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In the supplement we first introduce additional details in Section A1, A2, and A3. The mesh ex-
traction is described in Section A4. We summarize different datasets used in the experiments in
Section A5 and state the categorization per dataset. Lastly, we show more experiments and results
of SAMURAI in Section A6. For an overview of this work and further results, please also consider
visiting our project page: https://markboss.me/publication/2022-samurai/.

A1 Random Offset Annealed Fourier Encoding

The Fourier Encoding γ : R3 7→ R3+6L used in NeRF [7] encodes a 3D coordinate x into L
frequency basis:

γ(x) = (x,Γ1, . . . ,ΓL−1) (1)

Where each frequency is encoded as:

Γk(x) =
[
sin(2kx), cos(2kx)

]
(2)

BARF [5] and Nerfies [8] introduced annealing of the Fourier Frequencies using a weighting:

Γk(x;α) = wk(α)
[
sin(2kx), cos(2kx)

]
(3)

wk(α) =
1− cos (π clamp(α− k, 0, 1))

2
(4)

where α ∈ [0, L]. This can be seen as a truncated Hann window. One downside of this form of
encoding is that all frequencies are axis-aligned. In Tancik et al. [11] the benefits of adding random
frequencies are demonstrated. However, combining this with the sliding cosine window is not easily
possible. Therefore, we propose to add random Gaussian offsets R ∈ RL×3 to the frequencies. The
offsets R are sampled from N(0, 0.1). This can be thought of as randomly rotating each frequency
band:

Γk(x;α) = wk(α)
[
sin(2kx+ 2kRk), cos(2

kx+ 2kRk)
]

(5)
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Figure A1: Architecture. The detailed architecture of our network. Note that the conditional
network and the direct color is only used in the early stages of the training for stabilization. It
does not contribute to the final decomposition result. Our main outputs include the Density σ, the
normal n and the BRDF (bc, bm, br), which are used for rendering our actual output color ĉ with
Neural-PIL [2].

A2 Weight Updating for Camera Multiplex

As we stochastically sample points for each batch, a potential bad camera can have favorable sam-
ples and outperform a better camera. We alleviate this issue by storing the weights for each of our
optimization images in a memory bank W ∈ Rj×4. These can then be updated during the opti-
mization and reduce the impact of the sample distributions. Furthermore, we store a memory bank
of velocities V ∈ Rj×4 to speed up the selection of the best camera pose. The weight matrix is then
updated with the new weights Sj using:

W ∗
j = max(Wj +mV ∗

j + g, 0) (6)

V ∗
j = m ∗ Vj + g (7)

g = s(Sj −Wj) (8)

where the new weights W ∗
j and velocities V ∗

j replace the old ones, the parameters m represent the
momentum, and s the learning rate. The values for these are 0.75 and 0.3, respectively.

A3 Network Architecture and Further Training Details

The input images for our network are used without cropping. We sample the foreground area thrice
as often as the background regions to circumvent the potential large background areas. As the reso-
lution varies drastically and can be large, we further resize the images so that the largest dimension
is 400 pixels.

The detailed configuration of our network is shown in Fig. A1. We use 10 Random Offset Annealed
Fourier Frequencies for the positional encoding. These are annealed over 50000 steps using Eq. 4.
The directions are encoded using 4 non-annealed and non-offset Fourier frequencies. The losses in
section 3.2 - Overall network and camera losses of the main paper are weighted with the following
scalars besides the optimization schedule scalars λb, λa:
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λndir λSmooth λDec Sparsity λDec Smooth
0.005 0.01 0.01 0.1

The coarse-to-fine optimization is further governed by λc. This parameter mainly interpolates be-
tween the available resolution of the largest dimension from 100 to 400 pixels and the number of
cameras from 4 to 1. The softmax scalar λs is also driven by λc and fades from a scalar of 1 to 10.

Furthermore, we apply gradient scaling to the gradients for the network by the norm of 0.1. The
camera gradients are not clipped or scaled.

A4 Mesh extraction

Similar to NeRD [1], we perform a mesh extraction from the learned reflectance neural volume.
However, we differ from their method. In the first step, we perform a marching cubes extraction
step similar to the one proposed in NeRF [7]. However, as the naive marching cube algorithm
can have block artifacts, we sample 2 million points on the mesh surface and cast rays toward the
surface. The resulting point cloud is converted to a refined mesh using Poisson reconstruction. This
refined mesh provides more details and smoother surfaces. We then UV unwrap the resulting mesh
in Blender’s [3] automatic UV unwrapping tool and bake the world space positions into the texture
map. We can then query all surface locations in our fine network and compute the BRDF texture
maps. We then save the textured mesh in the GLB format for easy deployment. The extraction of a
mesh takes around 3-5 minutes.

A5 Additional Details of Datasets

Scene Multi-Illumination Known Poses Notes

Gold Cape ✗ ✓ From NeRD [1]
Head ✗ ✓ From NeRD [1]

Syn. CarWreck ✓ ✓ Synthetic from NeRD [1]
Syn. Globe ✓ ✓ Synthetic from NeRD [1]
Syn. Chair ✓ ✓ Synthetic from NeRD [1]

Mother Child ✓ ✓ From NeRD [1]
Gnome ✓ ✓ From NeRD [1]

Statue of Liberty ✓ ✗ Online collection
Chair ✓ ✗ Online collection

Duck ✓ ✗ Self-collected
Fire Engine ✓ ✗ Self-collected
Garbage Truck ✓ ✗ Self-collected
Keywest ✓ ✗ Self-collected
Pumpkin ✓ ✗ Self-collected
RC Car ✓ ✗ Self-collected
Robot ✓ ✗ Self-collected
Shoe ✓ ✗ Self-collected

Table A1: List of Datasets. List of all datasets and the classification into multi-illumination and
known poses.

