
A Qualitative comparison for ablation study1
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Figure 1: Qualitative comparison over the ablation of (1) FullGrad post-processing (UniformFull-
Grad), (2) WC mask (WC) and (3) EPC mask (EPC) on different model architectures. The results
confirm that the post-processing helps to improve the resolution of the attribution. WC and EPC
masks also help to concentrate on the object-aligned features.
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B Comparison between various attribution methods: VGG-162
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Figure 2: Qualitative comparison between various attribution methods in VGG-16. Odd rows depict
the attributions and even rows depict the top pixels with top 10% attribution.
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Figure 3: Qualitative comparison between various attribution methods in VGG-16. Odd rows depict
the attributions and even rows depict the top pixels with top 10% attribution.
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C Comparison between various attribution methods: ResNet-183
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Figure 4: Qualitative comparison between various attribution methods in ResNet-18. Odd rows depict
the attributions and even rows depict the top pixels with top 10% attribution.
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Figure 5: Qualitative comparison between various attribution methods in ResNet-18. Odd rows depict
the attributions and even rows depict the top pixels with top 10% attribution.
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D Comparison between various attribution methods: Inception-v34
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Figure 6: Qualitative comparison between various attribution methods in Inception-v3. Odd rows
depict the attributions and even rows depict the top pixels with top 10% attribution.
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Figure 7: Qualitative comparison between various attribution methods in Inception-v3. Odd rows
depict the attributions and even rows depict the top pixels with top 10% attribution.
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E Comparison of the sequence generated by various methods in VGG-165
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Figure 8: Comparison of utilized path for each input attribution method in VGG-16.
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F Implementation Code6

We provide the simple implementation of our algorithm in Python language.7

import torch
def DGA(

inputs, # (tensor) Input tensor to be explained.
model_func, # (function) Model function to be explained.
target, # (int) Target class to be explained.
epc_ratio=0.9, # (float) Quantile threshold for EPC mask.
n_steps=30, # (int) Number of steps to aggregate attribution.
):

attribution = 0
cur_input = inputs.clone().requires_grad_()
for _step in range(n_steps):

# compute the local attribution at current input
local_attr = local_attribution(cur_input, model_func=model_func, target=target)

with torch.no_grad():
# compute WC mask using low absolute quantile
thres = local_attr.abs().flatten(1).quantile((_step+1)/n_steps, dim=-1, keepdims=True)
thres = thres.unflatten(-1, [1,1,1])
WC_mask = 1-(local_attr.abs() <= thres).float()

# compute EPC mask using high positive quantile
thres = local_attr.flatten(1).quantile(epc_ratio, dim=-1, keepdims=True)
thres = thres.unflatten(-1, [1,1,1])
EPC_mask = 1-(local_attr >= thres).float()

# combine WC and EPC masks with the ratio depending on the current step
final_mask = ((_step+1)/n_steps)*WC_mask + (1-(_step+1)/n_steps)*EPC_mask

# take the positive attributions
attribution += torch.relu(local_attr)

# sample a new masked input using WC and EPC combined mask
cur_input = torch.mul(inputs, final_mask)

# normalize with the number of steps
attribution = 1/n_steps * attribution
return attribution

G Pixel flip evaluation with different local attribution method in DGA8

As DGA is computed by aggregating over the local attribution over the distillation sequence, replacing9

different local attribution method is applicable. With changing the local attribution method, it does10

not only change the attribution at each step, but also change the distillation sequence. Table 1 shows11

the pixel flip evaluation on Grad*Input (G*I), DGA using G*I, and DGA. The result indicates that the12

proposed DGA achieves the best performance in both LeRF and MoRF metrics. We also note that the13

proposed aggregation on the distillation sequence itself still induces the performance improvement,14

which can be verified by comparing G*I and DGA (G*I).15

Table 1: Comparison of various attribution methods with LeRF and MoRF on three models.

LeRF (↑ is better) MoRF (↓ is better)
G*I DGA (G*I) DGA G*I DGA (G*I) DGA

VGG-16 0.078 0.420 0.434 0.045 0.028 0.023
ResNet-18 0.171 0.506 0.533 0.105 0.028 0.019

Inception-V3 0.114 0.670 0.691 0.050 0.066 0.041
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H Ablation study using pixel flip evaluation16

We provide the ablation study on (1) the usage of ReLU and (2) WC/EPC masks in this section. To17

analyze the influence of ReLU, we compare IG and GIG with ReLU applied. We provide two variants18

of applying ReLU,19

IGp1 = ReLU
( ∫ 1

α=0

dF (γ(α))

dγi(α)

dγi(α)

dα
dα

)
, (1)

IGp2 =

∫ 1

α=0

ReLU
(dF (γ(α))

dγi(α)

dγi(α)

dα

)
dα. (2)

Variants of GIG, GIGp1 and GIGp2, are also given as the same. Table 2 indicates that DGA shows20

better performance than such ReLU variants. Such result supports that the combination of distillation21

and ReLU achieves high performance, rather than ReLU itself.22

We also provide the experiments on variants of DGA, with WC only (DGAW), EPC only (DGAE) and23

both (DGA). The result indicates that using WC show better performance in LeRF, but EPC better24

performs in MoRF. To achieve better performance in both metrics, we suggest to use both masks.25

Table 2: Comparison of various attribution methods with LeRF and MoRF on three models.

