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Abstract

Self-Supervised Learning (SSL) surmises that inputs and pairwise positive relation-
ships are enough to learn meaningful representations. Although SSL has recently
reached a milestone: outperforming supervised methods in many modalities. . . the
theoretical foundations are limited, method-specific, and fail to provide principled
design guidelines to practitioners. In this paper, we propose a unifying framework
under the helm of spectral manifold learning to address those limitations. Through
the course of this study, we will rigorously demonstrate that VICReg, SimCLR,
BarlowTwins et al. correspond to eponymous spectral methods such as Laplacian
Eigenmaps, Multidimensional Scaling et al. This unification will then allow us to
obtain (i) the closed-form optimal representation for each method, (ii) the closed-
form optimal network parameters in the linear regime for each method, (iii) the
impact of the pairwise relations used during training on each of those quantities
and on downstream classification task performances, and most importantly, (iv) the
first theoretical bridge between contrastive and non-contrastive methods towards
global and local spectral embedding methods respectively, hinting at the benefits
and limitations of each. For example, (i) if the pairwise relation is aligned with the
downstream task, any SSL method can be employed successfully and will recover
the supervised method, but in the low data regime, SimCLR or VICReg with high
invariance hyper-parameter should be preferred; (ii) if the pairwise relation is mis-
aligned with the downstream task, BarlowTwins or VICReg with small invariance
hyper-parameter should be preferred.

1 Introduction

Self-Supervised Learning (SSL) is one of the most promising method to learn data representations
that generalize across downstream tasks. SSL places itself in-between supervised and unsupervised
learning as it does not require labels but does require knowledge of what makes some samples
semantically close to others. Hence, where unsupervised learning relies on a collection of inputs (X),
and supervised learning relies on inputs and outputs (X,Y ), SSL relies on inputs and inter-sample
relations (X,G) that indicate semantic similarity. The latter matrix G is often constructed by
augmenting X through data-augmentations known to preserve input semantics [1–3] e.g. horizontal
flip for an image, although recent methods have went away from Data-Augmentation (DA)by using
videos from which consecutive frames can be seen as semantically equivalent [4–6].

Although SSL originated decades ago [7], recent advances have pushed SSL performances beyond
expectations [8–10]. Due to those rapid empirical advances, an urgent need for a principled theoretical
understanding of those methods has emerged [11, 12]. Studies in this direction often take one of
the three following approaches: (i) studying the training dynamics and optimization landscapes of
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Figure 1: Summary of our
unification of SSL methods
to known local and global
spectral embedding meth-
ods. In doing so, we are
able to find the exact set-
tings for which different
methods provably become
identical. In short, all
are concerned in preserv-
ing the left-singular vec-
tors of the similarity matrix
G (see Fig. 6) in the repre-
sentation Z.

existing methods e.g. validating some empirically found tricks as necessary conditions for stable
gradient dynamics [13–16], (ii) studying the role of each SSL component e.g. the projector and
predictor networks [17–19], or (iii) developing novel SSL criteria that often combine multiple
interpretable objectives that a SSL model must fulfill [20–25]. While those branches have led to
novel understandings and even stem novel SSL methods, some fundamental questions remain open.

More recently, a few focused studies have started to provide theoretical works e.g. Tian [27] on
contrastive losses with deep linear networks, HaoChen et al. [28, 29] on SimCLR [8], [30] on the
projector of contrastive models, [14] on BYOL [31] and SimSIAM [8].Those studies paved our way
forward as we propose in this paper a much broader analysis that applies to most (if not all) existing
SSL methods allowing us for the first time to provide provable design guildelines to practitioners
in their choice of architecture and methods. We do so by unifying most SSL methods as different
flavors of spectral methods for embedding and clustering as summarized in Fig. 1. The instrumental
results we obtain allow us to answer some long-standing questions both when employing a linear
model and an infinite capacity one which we summarize as part of our contributions below:

1. Closed-form optimal representation for SSL losses. The Deep Network
(DN)representation Z of inputs X learned by minimizing any SSL loss given a
sample relation matrix G is obtained in closed-form, shedding light to many spectral
properties of those representations e.g. SSL only constrains the left singular vectors and
singular values of Z to align with the ones of G (Sections 3.1, 4.1 and 5.1 for VICReg,
SimCLR and BarlowTwins).

