
Supplement of “Coresets for Wasserstein
Distributionally Robust Optimization Problems”

Anonymous Author(s)
Affiliation
Address
email

1 Omitted Proofs1

1.1 Proof of Theorem 12

Proof. Suppose W = [w1, . . . , wn] satisfies Definition 2. By Lemma 1, we have λ∗(β), λ̃∗(β) ∈3

[κ(β), τ(β)], which implies that4

H̃(β, λ∗(β)) ∈ (1± ϵ)H(β, λ∗(β)). (1)
Then for any fixed β ∈ H, we have both5

λ∗θ
p +H(β, λ∗) ≥

1

1 + ϵ
(λ∗θ

p + H̃(β, λ∗)) ≥
1

1 + ϵ
(λ̃∗θ

p + H̃(β, λ̃∗)) (2)

and6

λ∗θ
p +H(β, λ∗) ≤ λ̃∗θ

p +H(β, λ̃∗) ≤
1

1− ϵ
(λ̃∗θ

p + H̃(β, λ̃∗)). (3)

From proposition 1 we have Rθ,p(β) = H(β, λ∗)+λ∗θ
p and R̃θ,p(β) = H̃(β, λ̃∗)+λ̃∗θ

p. Together7

with (2) and (3), they imply8

R̃θ,p(β) ∈ (1± ϵ)Rθ,p(β). (4)
Therefore, W is a qualified coreset satisfying Definition 1. □9

1.2 Proof of Claim 110

Proof. Denote z1 = argmax
z∈Ξ

{ℓ(β1, z)−λdp(z, ξ)} and z2 = argmax
z∈Ξ

{ℓ(β2, z)−λdp(z, ξ)}. Then11

h(β, λ1, ξ) = ℓ(β1, z1)− λdp(z1, ξ) and h(β, λ2, ξ) = ℓ(β2, z2)− λdp(z2, ξ).12

By the definitions of z1 and z2, we have13

ℓ(β1, z1)− λdp(z1, ξ) ≥ ℓ(β1, z2)− λdp(z2, ξ);
ℓ(β2, z1)− λdp(z1, ξ) ≤ ℓ(β2, z2)− λdp(z2, ξ).

}
(5)

By Assumption 1 ii, we have14

|ℓ(β1, z1)− ℓ(β2, z1)| ≤ L∥β1 − β2∥2;
|ℓ(β1, z2)− ℓ(β2, z2)| ≤ L∥β1 − β2∥2.

}
(6)

Combining (6) and (5), we have15

h(β, λ1, ξ)− L∥β1 − β2∥2 ≤ h(β, λ2, ξ);
h(β, λ2, ξ)− L∥β1 − β2∥2 ≤ h(β, λ1, ξ).

}
(7)

That is ,
|h(β, λ1, ξ)− h(β, λ2, ξ)| ≤ L∥β1 − β2∥2

□16

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

1.3 Proof of Claim 217

Proof. From [4, lemma 3 (ii)], we know that h(β, λ, ξ) is convex and non-increasing in λ. Define
D(β, λ, ξ) := lim inf

δ↓0
{d(ξ, ζ) : ℓ(β, ζ)− λdp(ξ, ζ) ≥ h(β, λ, ξ)− δ} .

Further, Gao and Kleywegt [4, lemma 3 (iv)] showed that Dp(β, λ, ξ) is a subderivative on λ for18

h(β, λ, ξ). Therefore, from the convexity of hi(β, ·), we know19

|hi(β, λ)− hi(β, λ
′)| ≤ max{Dp(β, λ, ξi), D

p(β, λ′, ξi)}|λ− λ′|, ∀λ, λ′ ≥ κ(β). (8)

From Assumption 2 (i), we know that ℓ(β, ζ)− λdp(ξ, ζ) is continuous in ζ.20

If {ζ ∈ Ξ: ℓ(β, ζ) − λdp(ζ, ξi) = hi(β, λ)} = ∅, by the continuity of ℓ(β, ·) − λdp(ξ, ·) and the21

mathematical analysis, we have D(β, λ, ξi) = ∞. We set ri(β, λ) = ∞ in this case.22

If the set {ζ ∈ Ξ: ℓ(β, ζ) − λdp(ζ, ξi) = hi(β, λ)} is non-empty, by the definition of ri(β, λ) and23

