I

5

3

Supplement of “Coresets for Wasserstein
Distributionally Robust Optimization Problems”

Anonymous Author(s)
Affiliation
Address
email

1 Omitted Proofs

1.1 Proof of Theorem I

Proof. Suppose W = [wy,...,w,] satisfies Definition B. By Lemma [, we have \.(3), 5*(5) €
[£(8), 7(8)], which implies that

H(B,A\(B)) € (1£) H(B,\(5))- ()
Then for any fixed 5 € H, we have both

AOP + H(B,\,) > %E(A*ep + H(B,\)) > : i E(X*ef’ +H(B,\)) 2)
and
Ml + H(B,A) <87+ H(B, M) < 5 i (A0 + H(B,).)). 3)

From proposition I we have Ry ,(8) = H(S, \.)+ .07 and Ry ,(8) = H(S, \.)+\.07. Together
with (2) and (B), they imply

Rop(B) € (1 €)Rgp(B)-)
Therefore, W is a qualified coreset satisfying Definition [I. (|

1.2 Proof of Claim [I
Proof. Denote z; = arg meag{é(ﬁl, z)—AdP(z,€)} and 22 = arg meacx{ﬁ(ﬂg, z) —AdP(z,€)}. Then
h(ﬁv)‘lag) = 6(517 Zl) - Adp(zlvé-) and h(ﬁ»)‘276-) = g(ﬂQa 22) -)\dp(227£)'

By the definitions of z; and 22, we have

6(51721) -)\dp(Zl,g) Z 6(61722) - Adp(2235)7 (5)
f(/827 Zl) -)\dp(Z]_,f) S £(627 Z2) - Adp(ZQaf)'

By Assumption [ii, we have

[6(B1,21) — £(B2,21)| < L||B1 — Ba||2; } ©)
[€(B1, z2) — £(B2, 22)| < L|B1 — Pa]|2-
Combining (B) and (H), we have
h(ﬂvAlag)fL”Bl*ﬁQ‘b Sh(ﬂvAQag)v } (7)
h(B,X2,€) — L||B1 — Ba2|l2 < h(B, A1,§).

That is ,
|h(B; A1,€) — h(B, A2,)| < L|B1 — B2l
O

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

20

21
22

23
24

25

26

27
28

29
30

31

32

33

34

35

36

37
38

1.3 Proof of Claim 2

Proof. From [, lemma 3 (ii)], we know that (3, \, §) is convex and non-increasing in \. Define

Further, Gao and Kleywegt [4, lemma 3 (iv)] showed that D?(3,), €) is a subderivative on X for
h(5, A, &). Therefore, from the convexity of h; (3, -), we know

|hz(6> >\) - h’z(67 >\/)| S maX{QP(B7)‘u gi),Qp(ﬁ7 >\/7 51)}|)\ -)‘/|7VA7)\/ 2 ’i(ﬁ) (8)
From Assumption B (i), we know that ¢(3,) — A\dP (&, ¢) is continuous in (.

If {¢ € Z: 4(B,¢) — M\dP((, &) = hi(B,\)} = 0, by the continuity of £(3,-) — AdP(&,-) and the
mathematical analysis, we have D(f, A, €;) = co. We set (8, A) = oo in this case.

If the set {¢ € Z: 4(B,¢) — AdP((, &) = hi(B,)} is non-empty, by the definition of r;(3,) and
D(B, A\, &), we know that r;(8, \) > D(B, A\, &;), which completes the proof.

O

1.4 Proof of Lemma 2

Proof. For any fixed 0 < 4,j < N, we regard hy (3, A) as an independent random variable for each
&k € Q5. We consider the following two cases: (i) £(fanc) < k(8) and (i) £(Banc) > K(B).