2. Closed-form optimal network parameters for SSL losses with linear networks. The
linear representation Z = XW + b parameters obtained by minimizing any SSL loss given
a sample relation matrix G are obtained in closed-form, providing insights into the type of
input statistics that a network parameters focuses on to produce the optimal input mapping
(Sections 3.2 and 5.2 for VICReg and BarlowTwins).

3. Exact equivalence between SSL and spectral embedding methods. SSL methods employ
diverse criterion that can be tied to eponymous spectral analysis methods both in embedding
space and in data space, and with a nonlinear or a linear DN e.g. Laplacian Eigenmaps
(VICReg, Section 3.2), ISOMAP (SimCLR/NNCLR, Section 4.3), Canonical Correlation
Analysis (BarlowTwins, Section 5.2) and when employing a linear network as Locality
Preserving Projection (VICReg), Cannonical Correlation Analysis (BarlowTwins), and
Linear Discriminant Analysis for both VICReg and BarlowTwins (summarized in Fig. 1).

We also relegate to Appendix C a study quantifying the relationship between the optimal representa-
tion of each SSL method and the downstream classification task performances e.g. when the correct
data relation matrix is given (Appendix C.3) as those results, although not crucial to our contributions,
follow directly from the above ties between SSL and spectral embedding. We carefully prove each
statement of this study in Appendix F.

2 Notations and Background on Self-Supervised Learning

We provide in this section a brief reminder of the main Self-Supervised Learning (SSL) methods,
their associated losses, and the common notations that we will rely on for the remaining of the study.
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Dataset, Embedding and Relation Matrix Notations. Regardless of the loss and method employed,
SSL relies on having access to a set of observations i.e. input samples X ≜ [x1, . . . ,xN ]T ∈ RN×D

and a known pairwise positive relation between those samples e.g. in the form of a symmetric matrix
G ∈ (R+)N×N where (G)i,j > 0 iff samples xi and xj are known to be semantically related, and
with 0 in the diagonal. Commonly, one is only given a dataset X ′ and artificially constructs X and
G from augmentations of X ′ e.g. rotated, noisy versions of the original samples and turning the
corresponding entries of G to be positive for the samples that have been augmented form the same
original sample. Lastly, Z ∈ RN×K denotes the matrix of feature maps obtained from a model
fθ : RD 7→ RK —commonly a Deep Network— as Z ≜ [fθ(x1), . . . , fθ(xN )]T .
VICReg. With the above notations out of the way, we can remind the VICReg loss as defined in
Bardes et al. [25] as a function of X and G in the following triplet loss

Lvic=α

K∑
k=1

max

(
0, 1−

√
Cov(Z)k,k

)
+β
∑
j ̸=k

Cov(Z)2k,j+
γ

N

N∑
i=1

N∑
j=1

(G)i,j∥Zi,. −Zj,.∥22. (1)

We will often refer to each term in Eq. (1) as Lvar, Lcov, and Linv respectively.
SimCLR. The SimCLR loss [8] is slightly different and first produces an estimated relation matrix
Ĝ(Z) generally using the cosine similarity (CoSim) via

(Ĝ(Z))i,j =
eCoSim(zi,zj)/τ∑N

j=1,j ̸=i e
CoSim(zi,zj)/τ

, (2)

with τ > 0 a temperature parameter. Then SimCLR encourages the elements of Ĝ(Z) and G to
match. The most popular solution to achieve that is to leverage the infoNCE loss given by

LSimCLR = −
N∑
i=1

N∑
h=1

(G)i,j log(Ĝ(Z))i,j . (3)

The only difference between SimCLR and its varients e.g. NNCLR [32] lies in defining G.
BarlowTwins. Lastly, BarlowTwins [24] proposes yet a slightly different approach where zi must
be close to zj if Gi,j > 0. They do so with different flavors of losses and constraints to facilitate
training. Hence, and for those models only, it is common to explicitly group X into two subsets
Xleft and Xright based on G so that ((Xleft)n, (Xright)n),∀n are all the positive pairs from (X,G)
. This does not lose any generality. In fact, suppose that we have 5 samples a, b, c, d, e, and that G
says that a, b, c are related to each other, and that d, e are related to each other. Then, we can create
the two data matrices as