D(β, λ, ξi), we know that ri(β, λ) ≥ D(β, λ, ξi), which completes the proof.24

□25

1.4 Proof of Lemma 226

Proof. For any fixed 0 ≤ i, j ≤ N , we regard hk(β, λ) as an independent random variable for each27

ξk ∈ Qij . We consider the following two cases: (i) κ(βanc) ≤ κ(β) and (ii) κ(βanc) > κ(β).28

For case (i), we have λ ≥ κ(β) ≥ κ(βanc) and λanc ≥ κ(βanc). Together with Claim 2 and (20), we29

have30

µi · 2i−1A−Rld ≤ hk(βanc, λ) ≤ 2jB +Rld. (9)

By using Claim 1, we further obtain the following upper and lower bounds for hk(β, λ):31

hk(β, λ) ≤ 2jB +Rld + Llp;
hk(β, λ) ≥ µi2

i−1A−Rld − Llp.

}
(10)

For case (ii), we have λanc ≥ κ(β) > κ(β) and λ ≥ κ(β). We apply Claim 1 and have32

µi · 2i−1A− Llp ≤ hk(βanc, λ) ≤ 2jB + Llp. (11)

Together with Claim 2 we can achieve the same lower and upper bounds as (10).33

Let the sample size |Qij | = O((2jB−µi2
i−1A+2Llp+2Rld)

2σ−2 log 1
η). Through the Hoeffding’s

inequality [5], we have

P

∣∣∣∣∣∣ 1

|Qij |
∑

ξk∈Qij

hk(β, λ)−
1

|Cij |
∑

ξk∈Cij

hk(β, λ)

∣∣∣∣∣∣ ≥ σ

 ≤ η.

□34

1.5 Proof of Lemma 335

Proof. Based on Lemma 2, we have36 ∣∣∣∣∣∣ |Cij |
|Qij |

∑
ξk∈Qij

hk(β, λ)−
∑

ξk∈Cij

hk(β, λ)

∣∣∣∣∣∣ ≤ |Cij | · ϵ1(2j−1 + 2i−1)A (12)

with probability at least 1 − η. Through taking a union bound over all the cells, with probability at37

least 1− (N + 1)2η, we have38

n|H̃(β, λ)−H(β, λ)| = |
∑
i,j

∑
ξk∈Qij

|Cij |
|Qij |

hk(β, λ)−
∑
i,j

∑
ξk∈Cij

hk(β, λ)|

≤
∑
i,j

|Cij |ϵ1(2j−1 + 2i−1)A

≤
∑
i,j

|Cij |ϵ1(2j−1 + 2i−1)H(βanc, λanc). (13)

2

We also need the following claim to proceed our proof.39

Claim 1
∑
i,j

|Cij |2i ≤ 3n and
∑
i,j

|Cij |2j ≤ 3n40

Based on Claim 1, we can rewrite (13) as

n|H̃(β, λ)−H(β, λ)| ≤ 3nϵ1H(βanc, λanc).

So the statement of Lemma 3 is true. □41

Proof.(of Claim 1) By the definition of Cij , we have

2iA = A, if i = 0;
2iA ≤ 2ak (βanc) , ∀ξk ∈ Cij , if i ≥ 1.

So we have 2iA ≤ A+ 2ak(βanc, λanc) for all 0 ≤ i ≤ N and ξk ∈ Cij . Overall, we have42

N∑
i,j=0

|Cij | 2iA =

N∑
i,j=0

∑
ξk∈Cij

2iA

≤
N∑

i,j=0

∑
ξk∈Cij

(2ak (βanc, λanc) +A)

= 2nA+ nA = 3nA.

