
Algorithm 2 Construction of a Gadget DAG equivalent to Definition 4
1: Input:
2: ▲-reach probabilities x[B] on beliefs B ∈ B[P ]
3: cf. reach probabilities ρ[x, C] and alt values u[x, C] for all reachable ▼-beliefs C ∈ C[x, P ]
4: already initialized DAGs D▲ and D▼

5: let B̃ be the set of ▲-beliefs in P with x[B] > 0.
▷ Considering D▲

6: so▲ ← new observation node in D▲

7: sd▲ ← new decision node in D▲

8: add edge so▲ → sd▲
9: for each belief B ∈ B̃ do

10: sB▲ ← new observation node in D▲

11: add edge sd▲ → sB▲ with fixed probability x[B]
12: add edge s′▲ → B

▷ Considering D▼
13: so▼ ← new observation node in D▼

14: sd▼ ← new decision node in D▼

15: add edge so▼ → sd▼
16: for each belief C ∈ C[x, P ] do
17: sC▼ ← new observation node in D▼

18: add edge sd▼ → sC▼
19: add edge s′▼ → C
20: associate a payoff to sC▼ equal to −u[x, C]
21: divide reach along edge sd▼ → sC▼ by ρ[x, C]

22: return the updated D▲ and D▼

A Procedure for DAG gadget

Moravcík et al. [15] present a gadget game equivalent to maxmargin’s linear program in the two-
player setting. Similarly, it is possible to express the team-maxmargin linear program as an equivalent
gadget DAG to solve. While the gadget DAG solution for the refining player corresponds to the
solution given by the team-maxmargin linear program, there does not exist an ATG such that the
associated TB-DAG is the gadget DAG. We will therefore avoid calling our gadget DAG a game,
since a game with an identical strategy space does not exist.

The gadget DAG can be constructed from the TB-DAG of the subgame by considering, for both
teams, the root beliefs (i.e. the beliefs at the root of the subgame to be refined), and all following
nodes. In each team’s DAG, we introduce a root observation node followed by a single decision node,
which we call the gadget belief. Its actions lead as many observation nodes as belief considered at the
root of the subgame. Each of those observation nodes will have a single observation, each leading to
a different root belief.

In addition, some constraints and extra payoffs have to be introduced. For ▲’s gadget DAG, each root
belief B must be played with unnormalized “probability” x[B]. (Note that

∑
x[B] ̸= 1 in general).

For ▼’s gadget DAG, the reach associated to the observation nodes following the gadget belief is
divided by a factor ρ[x, C], where C is the belief they are reaching. Moreover, a payoff u[x, C]
is associated to those observation nodes. Algorithm 2 presents a procedure corresponding to the
described construction.

Such constraints are not directly representable in the TB-DAG formalism, since reaches may be
greater than 1 (after division by ρ[x, C]), and since there are decision nodes with fixed strategy and
payoffs on observation nodes. These constraints cannot arise when constructing the TB-DAG of an
AGT, and therefore no AGT corresponds to our gadget DAG. However, such constraints maintain the
scaled extension structure as specified in [22], and therefore the same CFR algorithm used to solve
DAGs can be used.

In practice for our experiments, we do not actually construct the DAG of ▲, since it is often too big.
Instead, we use a column-generation algorithm to solve the subgame—see Algorithm 1. However,

13



in domains where ▲ has small information complexity (see Zhang et al. [22]), performing subgame
solving in this manner on the original DAG (or a reasonable abstraction thereof) is possible.

B Other Subgame Solving techniques

B.1 Gifts

Considering counterfactual best response values as the maximum counterfactual values allowed for
the opponent in any of his root infosets is a sufficient condition to guarantee that exploitability of the
refined strategy will not be higher than that of th e blueprint.

In [1], a relaxation of this condition is proposed. For each action a of the opponent in a infoset, the
gift is defined as the difference between the counterfactual best response value of the best action and
the one of a. If an action has positive gift, that means that the action is suboptimal. Therefore, the
refining player can increase the counterfactual best response value of any action having a positive gift
without incurring any exploitability increase. In reach-maxmargin [1], the sum of gifts over actions
played before reaching an infoset is used to increase the associated counterfactual best response
values.

In the following, we will extend the definitions of gifts presented in [1] to team-maxmargin, creating a
team-reach-maxmargin algorithm. Two possible definitions will be presented, as originally presented
in [1]: the lower bound one gives stronger theoretical guarantees of exploitability reduction, while
the safe one gives stronger empirical performance while still retaining safety.
Definition 6 (Gifts). The gift associated to an action a played in a belief C is defined as:

g̃[x, Ca] :=
(
min
a′

u[x, Ca′]− u[x, Ca]
) 1

ρ[x, C]
.

The updated team-maxmargin objective can be formulated as:

max
x′

min
y,ȳ

∑
z⪰P

x′[z] y[z] p[z]u[z]−
∑

C∈C[P ]

y[C]

(
u[x, C] + ρ[x, C] min

π path ∅→C

∑
C′a′∈π

g[x, C ′a′]

)
.

The minimization over paths ∅→ C is taken over ▼’s DAG, and represents the possibility that there
can be multiple ways of reaching the same belief. Such a minimization can be computed efficiently
(in the size of ▼’s DAG) via dynamic programming.