Xleft = [a, a, b, b, c, c, d, e], Xright = [b, c, a, c, a, b, e, d]. (4)

Once the two (left/right) views are obtained, the corresponding embeddings Zleft,Zright can be
computed and the BarlowTwins is then defined as

LBT =

K∑
k=1

(CoSim((Zleft).,k, (Zright).,k)− 1)2 + α

K∑
k=1,k′ ̸=k

CoSim((Zleft).,k, (Zright).,k′)2. (5)

where one should notice that those terms correspond to the cross-correlation matrix between the two
embeddings.

Our goal in the following sections (Section 3 for VICReg, Section 4 for SimCLR/NNCLR, and
Section 5 for BarlowTwins) will be to find the optimal representations Z of X in various regimes.
Three surprising facts will emerge: (i) all existing methods recover exactly some flavors of famous
spectral methods, (ii) the spectral properties of Z can be provably characterized for each methods, and
(iii) from those properties, we will provide necessary and sufficient conditions for a SSL representation
to perfectly solve a downstream task. We provide linear algebra notations in Appendix B that might
be useful for readers unfamiliar with methods such as the Singular Value Decomposition (SVD) [33].

3 VICReg Minimizes the Dirichlet Energy to Produce Smooth Signals on the
Graph G While Preventing Dimensional Collapse

Recall from Section 2 and Eq. (1) that VICReg is defined as a triplet loss (variance/invariance/covari-
ance). We first demonstrate in Section 3.1 that the optimal VICReg representation can be obtained in
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closed form (Theorem 1) and that turning the VICReg optimization as a constrained problem recovers
Laplacian Eigenmaps in embedding space and Kernel Locality Preserving Projection in data space
(Section 3.2). We also consider the linear network regime where we obtain the analytical form of the
optimal network’s parameters (Theorem 3).

3.1 Close-Form Optimal Representation for VICReg

First, we build up some insights into VICReg by demonstrating how the invariance term corresponds
to the Dirichlet energy of the signal Z on the graph G. Then, replacing the variance hinge loss at 1
with the squared loss at 1 as in

∑K
k=1 (1− Cov(Z)k,k)

2, notice that minimizing the latter implies
minimizing the former. With that, we are able to obtain the close-form optimal representation Z∗

minimizing Eq. (1) only as a function of G and the loss’ hyperparameters.

From invariance to trace minimization. The first insight that we propose into VICReg is obtained
by rewriting the invariance loss of VICReg as the energy of the signal Z on the graph G [34] since
we have (derivations in Appendix F.5)

N∑
i=1

N∑
j=1

(G)i,j∥(Z)i,. − (Z)j,.∥22 = 2Tr
(
ZTLZ

)
(≜ Dirichlet energy of Z on G), (6)

where L is the graph Laplacian matrix L = D −G with D the diagonal degree matrix of G i.e.
(D)i,j =

∑
j(G)i,j and (D)i,j = 0,∀i ̸= j. From Eq. (6) it is clear that the invariance term

depends on the matching between the left singular vectors of Z and the eigenvectors of L. Hence,
non-contrastive learning aims at producing non-degenerate signals Z that are smooth on G.

Optimal representation. To gain further insights into VICReg, we ought to obtain the analytical
form of the optimal representation Z∗ minimizing Eq. (1) —although this optimum is not unique e.g.
adding a constant entry to each column of Z does not change the loss value (details in Appendix F.6).
We can now obtain the following characterization of Z∗ as a function of the spectral decomposition
of the matrix that combines two Laplacian matrices (details in Appendix F.7). The first, (left of
Eq. (7)) comes form the variance+covariance term is the Laplacian of a complete graph i.e. where
each node/sample is connected all others. The second comes from the SSL graph G to form the
following (with its eigen-decomposition)