Thus
∑
i,j

|Cij |2i ≤ 3n, and we can prove
∑
i,j

|Cij |2j ≤ 3n via the same manner. □43

2 Omitted Details for Applications44

We discuss more details for SVM in the hypercube. Suppose X = [0, l]d is a d-dimensional45

hypercube and p = 1, then by [8] and the strong duality of the linear programming, we know that46

the WDRO of SVM is equivalent to47

inf
β,λ,si,p

+
i

,p
−
i

,

z
+
i

,z
−
i

λθ + 1
n

∑n
i=1 si

s.t. 1 + l · e⊤z+i + x⊤
i p

+
i ≤ si

1 + l · e⊤z−i + x⊤
i p

−
i − γλ ≤ si

−yiβ − p+i ≤ z+i , 0⃗ ≤ z+i
yiβ − p−i ≤ z−i , 0⃗ ≤ z−i∥∥p+i ∥∥∗ ≤ λ,

∥∥p−i ∥∥∗ ≤ λ, 0 ≤ si i ∈ [n]

(14)

where e = [1, . . . , 1] ∈ Rd. Hence hi(β, λ) is equivalent to48

inf
p
+
i

,p
−
i

,

z
+
i

,z
−
i

max{0, 1 + l · e⊤z+i + x⊤
i p

+
i , 1 + l · e⊤z−i + x⊤

i p
−
i − γλ}

s.t. −yiβ − p+i ≤ z+i , 0⃗ ≤ z+i
yiβ − p−i ≤ z−i , 0⃗ ≤ z−i∥∥p+i ∥∥∗ ≤ λ,

∥∥p−i ∥∥∗ ≤ λ i ∈ [n].

(15)

In this task we have49

• κ ≡ 0, C(β) = ∥β∥∗ and R ≤ γ + l · d
1
p ;50

• hi(β, λ) is the optimal value of a constrained convex programming in (15);51

• For any z+i , z
−
i , p+i , p

−
i satisfying the constraints in (15), max{0, 1+ l · e⊤z+i +x⊤

i p
+
i , 1+52

l · e⊤z−i + x⊤
i p

−
i − γλ} is an upper bound for hi(β, λ) and thus can be viewed as bi(β, λ).53

Here we propose a simple strategy for determining the values for these variables.54

3

If ∥β∥∗ > λ, set

p+i = −λyiβ
∥β∥∗

, p−i = λyiβ
∥β∥∗

,

z+i = max{(−yi +
λyi

∥β∥∗
)β, 0⃗}, z−i = max{(yi − λyi

∥β∥∗
)β, 0⃗};

otherwise, set
p+i = −yiβ, p

−
i = yiβ,

z+i = 0⃗, z−i = 0⃗.

• ai(β, λ) = ℓ(β, ξi).55

3 Experiments56

Our experiments were conducted on a server equipped with 2.4GHZ Intel CPUs and 256GB main57

memory. The algorithms are implemented in Python. We use the MOSEK [1] to solve the tractable58

reformulations of WDROs.59

Compared methods We compare our dual coreset method DUALCORE with the uniform sampling60

approach (UNISAMP) and the approach that directly runs on whole dataset (WHOLE).61

Datasets We test the algorithms for the SVM and logistic regression problems on two real datasets:62

MNIST[7] and LETTER[3]. To simulate the scenarios where the datasets are contaminated, we63

perform poisoning attacks to the training set of LETTER. Specifically, we use the MIN-MAX attack64

from [6] and ALFA attack from [9]. We add the standard Gaussian noise N (0, 1) to the training set65

of MNIST and randomly flip 10% of the labels. The dual coreset algorithm for the robust regression66

problem is evaluated on the real dataset APPLIANCES ENERGY[2].67

Results Let m and n be the coreset size and the training set size, respectively. We set σ := m
n to68

indicate the compression rate and fix the parameter γ = 7 for all the instances (recall that γ is used69

for defining the distance d(ξi, ξj) = ∥xi−xj∥+ γ
2 |yi−yj |). We vary the radius θ of the Wasserstein70

ball for different tasks. The experiment of each instance were repeated by 50 independent trials. For71

the WDRO logistic regression and SVM problems, we report the averaged test accuracy and the72

standard deviation in table 1, 3, 5, 7 and 9, where the higher accuracy of UNISAMP and DUALCORE73

is written in bold for each instance. The results suggest that our dual coreset method outperforms the74

uniform sampling method with a higher accuracy in most cases. For the WDRO robust regression75

task, we report the averaged test Huber loss and the standard deviation in table 11, where the lower76

loss of UNISAMP and DUALCORE is written in bold for each instance. The results suggest that77

our dual coreset method outperforms the uniform sampling method with a lower Huber loss in most78

cases. We also record the normalized CPU time (over the CPU time of WHOLE) in table 2, 4, 6, 8,79