A list of our datasets used in the evaluation is shown in Table A1. Our new dataset in the last
section of Table A1 consists of around 70 images each. We tried to replicate the online collection
setting as much as possible by using different cameras (Pixel 4a, iPhone 7 Plus, Sony alpha 6000),
capturing the objects in different unique environments, and replicating the hand-held capture setup
with varying distances. Even with the extensive manual tuning of parameters, we cannot estimate
the camera poses in traditional methods such as COLMAP [9, 10]. Fig. A2 shows an overview of
the images in two image collections.
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(a) Robot

(b) Fire Engine

Figure A2: Dataset Overview. Notice the complex illumination conditions and the drastically
varying locations. Also, the distances vary quite severely.
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Figure A3: Visual Ablation. Each of our novel additions improve the reconstruction. In this par-
ticular scene the regularization is critical for the decomposition. The coarse 2 fine, posterior scaling
and camera multiplex ablations mainly have a reduced sharpness in the sticker on the top. In the
random Fourier offset annealing striping patterns are apparent in the some areas which are alleviated
with our full model.

A6 Additional Experiments

Ablation. In Fig. A3 the result of our ablation study is shown. The benefit of our regularization is
easily apparent in this scene. Furthermore, our coarse-to-fine, posterior scaling, and camera multi-
plex help recover slightly sharper details but especially help stabilize the optimization. The random
Fourier offsets also alleviate some slight striping artifacts.

Visual Results. In Fig. A4, we show additional results of SAMURAI on several highly challeng-
ing, multiple illumination scenes. Our method can create plausible decomposition, which produces
convincing results when re-rendered in unseen views and illumination conditions. Even fine details,
like the RC Car’s antenna, are preserved well. Only the legs of the chair object are not reproduced
well. However, the legs are also not detected well by our automatic segmentation with U2-Net.
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Figure A4: Additional Results. Renderings with camera poses and illumination from test views
demonstrate plausible novel view synthesis and re-lighting on various datasets.
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NeRS modifications. The default implementation of NeRS [12] does not implement mini-batching.
This means all images are optimized simultaneously in a resolution of 256 × 256. This works well
for a few images, but the GPU memory runs out with larger image collections. We have created a
modified version that implements mini-batching for a fair comparison. Still, NeRS is only capable
of working on single illumination datasets.

Procrustes Analysis of Camera Poses. We evaluate the quality of the reconstructed camera poses
against a reference obtained from COLMAP [9, 10]. References are only available for the scenes of
the NeRD dataset. First, we align the camera locations using Procrustes analysis [4] as in [5]. The
rotation error is reported as a mean deviation in degrees, while the translation error is computed as
the mean difference in scene units of the reference scene. In contrast to the evaluation of the view
synthesis and rendering performance, we here use all cameras from the training data for comparison
like it has been done in concurrent works [5, 6].
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Figure A5: BARF-A appearance conditioning entanglement. BARF-A conditions the radiance
on the view direction and the trainable appearance embedding. We interpolate between two illumi-
nations for our method and BARF-A. We can see that the illumination is entangled with the pose.
Here, we provide magnifications on edges where this entanglement is noticeable. Due to different
camera coordinate systems and optimizations, we provide similar views from SAMURAI. Here, it
is clear that in SAMURAI, the texture remains static.

Illumination Conditioning Entanglement in BARF-A In the main paper, we showed the entangle-
ment of pose and view direction conditioning with BARF. In BARF-A, the illumination is addition-
ally modeled as an appearance embedding. This results in an even higher ambiguity in representing
high-frequent surface details. The ambiguity is visible when we interpolate between two appear-
ance embeddings in Fig. A5. The texture is also shifting based on the appearance embedding and
even distorts severely for the specific view indirection. This is primarily due to the large baseline
between the camera of ’Illumination 1’ and ’Illumination 0’. In SAMURAI, our BRDF represen-
tation is not only view-independent but also illumination-independent. Entanglements, as seen in
BARF or BARF-A, are impossible with our method. This enables our higher-quality camera and
asset reconstructions.

Translation Error Rotation deg Error PSNR↑

0 0 29.48
0.1 0.1 20.21
0.5 0.5 16.89
1 1 12.58
3 3 9.34
5 5 0.98

Table A2: Performance of Neural-PIL with varying inaccurate poses. The performance of
Neural-PIL quickly degrades on even mild pose inaccuracies. SAMURAI is robust to performance
inaccuracies due to the posterior scaling and achieves a PSNR of 23.94 dB when starting from the
quadrant-based poses.
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Comparison with Neural-PIL with noisy camera poses Under the assumption that poses are re-
coverable, but the poses will be slightly noisy, we can show the performance degradation of Neural-
PIL [2] in Table A2. If our method leverages GT poses without optimization, Samurai (ours) ob-
tains similar results as Neural-PIL. Our method is mostly a generalization of Neural-PIL to also
jointly optimize camera poses. In Table A2, it is clear that Neural-PIL degrades severely even un-
der slightly noisy poses. Samurai achieves a PSNR of 23.84 dB. So even with minor noisy poses,
our method outperforms Neural-PIL significantly. It is worth noting that SAMURAI starts from
the rough quadrant-based poses, which are not close to the GT pose. Even if our method does not
achieve the same reconstruction performance as Neural-PIL with known poses - the difference is not
too far off.
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