I − 11T /N︸ ︷︷ ︸
Laplacian of a complete graph

−γ

α
(D −G)︸ ︷︷ ︸

Laplacian of the SSL/sup. graph

= Pα,γ diag(λα,γ)P
T
α,γ , (7)

where the eigenvalues/eigenvectors are in descending orders. The eigenvectors of the combined
Laplacians will be key to produce the optimal VICReg representation as formalized below.
Theorem 1. A global minimizer of the VICReg loss (α = β,∀γ) denoted by Z∗

α,γ is obtained from
Eq. (7) along with the minimal achievable loss which are given by

Z∗
α,γ = (Pα,γ(diag(λα,γ)N)1/2):,1:K and min

Z∈RN×K
LVIC = α(K − ∥(λα,β)1:K∥22),

and any K-out-of-N columns of Pα,γ(Λα,γN)1/2 is a local minimum. (Proof in Appendix F.7.)

The above result provides a few key insights. First, only the ratio γ/α governs the VICReg represen-
tation. Second, there exists many local minimum, some of which can be explicitly found by taking
various K-out-of-N columns of Pα,γ(Λα,γN)1/2 which we display in Fig. 2 along with the loss
landscape of LVIC around the optimal representation Z∗. We also depict in Fig. 3 the evolution of
the eigenvalues (λα,γ)1:K for varying γ along with the downstream task (induced by G) training
performance. We observe that VICReg benefits from a sweet-spot where it can both preserve a
full-rank representation Z∗ and incorporate enough information about G to solve the task at hand
perfectly.

Before moving to other SSL methods, we first emphasize the ability of VICReg to recover local
spectral methods in the following sections.

3.2 VICReg Recovers Local Spectral Embedding Methods

The goal of this section is to relate VICReg to known local spectral embedding methods both in
feature space (Z) and in data space (X).
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Figure 2: Left: depiction of the optimal VICReg loss with varying hyper-parameters (blue line) when the
representation is formed from the top [k : K + k − 1] eigenvectors of Eq. (7) with convex interpolation
in-between. Recall from Theorem 1 that the global optimum is given by the [1 : K − 1] case. We also depict the
downstream task performance (orange line) and we clearly observe that both are closely related as expected
(see Theorem 9). Notice that since we are considering classification, even without the correct first eigenvector
the linear classifier on top of Z∗

α,γ is able to solve the task at hand thanks to the probability constraint that
must sum to 1 i.e. the last component can be recovered from the first C − 1. Right: depiction of the loss
landscape of LVIC around the optimal Z∗

α,γ on the left using the directions provides by the top [2 : K] and
[3 : K + 1] eigenvectors of Eq. (7), and then with random directions in Z-space. All experiments employed
N = 256,K = 16, rank(G) = 4.
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CReg loss (blue) from Theorem 1
and corresponding downstream
task performance (orange). Bot-
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from a (α, γ)-zone for which Z∗

α,γ

remains full rank and incorpo-
rates enough information on G to
solve the downstream task. Hence,
VICReg hyper-parameters γ/α
should be adapted depending on
the confidence one has into G.
All experiments employed N =
256,K = 32, rank(G) = 8.

In feature space. Laplacian Eigenmaps (LE) [35] is a non-parametric method searching for a
representation Z by minimizing the following Brockett [36] optimization problem

min
θ:ZTDZ=I

Tr
(
ZT (D −G)Z

)
, (8)

with D the diagonal degree matrix of G (recall Eq. (7)).
Theorem 2. Given a dataset X and relation matrix G solving the LE optimization problem Eq. (8)
produces a representation that minimizes the VICReg loss with constraint that the variance and covari-
ance loss are 0 as in Lvic(Z

∗
LE)=minZ Linv(Z) s.t. Lvar=0 and Lcov=0. (Proof in Appendix F.8.)

One important observation is that 8 recovers yet another SSL method known as W-MSE [37] which
can now be seen as the constrained counterpart of VICReg, and in the linear regime, recovers Slow
Feature Analysis (SFA) although without the dimension ordering, and is thus also closely related to
its extension presented in Pfau et al. [38]. Furthermore, Eq. (8) and variants have been studied in
Agrawal et al. [39] in the context of kernel PCA, some of which could provide interesting variations
of the constrained VICReg setting. We also ought to highlight however that a crucial part of LE lies
in the design of that matrix G, often found from a k-NN graph [40] of the samples X in the input
space, while in SSL it is constructed from data-augmentations, or given.