10 and 12.80

References81

[1] M. ApS. MOSEK Optimizer API for Python 9.3.20, 2019. URL https://docs.mosek.com/82

latest/pythonapi/index.html.83

[2] L. M. Candanedo, V. Feldheim, and D. Deramaix. Data driven prediction models of energy use84

of appliances in a low-energy house. Energy and buildings, 140:81–97, 2017.85

[3] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM transactions86

on intelligent systems and technology (TIST), 2(3):1–27, 2011.87

[4] R. Gao and A. J. Kleywegt. Distributionally robust stochastic optimization with wasserstein88

distance. arXiv preprint arXiv:1604.02199, 2016.89

[5] W. Hoeffding. Probability inequalities for sums of bounded random variables. In The collected90

works of Wassily Hoeffding, pages 409–426. Springer, 1994.91

[6] P. W. Koh, J. Steinhardt, and P. Liang. Stronger data poisoning attacks break data sanitization92

defenses. CoRR, abs/1811.00741, 2018.93

[7] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database, 2010.94

4

https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html

Table 1: Experimental results of the WDRO logistic regression on MNIST with σ = 0.5%, θ = 0.3

WHOLE UNISAMP DUALCORE
0 vs 1 99.76% 94.14±6.85% 94.37±8.05%
0 vs 2 98.13% 87.1±10.1% 84.98±11.28%
0 vs 3 98.78% 84.03±12.88% 84.38±12.57%
0 vs 4 99.1% 87.82±12.79% 87.91±12.11%
0 vs 5 97.52% 76.57±13.48% 75.45±13.76%
0 vs 6 97.94% 83.17±12.55% 81.05±12.84%
0 vs 7 99.27% 86.43±13.33% 90.78±8.8%
0 vs 8 98.28% 85.57±12.99% 86.07±11.94%
0 vs 9 98.53% 88.35±10.58% 87.14±9.9%
1 vs 2 96.87% 79.85±13.47% 86.26±10.54%
1 vs 3 97.58% 83.75±14.73% 83.17±14.87%
1 vs 4 98.97% 87.73±12.73% 87.85±12%
1 vs 5 98.03% 76.22±13.88% 81.33±13.31%
1 vs 6 99% 85.71±12.17% 89.32±8.2%
1 vs 7 97.73% 84.2±14.22% 87.05±12.5%
1 vs 8 95.86% 78.95±14.21% 79.13±12.93%
1 vs 9 98.65% 87.38±13.33% 87.44±11.97%
2 vs 3 95.91% 75.71±12.87% 76.85±12.23%
2 vs 4 97.7% 78.12±14.26% 79.52±14.36%
2 vs 5 96.8% 75.53±14.6% 73.93±14.32%
2 vs 6 96.19% 72.44±12.3% 75.23±11.11%
2 vs 7 96.39% 78.54±12.56% 86.15±10.48%
2 vs 8 95.96% 69.08±12.62% 69.18±13.9%
2 vs 9 97.25% 82.43±12.68% 81.92±12.8%
3 vs 4 98.54% 77.33±16.52% 85.86±13.62%
3 vs 5 93.4% 62.31±10.81% 66.12±10.17%
3 vs 6 98.27% 83.06±14.52% 88.39±9%
3 vs 7 97.41% 81.94±10.87% 81.99±14.57%
3 vs 8 93.84% 65.56±11.81% 69.62±11.83%
3 vs 9 96.95% 78.27±15.1% 79.13±14.22%
4 vs 5 97.67% 70.83±13.86% 75.95±13.76%
4 vs 6 98.2% 72.75±14.89% 72.98±14.89%
4 vs 7 97.44% 72.55±14.45% 75.63±14.79%
4 vs 8 98.17% 74.95±14.93% 77.88±14.33%
4 vs 9 93.88% 59.1±9.01% 62.03±8.48%
5 vs 6 96.88% 73.08±14.19% 77.26±13.35%
5 vs 7 98.65% 74.25±15.56% 78.55±12.74%
5 vs 8 93.8% 66.4±11.22% 65.91±11.5%
5 vs 9 97.39% 70.1±14.81% 72.16±13.33%
6 vs 7 99.49% 84.12±12.65% 87.87±11.64%
6 vs 8 97.91% 78.85±13.94% 76.58±14.58%
6 vs 9 99.48% 79.76±16.29% 78.97±15.41%
7 vs 8 97.75% 79.98±14.22% 80.97±13.48%
7 vs 9 93.14% 66.09±11.99% 67.68±12.43%
8 vs 9 96.13% 72.12±13.57% 75.52±13.5%

