
A Appendix

Implementation details of our method All experiments are implemented in PyTorch [10]. We use
the configuration listed in Tab. 1 unless otherwise specified. In general, we use much simpler data
augmentation techniques compared to end-to-end fine-tuning. Hyper-parameters were briefly tuned
to ensure convergence on a 20% held-out validation set.

Table 1: Default implementation details of our method.

dataset and backbone K400, ViT-B K400, ViT-L SSv2, ViT-B SSv2, ViT-L

num. adapters per block 1 1 2 1
adapter bottleneck width 384
convolution kernel shape 3× 1× 1 (kT × kH × kW )

optimizer AdamW, learning rate=5e-4, weight decay=1e-2
batch size 128
training steps 20k 40k 50k 50k

training resize ShortSideJitter
224 - 256 RandomResizedCrop

training crop size 224

frame sampling rate
16 (for 8 frames per view)
8 (for 16 frames per view)
4 (for 32 frames per view)

dynamic, evenly covering
the whole video

mirror ✓ ✓ ✗ ✗
RandAugment [4] ✗ ✗ ✓ ✓

num. testing views 3 temporal × 1 spatial 1 temporal × 3 spatial

Baseline implementation details The training configuration used for all the baselines is summarized
as follows:

• Full Fine-tuning: we largely follow the training configuration provided in their original
paper, except that we train all the CLIP initialized layers with 1/100 learning rate and
weight decay. We found these changes are necessary to obtain reasonable results for CLIP
pretrained models; Otherwise the accuracy on Kinetics-400 is less than 50%. We found
1/100 to be the best scaling among {1/10, 1/100, 1/1000} on Kinetics-400.

• Partial Fine-tuning: we finetune only the last Transformer block and the classifier layer. For
the SA+TA architecture, TA is only added to the last block since the previous blocks need to
be frozen in a meaningful state. We use the identical training configuration as provided in
the original paper (i.e., without reduction of learning rate or weight decay for any trainable
weight) as we found it slightly improves accuracy for this baseline.

• Other baselines use the same training configuration as our proposed method, as stated in the
Implementation details section in the main manuscript.

Experiments with other foundation models It is observed that with the same model, CLIP pre-
training is superior to ImageNet21K pre-training (not surprising due to the training data scale and
richness difference). However, our main objective is to propose a parameter-efficient fine-tuning
alternative to the standard full fine-tuning approach particularly for image-to-video adaptation. To
that end, we have validated the effectiveness and efficiency of turning an image foundation model into
strong video action recognition models by tuning only a small fraction of parameters, in comparison
to previous state-of-the-art alternatives.

By reporting the results on two different pre-training datasets (i.e., ImageNet21K and CLIP datasets),
we would like to demonstrate that our ST-Adapter can generalize across different pre-training datasets
and methods. Moreover, it can shed light on the difference between a foundation model (pre-
trained with noisy web-scale raw data) and an ImageNet pre-trained model (which has been standard
pre-training over the last decade).

To further support our finding, we have also experimented with the latest SWAG [11] foundation
model. As seen in Table 2, our ST-Adapter with a SWAG model can achieve consistent results as
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with a CLIP model: Reaching similar accuracy in the same tendency whilst outperforming the strong
full fine-tuning strategy on both action datasets.

Table 2: Experiment with different foundation models.

Model Pre-train K400 SSv2

ViT-B (Full Fine-tuning) CLIP 81.0 44.0
ViT-B w/ ST-Adapter CLIP 82.0 67.1
ViT-B (Full Fine-tuning) SWAG 80.1 45.2
ViT-B w/ ST-Adapter SWAG 80.9 67.2