For case (i), we have A > £(8) > K(Banc) and Aane > K(Banc). Together with Claim @ and (20), we
have

wi -2 A — Rlg < hi,(Bane,) < 2B + Rlq. 9)

By using Claim [, we further obtain the following upper and lower bounds for i (3, \):

hi(B,A) > 1;2"YA — Rlg — L.
For case (ii), we have Aape > (8) > k(8) and A > k(8). We apply Claim [and have
pi - 27 A — Ly < hi(Banc, \) < 27B + L. (11)

Together with Claim [we can achieve the same lower and upper bounds as ().

Let the sample size |Q;;| = O((2? B—u;2" "' A+2LI,+2Rl4)*0 % log %) Through the Hoeffding’s
inequality [8], we have

|Q > k(BN thmz <.
Zj 5 GQ EkEC@g
O
1.5 Proof of Lemma 3
Proof. Based on Lemma [, we have
\Q LS g - 3 (BN <101 a2 +271) 4 (12)
g £L€Q; &LeCij

with probability at least 1 — . Through taking a union bound over all the cells, with probability at
least 1 — (N + 1)%n, we have

UEICRVEICRV L)Y Z |Qm BA=D Y hi(BiA

4,5 ERr€Q:j 4,7 §r€C;

Z|C’”|el (2714 27hH4

IN

IN

Z |Cijler (2771 + 277 H(Banc Aanc)- (13)

39 We also need the following claim to proceed our proof.

a0 Claim1 - |Cy512" < 3n andz |Ci7127 < 3n

1,3
Based on Claim [, we can rewrite (I3) as
n|H(B,) — H(B,\)| < 3ne1 H(Banc, Aanc)-
41 So the statement of Lemma B is true. U
Proof.(of Claim M) By the definition of C;;, we have

’L]9
ZZ:A = A, if 1 = 0;
2'A < 2a, (Banc) , Y € Ci;, ifi>1.

42 Sowehave 2/ A < A + 2a;(Banc; Aanc) forall 0 < i < N and &, € C;. Overall, we have

dICI2A=>" Y 24

4,j=0 1,7=0 £ €C;

N
S Z Z (2ak (ﬁanca)\a_nc) + A)

4,7=0 &, €C;
=2nA 4+ nA = 3nA.
43 Thus Z |C;7]2" < 3n, and we can prove Z |C;7]27 < 3n via the same manner. O
0.J 0.j

4 2 Omitted Details for Applications

45 We discuss more details for SVM in the hypercube. Suppose X = [0,]? is a d-dimensional
46 hypercube and p = 1, then by [B] and the strong duality of the linear programming, we know that
47 the WDRO of SVM is equivalent to

i Ly
ﬁ,k,sjig,pf, A0 + n 21:1 Si
it
st Ll valpl <s,
1+1l-e'z +ua, pz_—w\gsi (14)

—yzﬁ p+<z 0<z
—p <z 0§zZ

Tt =Ml <ho<s ek
a8 wheree = [1,...,1] € R% Hence h;(3, \) is equivalent to
inf. max{0,1+1-e' 2 +ax/pf 1+1-e"2 +a[p; — A}
e
s.t —yiB—pf < zj,G <zt (15)
yib —p; <z;,0< 2
Pl < A ller [l < & i € [n].
49 In this task we have
50 «k=0,C(8)=|Bll,and R <~ +1-dr;
51 * hi(B, A) is the optimal value of a constrained convex programming in (I3);
52 * For any z;r, z{,pj,pi_ satisfying the constraints in (I3), max{0,1+1-e' z +x; pJr 1+
53 l-e'z7 4+ p; —~A} is an upper bound for h;(3, \) and thus can be viewed as bi(B,).
54 Here we propose a simple strategy for determining the values for these variables.

55

57
58
59

60
61

62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80

81

RZ

83

84
85

86
87

88
89

90
91

92
93

94

If ||B]]« > A, set

+ _ Ay — _ AyiB
Pi = Tl Pi = T8l
27 = max{(—y; + H@%)B,O},z; = max{(y; — ”231@)5,0};

otherwise, set
pi = —viB,p; = vib,
zm =0,z =0.