In data space with DNs. The difficulty to produce new representations z for new data samples (a
shared difficulty among non-parametric methods) led to the development of a two-step modeling
process [41] as x (∈ RD) 7→ h = ϕ(x) (∈ RS) 7→ z = W Th (∈ RK) with S ≫ K,W ∈ RM×K ,
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and where ϕ’s goal is to learn a generic input embedding that can be reused on new samples x. To see
this, we collect those mappings for all the training set into the matrix Φ ∈ RN×S . With that, the LE
problem in data space —known as the kernel Locality Preserving Projection (kLPP) [42] problem—
becomes

min
θ:WTΦTDΦW=I

Tr
(
W TΦT (D −G) ΦW

)
, (9)

so that the original LE representation Z can be obtained simply as Z = ΦW . And more importantly,
given a new sample x, one directly computes z = W Tϕ(x). The crucial result of interest for our
study is the following one that simply combines Theorem 2 with a result from He and Niyogi [42]
demonstrating the equivalence between LE in feature space and KLLE in data space.
Proposition 1. VICReg with variance/covariance constraint solves LE in embedding space and
KLLE in input space (recall Eq. (9)) employing a DN for ϕ.

In data space with linear models. We now consider a linear mapping Z = XW (the offset is taken
care of by adding a 1 column to X). In that case, VICReg with constrained Lvar = 0,Lcov = 0
(as in Theorem 3)recovers two known spectral methods: Locality Preserving Projections (LPP) [42]
for an arbitrary relation matrix G, and Linear Discriminant Analysis (LDA) [43, 44] when G is the
supervised relation matrix. In both cases we obtain the analytical form of the optimal weights W , as
long as the within class/cluster variance is positive.
Theorem 3. Linear VICReg recovers LPP for any G and K ≤ N , and recovers LDA for supervised
G and K = C, in both cases the optimal parameter W ∗ is given by the top-K eigenvectors of
(XT (D −G)X)−1XTGX . (Proofs in Appendices F.13 and F.14.)

Interestingly, the eigenvalues associated to the eigenvectors of W ∗ exactly recover the multivariate
analysis of variance (MANOVA) sufficient statistics of the data [45, 46]. Hence, although not further
explored in this study, we believe that important statistical results could be further obtained e.g. to
assess the goodness-of-fit of the model without requiring a downstream task [47–49]. We now turn to
another important SSL loss which is SimCLR and its variants.

4 SimCLR Solves a Generalized Multidimensional Scaling Problem à la
ISOMAP

Recall from Section 2 and Eq. (2) that SimCLR first computes a similarity matrix Ĝ of some flavor
that depends on the representation Z, and then matches it against the known data relation G. Different
Z 7→ Ĝ methods lead to different variants of SimCLR [8] such as NNCLR [32] or MeanShift [50].
The goal of this section is two-fold. First, we demonstrate in Section 4.1 that different Z 7→ Ĝ
mappings are solutions of different optimization problems (Theorem 4) —all trying to estimate the
similarity matrix G from the signals Z akin to Laplacian estimation in Graph Signal Processing.
Second, we demonstrate in Section 4.2 that SimCLR and its variants force Z’s spectrum to align
with the one of G as the training task falls back to a generalized (kernel) Multi-Dimensional Scaling
method (Proposition 2).

4.1 Step 1: SimCLR Pairwise Similarities Solve a Graph Laplacian Estimation Problem

Let’s first define the minimization problem that given a set of signals i.e. rows of Z produces a relation
estimate Ĝ of G. To ease notations, we gather in the N ×N matrix D all the pairwise distances
(D)i,j = d(fθ(xi), fθ(xj)) with d any preferred metric. The standard problem of estimating Ĝ
from Z can be cast as an optimization problem [51, 52] as

Ĝd,R = argmin
G∈G

∑
i,j

d(fθ(xi), fθ(xj))(G)i,j +R(G) = argmin
G∈G

Tr(DG) +R(G), (10)

with G the set (or subset) of symmetric matrices with nonnegative entries and zero diagonal, and with
R a regularizer preventing Ĝ to be the trivial zero matrix e.g.

