to the
stability-efficiency benefit) is able to provide better accuracy performance.

13Similar to main paper section 5.2, our reproduced GPT-3 baseline has 2.9/3.3 point lower average zero/few-
shot accuracy than the original GPT-3, which is because of the different training data and OpenAI employed
special data processing techniques [6]
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Table 9: GPT-3 1.3B few-shot evaluation results. k denotes the number of shots following the original
GPT-3 work [6].

Baseline SLW
Case Original [6] repro 8x Bsz
Model size 1.3B 1.3B 1.3B
Train tokens 300B 300B 300B
Batch size 512 512 4K
Bsz warmup 8B 8B N/A
LR 2e-4 2e-4 8e-4
min LR 2e-5 2e-5 2e-5
LR warmup 375M 375M 375M
LR decay 260B 260B 260B
decay style cosine cosine cosine
SLW N/A N/A 11K steps

Avg. accuracy 48.1 44.8 45.3

(0) LAMBADA (k=15) 57.0 58.8 59.7
(1) TriviaQA (k=64) 32.1 19.2 19.0
(2) WebQs (k=64) 19.6 18.4 19.4
(3) PIQA (k=50) 74.3 74.2 72.8
(4) RACE-h (k=10) 41.4 35.0 37.6
(5) BoolQ (k=32) 64.1 63.2 63.2
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