5

Table 2: Normalized CPU time of the WDRO logistic regression on MNIST with σ = 0.5%, θ = 0.3

UNISAMP DUALCORE
0 vs 1 0.01 0.021
0 vs 2 0.011 0.024
0 vs 3 0.013 0.029
0 vs 4 0.011 0.024
0 vs 5 0.008 0.017
0 vs 6 0.007 0.017
0 vs 7 0.008 0.018
0 vs 8 0.009 0.019
0 vs 9 0.011 0.024
1 vs 2 0.009 0.021
1 vs 3 0.008 0.018
1 vs 4 0.008 0.017
1 vs 5 0.007 0.017
1 vs 6 0.009 0.019
1 vs 7 0.011 0.023
1 vs 8 0.007 0.016
1 vs 9 0.008 0.019
2 vs 3 0.01 0.021
2 vs 4 0.007 0.017
2 vs 5 0.008 0.021
2 vs 6 0.01 0.023
2 vs 7 0.011 0.024
2 vs 8 0.011 0.024
2 vs 9 0.008 0.019
3 vs 4 0.008 0.018
3 vs 5 0.005 0.013
3 vs 6 0.007 0.016
3 vs 7 0.009 0.02
3 vs 8 0.01 0.023
3 vs 9 0.01 0.021
4 vs 5 0.01 0.021
4 vs 6 0.009 0.02
4 vs 7 0.007 0.016
4 vs 8 0.008 0.018
4 vs 9 0.007 0.017
5 vs 6 0.01 0.021
5 vs 7 0.011 0.025
5 vs 8 0.01 0.023
5 vs 9 0.012 0.025
6 vs 7 0.008 0.018
6 vs 8 0.009 0.021
6 vs 9 0.007 0.015
7 vs 8 0.01 0.021
7 vs 9 0.009 0.019
8 vs 9 0.008 0.018

6

Table 3: Experimental results of the WDRO logistic regression on LETTER under MIN-MAX attack
with θ = 0.3

σ UNISAMP DUALCORE
1% 79.15±14.32% 83.86±9.67%
2% 87.66±8.74% 87.81±7.03%
3% 89.32±4.44% 89.54±7.89%
4% 89.71±5.28% 90.1±5.06%
5% 90.52±4.29% 91.49±4.1%
6% 91.55±3.63% 92.36±2.56%
7% 91.19±3.68% 91.67±2.92%
8% 92.51±2.82% 91.59±3.01%
9% 92.33±2.75% 91.57±2.56%

10% 91.86±2.79% 92.57±2.08%

Table 4: Normalized CPU time of the WDRO logistic regression on the LETTER under MIN-MAX
attack with θ = 0.3

σ UNISAMP DUALCORE
1% 0.04 0.103
2% 0.053 0.13
3% 0.062 0.151
4% 0.084 0.185
5% 0.105 0.237
6% 0.118 0.257
7% 0.143 0.329
8% 0.164 0.346
9% 0.132 0.278
10% 0.121 0.275

Table 5: Experimental results of the WDRO logistic regression on LETTER under ALFA attack with
θ = 0.3

σ UNISAMP DUALCORE
1% 78.28±12.22% 79.86±13.56%
2% 79.69±11.74% 83.17±10.4%
3% 81.98±13.56% 84.89±10.4%
4% 87.06±8.89% 87.63±6.38%
5% 86.14±9.29% 87.16±8.53%
6% 86.9±7.44% 88.59±6.45%
7% 87.9±7.08% 86.86±6.85%
8% 88.23±5.22% 88.39±4.52%
9% 88.18±5.67% 88.63±4.43%
10% 89.33±6.46% 87.44±5.05%

Table 6: Normalized CPU time of the WDRO logistic regression on LETTER under ALFA attack
with θ = 0.3