Experiments on additional backbone architectures we have additionally provided the results of
ST-Adapters on Swin-B models in Table 3. The results of Swin space only and Swin joint attention are
obtained with the training configure of [9] but using (8 frames x 3 views) sampling setting. Although
they are not directly comparable with the results reported in [9] (32 frames × 12 views for K400,
32 frames × 3 views for SSv2), they are highly indicative within reasonable range. It is expected
that on ImageNet-21k pretrained models our ST-Adapters underperforms full fine-tuning, especially
when the locality inductive bias of Swin makes tuning on the downstream tasks easier. However,
our ST-Adapter still exhibits strong temporal learning capability, matching the joint-attention Swin
and outperforms space-only Swin by a large margin. Also, we observe higher data efficiency with
our ST-Adapter: The Swin joint attention model on the SSv2 dataset relies on K400 pretraining
(directly fine-tuning from ImageNet-21k results in slightly less than 60% accuracy). In contrast, Swin
w/ ST-Adapter achieves 65.1% even when directly trained from ImageNet-21k weights. Note, we
primarily aim at adapting foundation image models[2] pretrained on larger datasets (e.g., CLIP) other
than ImageNet-21k.

Table 3: Experiment with SWIN Transformers.

Model K400 SSv2

Swin SpaceOnly (Full Fine-tuning) 80.1 44.3
Swin Join-Attention (Full Fine-tuning) 81.5 65.3

Swin w/ ST-Adapter 77.1 65.1

Inference Speed We provide an inference speed test in Table 4. We measure the latency at batch
size = 1 and throughput at batch size = 32. It is shown that our model performs slightly lower than
TimeSformer space only, indicating that just a small overhead is introduced in inference speed by
ST-Adapter.

Table 4: Inference Speed.

Model Total number of
Params (M) K400 Latency

(ms)
Throughput

(V/s)

TimeSformer[1] 121.57 81.7 28 69
ViT-B/16 86.11 81.0 17 98
ViT-B/16 w/ ST-Adapter 93.00 82.0 19 90

UCF-101 and HMDB-51 We verify our method on two additional smaller but also widely studied
video recognition datasets, namely UCF-101 [12] and HMDB-51 [8]. For both cases, we finetune
from a Kinetics-400 [3] pretrained model, with all CLIP layers fixed and ST-Adapters set to 1/10
learning rate and weight decay, and train for 500 steps with a batch size of 128. Frames are sampled
with a temporal stride of 8. All other training settings are identical to that used for Kinetics-400. For
testing, we use 3 spatial views and 2 temporal views, and report the 3-split mean accuracy for both
datasets. We compare with methods that take only RGB frames as input (without optical flow). The
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results are shown in Table 5. We observe similar top performance by our ST-Adapter in comparison
to recent state-of-the-art competitors, including the latest CLIP based VideoPrompt by a large margin.

Table 5: Comparing the state-of-the-art video recognition methods on UCF101 and HMDB51.

Method Pre-train data UCF101 HMDB51

STC [5] K400 95.8 72.6
ECO [16] K400 93.6 68.4
R(2+1)D-34 [13] K400 96.8 74.5
I3D [3] ImageNet+K400 95.6 74.8
S3D [14] ImageNet+K400 96.8 75.9
FASTER32 [15] K400 96.9 75.7
VideoPrompt [7] CLIP 93.6 66.4
SlowOnly-8x8-R101 [6] Kinetics+OmniSource[6] 97.3 79.0

ViT-B/16 w/ ST-Adapter (Ours) CLIP+K400 96.4 77.7
ViT-L/14 w/ ST-Adapter (Ours) CLIP+K400 98.1 81.7
ViT-L/14@336px w/ ST-Adapter (Ours) CLIP+K400 98.3 82.8

Visualization We provide qualitative results about the attention map change before and after adding
the ST-Adapters in Fig. 1. Videos are sampled from Something-Something-v2 dataset and the
attention map of the [CLS] token from the last Transformer block is shown. The visualization shows
that with ST-Adapters, the model attends more to action related regions (e.g., hands, fore-ground
objects or moving objects), while the CLIP model without adaptation tend to be distracted by the
background.
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Figure 1: Visualization of attention map before and after ST-Adaptation.
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