IGp1 IGp2 GIGp1 GIGp2 DGAW DGAE DGA

LeRF
(↑ is better)

VGG-16 0.141 0.262 0.157 0.325 0.417 0.349 0.434
ResNet-18 0.204 0.339 0.239 0.401 0.551 0.479 0.533

Inception-V3 0.233 0.587 0.239 0.610 0.719 0.646 0.691

MoRF
(↓ is better)

VGG-16 0.036 0.035 0.030 0.036 0.039 0.018 0.023
ResNet-18 0.041 0.039 0.032 0.036 0.034 0.014 0.019

Inception-V3 0.125 0.070 0.120 0.069 0.082 0.029 0.041

I Additional pixel flip evaluations with different methods26

We provide the quantitative evaluation on different attribution methods. In experiments, 5 additional27

methods are considered: DeepLIFT (DLIFT) [Shrikumar et al., 2017], LRP [Bach et al., 2015],28

SmoothGrad (SG) [Smilkov et al., 2017], RISE [Petsiuk et al., 2018] and Grad-CAM (GCAM)29

[Selvaraju et al., 2017]. Table 3 indicates that DGA still shows the best performance.

Table 3: Comparison of various attribution methods with LeRF and MoRF on three models.

DLIFT LRP SG RISE GCAM DGA

LeRF (↑ is better)
VGG-16 0.095 0.240 0.360 0.393 0.414 0.434

ResNet-18 0.143 0.348 0.375 0.410 0.429 0.533
Inception-V3 0.159 - 0.548 0.500 0.554 0.691

MoRF (↓ is better)
VGG-16 0.027 0.045 0.064 0.130 0.111 0.023

ResNet-18 0.041 0.062 0.078 0.115 0.115 0.019
Inception-V3 0.109 - 0.114 0.144 0.123 0.041

30
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J Training setup of the simple model for analysis31

For the simple analysis in the Section 3.1, we train a simple neural network with 2-dimensional32

half-moon shaped synthetic dataset. We train the simple neural network with fully-connected layers.33

The number of nodes in the hidden layers are 5-3-1 repectively and ReLU activation function is used34

for entire neurons without the output layer. The binary cross-entropy loss and Adam optimizer with35

learning rate 5e-4 are used to train for 5000 epochs.

Name Shape Activation

Input N × 2 -
Fully Connected 1 N × 5 ReLU
Fully Connected 2 N × 3 ReLU
Fully Connected 3 N × 1 -

36

K Hyperparameter exploration37

DGA takes two hyperparameters: (1) the number of distillation steps N , and (2) the EPC threshold38

q. For the hyperparameter exploration, we use the pre-trained ResNet-18 and measure MoRF and39

LeRF score for the randomly selected 1k images from the training dataset of ImageNet, which is40

not inluded in the qualitative evalutaion in the main paper. At first, we analyze the relation between41

the distillation steps N and EPC threshold q. We perform the grid search with the distillation steps42

N = [1, 10, 20, 30, 50, 100] and the EPC threshold q = [0.6, 0.7, 0.8, 0.9, 1.0]. We note that the43

distillation step N = 1 is equivalent to the local attribution for original input image and EPC threshold44

q = 1 indicate the distillation with only WC mask. Figure 9 shows the relations between N and q45

with MoRF/LeRF score. The marker dots/lines indicate the specific distillation steps N and EPC46

threshold q.47
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Figure 9: MoRF/LeRF score for various settings of the hyperparameters in ResNet-18.

From the left column in Figure 9, we observe that (1) the multiple steps (i.e., N > 1) always increase48

the performance of MoRF/LeRF regardless of the EPC threshold q, and (2) the low EPC threshold49

q usually increase the performance of MoRF with degradation of the performance of LeRF. When50

we consider the importance of the MoRF/LeRF performance with same weight, the best choices of51

hyperparameters would be N = 30, 50 and q = 0.9. Although the N = 50 shows slightly better52

performance than N = 30, we select N = 30 for entire experiments in the main paper, because we53

benefit from the computational cost, which is directly related to N .54
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