° ai(ﬁa)‘) = é(ﬁ? gz)
3 Experiments

Our experiments were conducted on a server equipped with 2.4GHZ Intel CPUs and 256GB main
memory. The algorithms are implemented in Python. We use the MOSEK [[] to solve the tractable
reformulations of WDROs.

Compared methods We compare our dual coreset method DUALCORE with the uniform sampling
approach (UNISAMP) and the approach that directly runs on whole dataset (WHOLE).

Datasets We test the algorithms for the SVM and logistic regression problems on two real datasets:
MNIST[[A] and LETTER[B]. To simulate the scenarios where the datasets are contaminated, we
perform poisoning attacks to the training set of LETTER. Specifically, we use the MIN-MAX attack
from [B] and ALFA attack from [9]. We add the standard Gaussian noise A (0, 1) to the training set
of MNIST and randomly flip 10% of the labels. The dual coreset algorithm for the robust regression
problem is evaluated on the real dataset APPLIANCES ENERGY[Z].

Results Let m and n be the coreset size and the training set size, respectively. We set o := 7* to
indicate the compression rate and fix the parameter v = 7 for all the instances (recall that is used
for defining the distance d(&;, &;) = [|; — ;|| + 3 |ys — y;]). We vary the radius 6 of the Wasserstein
ball for different tasks. The experiment of each instance were repeated by 50 independent trials. For
the WDRO logistic regression and SVM problems, we report the averaged test accuracy and the
standard deviation in table [, B, B, @ and B, where the higher accuracy of UNISAMP and DUALCORE
is written in bold for each instance. The results suggest that our dual coreset method outperforms the
uniform sampling method with a higher accuracy in most cases. For the WDRO robust regression
task, we report the averaged test Huber loss and the standard deviation in table [, where the lower
loss of UNISAMP and DUALCORE is written in bold for each instance. The results suggest that
our dual coreset method outperforms the uniform sampling method with a lower Huber loss in most
cases. We also record the normalized CPU time (over the CPU time of WHOLE) in table [, @, B, B,
M and [2.

References

[1] M. ApS. MOSEK Optimizer API for Python 9.3.20, 2019. URL https://docs.mosek.com/
latest/pythonapi/index.html.

[2] L. M. Candanedo, V. Feldheim, and D. Deramaix. Data driven prediction models of energy use
of appliances in a low-energy house. Energy and buildings, 140:81-97, 2017.

[3] C.-C. Chang and C.-]J. Lin. Libsvm: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):1-27, 2011.

[4] R. Gao and A. J. Kleywegt. Distributionally robust stochastic optimization with wasserstein
distance. arXiv preprint arXiv:1604.02199, 2016.

[5S] W. Hoeffding. Probability inequalities for sums of bounded random variables. In The collected
works of Wassily Hoeffding, pages 409—426. Springer, 1994.

[6] P. W. Koh, J. Steinhardt, and P. Liang. Stronger data poisoning attacks break data sanitization
defenses. CoRR, abs/1811.00741, 2018.

[7] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database, 2010.

https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html

Table 1: Experimental results of the WDRO logistic regression on MNIST with o = 0.5%, 6 = 0.3