Rlog(G) =
∑
i ̸=j

τGi,j(log(Gi,j)− 1) or RF(G) =
∑
i ̸=j

τGi,j(Gi,j − 1). (11)
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We provide in Fig. 7 a depiction of the impact of R(G) which pushes the entries of the weight matrix
to be close to 1 with strength depending on the temperature parameter τ . Hence Ĝ from Eq. (10) is
the optimal graph —expressed as a weight matrix— for which the signal Z = fθ(X) on that graph
is smooth. For example one can solve Eq. (10) only on Grsto, the space of right-stochastic matrices
i.e. a subset of G that only contains matrices whose rows sum to 1 i.e. Grsto = {G ∈ G : G1 = 1}.
Theorem 4. Using R from Eq. (11) leads to the following graph weight estimate

(Ĝd,Rlog
)i,j = e

−1
τ d(fθ(xi),fθ(xj))1{1̸=j}, (with G)

(Ĝd,Rlog
)i,j =

e
−1
τ d(fθ(xi),fθ(xj))∑

j ̸=i e
−1
τ d(fθ(xi),fθ(xj))

1{1̸=j}, (with Grsto) (12)

and thus if d is the cosine distance, Eq. (12) recovers SimCLR’s case. (Proof in Appendix F.9.)

Based on this result, deriving novel, principled and interpretable variations of SimCLR is streamlined
as we demonstrate in Appendix E by solving Eq. (10) with different constraints. Now that we
understood the first part of the SimCLR method, we move to the second part, matching that graph
estimate to the given one.

4.2 Step 2: SimCLR Fits the Estimated Graph Ĝ to the Known Graph G

After SimCLR estimates the graph with Ĝ as per the previous section, it employs a loss to enforce Ĝ
to be as close as possible to G with some desired metric. That metric should reflect the properties
that G fulfills e.g. being a doubly-stochastic, right-stochastic or else. We demonstrate in this section
that in doing so, SimCLR forces Z to have the same nonzero left singular vectors as the nonzero
eigenvectors of G, and that as opposed to VICReg, the rank of Z∗

τ and G always matches.

Let’s first denote the SimCLR contrastive loss to be one of the two following variants (depending on
the type of constraints put on Ĝ and G

LSimCLR = ∥G− Ĝ∥2F or − 1

N

N∑
n=1

N∑
n′=1

(G)n,n′ log((Ĝ)n,n′). (13)

When minimizing Eq. (13), SimCLR will learn an embedding Z so that the graph estimate matches
closely the known graph G. This already brings a contrast from VICReg showing that instead,
SimCLR learns to produce signals such that the graph estimate is close to the known graph.We now
characterize the optimal SimCLR representation Z∗

τ , recalling that we denote by UG and ΣG the left
singular vectors and singular values of G respectively. Notice that since G is symmetric semi-definite
positive, U also corresponds to its eigenvectors and Σ2

G to its eigenvalues.
Theorem 5. A global minimizer of the SimCLR loss denoted by Z∗ along with the minimal achievable
loss using Eq. (16) or Eq. (17), τ ≥ maxi,j(D)i,j and with the LHS of Eq. (13) are given by

Z∗
τ = (UGΣ

1/2
G ):,1:K and min

Z∈RN×K
LSimCLR =

N∑
k=K+1

(Σ2
G)k,k,
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up to permutations of the singular vectors associated to the same singular value. Also, for any loss of
Eq. (13) and graph estimation, the rank of Z∗

τ is min(K, rank(G)). (Proof in Appendix F.10.)

We illustrate the above theorem for many combinations of distances and regularizers in Fig. 4 where
we see that in all cases, SimCLR forces the representations Z to have a dimensional collapse, a
phenomenon first observed in Hua et al. [17] and that has been one of the unanswered phenomenon
in SSL [20, 30].