B.2 Resolving

Similarly to maxmargin, resolving [4] can be formulated for team games as well, by taking Definition 4
and considering any strategy achieving positive margin for every ▼ belief.
Definition 7 (Resolving linear program). Resolving optimization problem in a TB-DAG subgame
rooted at P can be expressed as the following linear program.

max
x′

0

s.t. min
y,ȳ

∑
z⪰P

x′[z] y[z] p[z]u[z]−
∑

C∈C[P ]

y[C]u[x, C] ≥ 0

x[B] = x′[B] for all ▲-beliefs B ∈ B[P ]

y[C] =
ȳ[C]

ρ[x, C]
for all ▼-beliefs C ∈ C[x, P ]

x′ ∈ XP , y ∈ YP , ȳ ∈ ∆C[x,P ]

C Complete experiment results on refinement time

In the following, we show the complete experimental results: a table as Table 1 but considering the
specific case of α = 1 (instead of α = 5), and the plots of the value of the refined strategy against a
best responding opponent, for varying α and for all games in our benchmark.

14



Table 2: Team’s values against a best-responding opponent when playing the equilibrium strategy,
blueprint, or refinement strategy with α = 1, and corresponding algorithms running times. When
the equilibrium computation requires more than 2 hours, we use the equilibrium values provided
in [21]. The table summarizes the experiments for different game instances (see Section 5.1) and
team structures (the i-th element of the vector equal to 1 means that player i is in team ▲), with
α = 5. Equilibrium time, refinement time (per move) and blueprint time denote, respectively, the
time needed to find an exact equilibrium via CG, the time allocated to a single iteration of subgame
solving and the time allotted to blueprint computation. Equilibrium value indicates the expected
utility of the team at the equilibrium, while refinement value and blueprint value represent the team
expected utility when they play against a best-responding opponent team and adopt, respectively, the
blueprint strategy and the refined strategy. The gap reduction column quantifies the improvement of
the refined strategy over the blueprint strategy (see Section 5.2 for a formal definition of gap

Game Team Equilibrium Refinement Blueprint Equilibrium Refinement Blueprint Gap
instance structure time time (per move) time value value value reduction
K34 110 0.05s 0.00s 0.02s -0.042 -0.061 -0.061 0.0%
K36 110 0.55s 0.01s 0.03s -0.024 -0.072 -0.098 34.6%
K38 110 2.58s 0.04s 0.04s -0.019 -0.149 -0.152 2.0%
K312 110 10.73s 0.15s 0.29s -0.014 -0.043 -0.064 42.5%
K45 1110 6.92s 0.11s 0.22s -0.030 -0.084 -0.354 83.4%
L3133 110 6m 39s 0.12s 1.65s 0.215 -0.173 -0.616 53.3%
L3143 110 >2h 0.49s 5.84s 0.107 -0.266 -0.673 52.2%
L3151 110 2m 46s 0.26s 2.81s -0.019 -0.442 -0.624 30.1%
L3153 110 >2h 0.99s 8.91s 0.024 -0.363 -0.681 45.1%
L3223 110 7m 44s 0.20s 12.25s 0.516 -0.525 -1.299 42.6%
L3523 110 >2h 39.95s 10m 39s 0.953 -1.953 -6.671 61.9%
D33 110 3m 55s 0.21s 9.07s 0.284 0.245 0.238 14.7%
D34 110 >2h 6.68s 10m 14s 0.284 0.208 0.139 47.7%
D62 111110 >2h 7.98s 10m 6s 0.333 -0.000 -0.000 0.0%
T350 101 >2h 0.10s 1.09s 0.600 0.509 0.352 63.3%
T3100 101 >2h 0.23s 1.85s 0.710 0.592 0.495 45.2%

0 2 4 6 8 10

−0.06

−0.06

−0.05

−0.05

α

te
am

va
lu
e

K34

0 2 4 6 8 10

−0.10

−0.08

−0.06

−0.04

−0.02

α

te
am

va
lu
e

K36

15



0 2 4 6 8 10

−0.15

−0.10

−0.05

α

te
a
m

va
lu
e

K38

0 2 4 6 8 10

−0.06

−0.04

−0.02

α

te
a
m

va
lu
e

K312

0 2 4 6 8 10

−0.30

−0.20

−0.10

α

te
am

va
lu
e

K45

0 2 4 6 8 10

−0.60

−0.40

−0.20

0.00

0.20

α

te
am

va
lu
e

L3133

0 2 4 6 8 10

−0.60

−0.40

−0.20

0.00

α

te
am

va
lu
e

L3143

0 2 4 6 8 10

−0.60

−0.40

−0.20

0.00

α

te
am

va
lu
e

L3151

16



0 2 4 6 8 10

−0.60

−0.40

−0.20

0.00

α

te
a
m

va
lu
e

L3153

0 2 4 6 8 10

−1.00

−0.50

0.00

0.50

α

te
a
m

va
lu
e

L3223

0 2 4 6 8 10

−6.00

−4.00

−2.00

0.00

α

te
am

va
lu
e

L3523

0 2 4 6 8 10

0.24

0.26

0.28

α

te
am

va
lu
e

D33

0 2 4 6 8 10

0.15

0.20

0.25

α

te
am

va
lu
e

D34

0 2 4 6 8 10

0.00

0.10

0.20

0.30

α

te
am

va
lu
e

D62

17



0 2 4 6 8 10

0.40

0.50

0.60

α

te
a
m

va
lu
e

T350

0 2 4 6 8 10

0.50

0.60

0.70

α

te
a
m

va
lu
e

T3100

D Safety

Theorem 5. Applying team maxmargin subgame solving (Definition 4) to every subgame reached
during play, in a nested fashion, results in a playing a strategy with exploitability no worse than that
of the blueprint.

Proof. The blueprint has margin 0 by definition; therefore, the gadget subgame (Definition 4) always
has nonnegative value. Moreover, if any subgame strategy x′ achieves nonnegative value in the gadget
subgame, then the counterfactual best responses at the ▼-root beliefs cannot have improved for ▼ (by
definition). Since the overall best response value for ▼ is a monotone function of these counterfactual
best response values, the theorem follows.

This is the same guarantee and argument given by Moravcík et al. [15] and Brown and Sandholm [1]
in two-player games.

18