WHOLE UNISAMP DUALCORE
Ovs1 | 99.76% 94.14+6.85% 94.37+£8.05%
Ovs2 | 98.13% 87.1+10.1% 84.984+11.28%
Ovs3 | 98.78% | 84.03+12.88% | 84.38+12.57%
Ovs4 | 99.1% 87.82+12.79% | 87.91+12.11%
Ovs5 | 97.52% | 76.57+13.48% | 75.45+£13.76%
Ovs6 | 97.94% | 83.17+£12.55% | 81.05+12.84%
Ovs7 | 99.27% | 86.43+13.33% 90.78+8.8 %
Ovs8 | 98.28% | 85.57+£12.99% | 86.07+11.94%
Ovs9 | 98.53% | 88.35+10.58% 87.144+9.9%
1vs2 | 96.87% | 79.85+13.47% | 86.26+-10.54%
1vs3 | 97.58% | 83.75+14.73% | 83.17+14.87%
1vs4d | 98.97% | 87.73+12.73% 87.85+12%
1vs5 | 98.03% | 76.22+13.88% | 81.33+13.31%
1vs6 99% 85.71+£12.17% 89.324+8.2%
1vs7 | 97.73% 84.2+14.22% 87.05+12.5%
1vs8 | 95.86% | 78.95+£14.21% | 79.13+12.93%
1vs9 | 98.65% | 87.38+13.33% | 87.44+11.97%
2vs3 | 9591% | 75.71£12.87% | 76.85+12.23%
2vs4d | 97.7% 78.12+14.26% | 79.52+14.36 %
2vs5S 96.8% 75.53+14.6% 73.93+14.32%
2vs6 | 96.19% 72.44+12.3% | 75.23+11.11%
2vs7 | 96.39% | 78.54+12.56% | 86.15+10.48 %
2vs8 | 95.96% | 69.08+12.62% | 69.18+13.9%
2vs9 | 97.25% | 82.43+12.68% 81.924+12.8%
3vsd | 98.54% | 77.33+£16.52% | 85.86+13.62%
3vs5S 93.4% 62.31+10.81% | 66.12+-10.17 %
3vs6 | 98.27% | 83.06+£14.52% 88.39+9%
3vs7 | 97.41% | 81.94+10.87% | 81.99+14.57%
3vs8 | 93.84% | 65.56+t11.81% | 69.62+11.83%
3vs9 | 96.95% 78.27+151% | 79.13+14.22%
4vs5 | 97.67% | 70.83£13.86% | 75.95+13.76 %
4vs6 | 98.2% 72.75+14.89% | 72.98+14.89 %
4vs7 | 97.44% | 72.55+14.45% | 75.63+14.79%
4vs8 | 98.17% | 74.95£14.93% | 77.88+14.33%
4vs9 | 93.88% 59.14£9.01% 62.03+8.48 %
S5vs6 | 96.88% | 73.08+14.19% | 77.26+13.35%
5vs7 | 98.65% | 74.25+£15.56% | 78.55+12.74%
5vs8 | 93.8% 66.4+11.22% 65.91+£11.5%
5vs9 | 97.39% 70.1+14.81% | 72.16+13.33%
6vs7 | 9949% | 84.12+12.65% | 87.87+11.64%
6vs8 | 9791% | 78.85+13.94% | 76.58+14.58%
6vs9 | 9948% | 79.76+16.29% | 78.97+15.41%
Tvs8 | 97.75% | 79.98+14.22% | 80.97+13.48%
T7vs9 | 93.14% | 66.09£11.99% | 67.68+12.43%
8vs9 | 96.13% | 72.12+13.57% | 75.524+13.5%

Table 2: Normalized CPU time of the WDRO logistic regression on MNIST with o = 0.5%,60 = 0.3