σ UNISAMP DUALCORE
1% 0.03 0.067
2% 0.033 0.076
3% 0.041 0.095
4% 0.045 0.109
5% 0.058 0.122
6% 0.06 0.137
7% 0.072 0.152
8% 0.092 0.201
9% 0.125 0.25
10% 0.099 0.217

7

Table 7: Experimental results of the WDRO SVM on LETTER under ALFA attack with θ = 0.1

σ UNISAMP DUALCORE
1% 80.29±13.98% 79.23±13%
2% 83.86±13.7% 87.8±11.74%
3% 89.95±11.23% 92.78±7.61%
4% 91.47±9.37% 92.46±6.54%
5% 90.89±9.12% 92.36±9.05%
6% 95.5±4.35% 94.94±5.49%
7% 94.01±6.85% 95.99±2.65%
8% 95.61±5.7% 96.1±2.43%
9% 94.91±6.09% 96.43±2.23%

10% 95.27±5.72% 95.97±3.76%

Table 8: Normalized CPU time of the WDRO SVM on LETTER under ALFA attack with θ = 0.1

σ UNISAMP DUALCORE
1% 0.137 0.554
2% 0.137 0.561
3% 0.121 0.546
4% 0.125 0.501
5% 0.133 0.503
6% 0.168 0.515
7% 0.228 0.695
8% 0.349 0.955
9% 0.327 0.984
10% 0.163 0.556

Table 9: Experimental results of the WDRO SVM on LETTER under MIN-MAX attack with θ = 0.2

σ UNISAMP DUALCORE
1% 82.02±15.31% 85.17±13.88%
2% 90.44±9.08% 93.13±2.26%
3% 90.29±10.71% 92.17±6.62%
4% 91.29±9.01% 93.7±2.26%
5% 93.55±2.43% 93.91±1.72%
6% 94.17±2.18% 93.13±6.47%
7% 92.68±7.33% 94.39±1.47%
8% 94.15±2.05% 94.2±1.36%
9% 94.26±1.61% 94.04±1.28%
10% 93.99±1.53% 94.2±1.67%

Table 10: Normalized CPU time of the WDRO SVM on LETTER under MIN-MAX attack with
θ = 0.2

σ UNISAMP DUALCORE
1% 0.118 0.517
2% 0.122 0.516
3% 0.11 0.445
4% 0.118 0.458
5% 0.159 0.537
6% 0.245 0.804
7% 0.33 0.965
8% 0.297 0.871
9% 0.159 0.519
10% 0.218 0.647

8

Table 11: Experimental results of the WDRO robust regression on APPLIANCES ENERGY with
θ = 100

σ UNISAMP DUALCORE
1% 33.0933±1.8918 32.3245±1.937
2% 31.4399±1.5614 30.7886±1.2459
3% 31.3852±0.6885 30.5185±0.4625
4% 31.5143±0.4824 31.0308±0.3113
5% 31.036±0.507 30.401±0.2476
6% 31.5388±0.3296 31.0017±0.1913
7% 32.2394±0.311 31.7412±0.1504
8% 30.225±0.2345 29.8135±0.1503
9% 30.0463±0.2292 29.6167±0.1098
10% 31.1906±0.2257 30.8201±0.107

Table 12: Normalized CPU time of the WDRO robust regression on APPLIANCES ENERGY with
θ = 100

σ UNISAMP DUALCORE
1% 0.039 0.145
2% 0.076 0.224
3% 0.068 0.192
4% 0.072 0.207
5% 0.088 0.236
6% 0.097 0.244
7% 0.103 0.259
8% 0.157 0.348
9% 0.147 0.299
10% 0.184 0.374

[8] S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani. Regularization via mass transportation.95

Journal of Machine Learning Research, 20(103):1–68, 2019.96

[9] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli. Support vector machines under97

adversarial label contamination. Neurocomputing, 160:53–62, 2015. doi: 10.1016/j.neucom.98

2014.08.081.99

9

	Omitted Proofs
	Proof of Theorem 1
	Proof of Claim 1
	Proof of Claim 2
	Proof of Lemma 2
	Proof of Lemma 3

	Omitted Details for Applications
	Experiments