In our goal to unify SSL methods under the helm of spectral embedding methods, we now propose
the following section that ties SimCLR and its variants to global spectral methods.

4.3 SimCLR Recovers Global Spectral Embedding Methods

We now propose to tie the SimCLR method along with its variants e.g. NNCLR to known global
spectral methods, e.g. ISOMAP [53] which is in contrast to VICReg which was tied to local spectral
methods (recall Section 3.2).

In feature space. Let’s first recall that ISOMAP is a variation of Multi-Dimensional Scaling (MDS)
[54] also known as Principal Coordinates Analysis. Classical MDS tries to learn embedding vectors
that have similar pairwise distance (usually ℓ2) than the pairwise distance of the given input data.
Often, MDS does this by using similarities instead of distances and thus by solving the following
optimization problem minZ ∥G−ZZT ∥2F . At the most general level, ISOMAP simply corresponds
to solving that same optimization problem but after redefining G to better capture the geometric
information of X e.g. using the shortest path distance of the k-NN graph of X [55]. The surprising
result that we formalize below is that SimCLR and its variants recover ISOMAP.

Proposition 2. SimCLR, using the settings of Theorem 5, recovers ISOMAP (and MDS for the correct
choice of G). (Proof in Appendix F.11.)

In data space with DNs. From the above, we can extend Proposition 2 but in input space, in a very
similar way as was done in Section 3.2. In fact, originating in Webb [56], there was a search to extend
MDS, and ISOMAP to an input space formulation to solve the out-of-bag problem. In this setting,
and taking MDS as an example, the original similarity matrix ZZT is replaced with ΦW TWΦT

using the same notations as in Eq. (9) and already known relationship between those models, we
obtain the following.

Proposition 3 ([57]). Whenever SimCLR recovers ISOMAP or MDS in feature space, it recovers
kernel ISOMAP or kernel PCA [58] in input space.

We now ought to turn to BarlowTwins, another non-contrastive method akin to VICReg (both of
which fall back to LDA in the linear regime and with supervised G).

5 BarlowTwins Solves a (Kernel) Canonical Correlation Analysis Problem
and Can Recover VICReg

Our last step in our journey to unify SSL methods under spectral embedding methods deals with
BarlowTwins. Akin to the development for VICReg and SimCLR, BarlowTwins will also fall back to
a known spectral method in embedding space (Section 5.1) and in data space (Section 5.2) where in
the later case we again obtain the close-form optimal network parameters in the linear regime.

5.1 BarlowTwins Recovers Kernel Canonical Correlation Analysis

Recall from Section 2 and Eq. (5) that the BarlowTwins loss is based on a cross-correlation matrix
between positive pairs of samples. As we did for VICReg and SimCLR, our goal here is to tie
BarlowTwins to a known spectral method known as Kernel Canonical Correlation Analysis.

Although we focus here on BarlowTwins for clarity. We hope that our results on BarlowTwins will
stem the unification of those methods too in future works. Going back to BarlowTwins, we now
obtain the following result that nicely parallels with the ones we obtained for VICReg and SimCLR.
In data space, BarlowTwins can be regarded (put in perspective with Section 5.2) as a nonlinear
canonical correlation analysis (NLCA) [59] and in particular Kernel CCA (KCCA) [60, 61] akin to
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how VICReg recovered Kernel Locality Preserving Projection and SimCLR Kernel ISOMAP. We
leverage the same notations as in Section 3.2.

Theorem 6. BarlowTwins recovers Kernel Canonical Correlation Analysis with a DN as the featurizer
ϕ and produce a representation with rank min(K,D) for any value of α (recall Eq. (5)) and with
orthogonal columns. (Proof in Appendix F.12.).

We thus obtain from the above that BarlowTwins employing a DN featurized is akin to the Deep
CCA [62] that proposed this setting exactly, and further akin to SimSIAM and BYOL [31] since
Lee et al. [26] related the latter to Deep CCA. In addition to those links, the above provides further
interpretation into the BarlowTwins’ loss e.g. the additional ϵ constant added in the denominator of
the BarlowTwins loss further corresponds to a ridge-type regularization which as been introduced in
Gretton et al. [63] as a mean to introduce numerical stability.
The above statement also brings yet another flavor of SSL methods. In fact, where VICReg allows to
control the rank of Z to be in-between K and rank(G) throug the loss hyper-parameters, and where
SimCLR enforces the rank of Z to be exactly the rank of G, BarlowTwins enforces to have a full-rank
representation. We depict in Fig. 8 the evolution of rank(Z) depending on the rank of the initialized
representation rank(Zinit) using a gradient descent optimizer. We see that if the initialization is full
rank but G is lower rank, the BarlowTwins loss does not collapse the extra nonzero singular values of
Z. Vice-versa, if rank(Zinit) < rank(G) then BarlowTwins loss will increase the rank of Z. lastly,
although not further studied here, we should point out to the reader that regularized forms of KCCA
can be shown to include kernel ridge regression and regularized kernel Fisher LDA as special cases
[64], further tying the special cases for which different SSL methods would fall back to the same
model.
In the following section we will demonstrate how BarlowTwins in the linear regime exactly recovers
Canonical Correlation Analysis.

5.2 With a Linear Network BarlowTwins Recovers Canonical Correlation Analysis and
Linear Discriminant Analysis

The goal of this section is to further demonstrate the benefits of connecting SSL methods to spectral
methods by exploiting the known techniques of the latter to help answer questions on the former.

As was done VICReg (we use linear settings of Section 3.2), we now obtain the optimal weights
for BarlowTwins in the linear regime. We can even provide additional insights in this case since
BarlowTwins is often seen as a key method that allows the use of different parameters/architectures to
process Xleft and Xright. We now show under what conditions on G sharing parameters is sufficient
by first demonstrating how BarlowTwins recovers exactly CCA, and even LDA for supervised G. To
streamline notations, we assume that our data is already centered, and thus define the covariance and
cross-covariance matrices as Cll = XT

leftXright,Clr = XT
leftXright and so on.

Theorem 7. In the linear regime BarlowTwins recovers CCA with optimal weights given by

W ∗
left = top-K eigenvectors of C−1

ll ClrC
−1
rr Crl and W ∗

right = C−1
rr CrlW

∗
left,

and (i) —with a symmetric G, weight-sharing naturally occurs— as the optimal weights are W ∗
left =

W ∗
right = top-K eigenvectors of C−1

rr Crl and (ii) if G is supervised and K = C then BarlowTwins
recovers LDA and thus constrained VICReg (recall Theorem 3). (Proof in Appendix F.15.)

The above result opens new venues to extend current SSL methods (BarlowTwins in this case). For
example, penalized matrix decomposition (PMD) from Witten et al. [65] formulates a novel sparse
formulation of CCA. In our context, this could lead to a new variation of BarlowTwins, in both
the linear and nonlinear regimes. With the above results, we now connected most SSL methods
to spectral methods, and found key properties that their representations/parameters inherit. We
provide for completeness a few direct results in Appendix C that directly leverage the above results
to characterize downstream performances of each method.

6 Conclusions and Limitations

We provided a unifying analysis of the major self-supervised learning methods covering VICReg
(Section 3), SimCLR (Section 4) and BarlowTwins (Section 5) along with SimSIAM and BYOL
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thanks to already existing results tying those to Deep CCA. In doing so, we were able to find
the commonalities between all those methods and to provide general guidelines on how to derive
alternative SSL methods from first principles. At a more general level, we were able to parallel
the many SSL methods to global and local methods in spectral methods respectively. Among the
many insights that we obtained, the most crucial one is that VICReg enables a continue control on
collapsing the representation’s rank versus encapsulating information about G. This is in contrast to
BarlowTwins and SimCLR that either always maintain full-rank, or always collapse the representation
none of which would be ideal. One major limitation is that for the nonlinear regime, we study the
case of an infinite capacity model i.e. no implicit bias coming from the architecture comes into play.
A potentially insightful future work would thus be to perform a similar analysis as the one provided
here but including the implicit bias on the nonlinear mapping that different architecture exhibit. This
way, we would obtain not only insights into the various SSL methods but also in their combination
with various model architectures.
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