UNISAMP | DUALCORE
Ovs1 0.01 0.021
Ovs2 0.011 0.024
Ovs3 0.013 0.029
Ovs4 0.011 0.024
Ovs5 0.008 0.017
Ovs6 0.007 0.017
0Ovs7 0.008 0.018
Ovs8 0.009 0.019
Ovs9 0.011 0.024
1vs2 0.009 0.021
1vs3 0.008 0.018
1vs4 0.008 0.017
1vs5S 0.007 0.017
1vs6 0.009 0.019
1vs7 0.011 0.023
1vs8 0.007 0.016
1vs9 0.008 0.019
2vs3 0.01 0.021
2vs4 0.007 0.017
2vsS5S 0.008 0.021
2vs6 0.01 0.023
2vs7 0.011 0.024
2vs 8 0.011 0.024
2vs9 0.008 0.019
3vs4 0.008 0.018
3vs5 0.005 0.013
3vs6 0.007 0.016
3vs7 0.009 0.02
3vs8 0.01 0.023
3vs9 0.01 0.021
4vs5 0.01 0.021
4vs6 0.009 0.02
4vs7 0.007 0.016
4vs 8 0.008 0.018
4vs9 0.007 0.017
5vs6 0.01 0.021
Svs7 0.011 0.025
5vs8 0.01 0.023
5vs9 0.012 0.025
6vs7 0.008 0.018
6vs 8 0.009 0.021
6vs9 0.007 0.015
7vs 8 0.01 0.021
7vs9 0.009 0.019
8vs9 0.008 0.018

Table 3: Experimental results of the WDRO logistic regression on LETTER under MIN-MAX attack

with 8 = 0.3
o UNISAMP DUALCORE
1% | 79.15+£14.32% | 83.86+9.67 %
2% 87.66+8.74% | 87.81+7.03%
3% 89.32+4.44% | 89.54+7.89%
4% 89.71+5.28% 90.14+5.06%
5% 90.52+4.29% 91.49+4.1%
6% 91.554+3.63% | 92.36+2.56 %
7% 91.19+3.68% | 91.67+2.92%
8% 92.514+2.82% | 91.59+3.01%
9% 92.33+2.75% | 91.57+2.56%
10% | 91.86%+2.79% | 92.57+2.08%

Table 4: Normalized CPU time of the WDRO logistic regression on the LETTER under MIN-MAX

attack with § = 0.3

o UNISAMP | DUALCORE
1% 0.04 0.103
2% 0.053 0.13
3% 0.062 0.151
4% 0.084 0.185
5% 0.105 0.237
6% 0.118 0.257
7% 0.143 0.329
8% 0.164 0.346
9% 0.132 0.278
10% 0.121 0.275

Table 5: Experimental results of the WDRO logistic regression on LETTER under ALFA attack with

0=0.3
o UNISAMP DUALCORE
1% | 78.28+12.22% | 79.86+13.56 %
2% | 79.69+11.74% | 83.17+10.4%
3% | 81.98+13.56% | 84.89+10.4%
4% 87.06+8.89% 87.63+6.38%
5% 86.14+9.29% 87.16+8.53%
6% 86.9+7.44% 88.59+6.45%
7% 87.9+7.08 % 86.86+6.85%
8% 88.23+5.22% 88.39+4.52%
9% 88.18+5.67% 88.63+4.43%
10% | 89.331+6.46 % 87.44+5.05%

Table 6: Normalized CPU time of the WDRO logistic regression on LETTER under ALFA attack

with § = 0.3

o UNISAMP | DUALCORE
1% 0.03 0.067
2% 0.033 0.076
3% 0.041 0.095
4% 0.045 0.109
5% 0.058 0.122
6% 0.06 0.137
7% 0.072 0.152
8% 0.092 0.201
9% 0.125 0.25
10% 0.099 0.217

Table 7: Experimental results of the WDRO SVM on LETTER under ALFA attack with § = 0.1

Table 8: Normalized CPU time of the WDRO SVM on LETTER under ALFA attack with § = 0.1

Table 9: Experimental results of the WDRO SVM on LETTER under MIN-MAX attack with § = 0.2

Table 10: Normalized CPU time of the WDRO SVM on LETTER under MIN-MAX attack with

o UNISAMP DUALCORE
1% | 80.29+13.98 % 79.23+13%
2% 83.86+13.7% | 87.8+11.74%
3% | 89.95+11.23% | 92.78+7.61%
4% 91.47+9.37% | 92.461+6.54%
5% 90.89+9.12% | 92.36+9.05%
6% 95.5+4.35% 94.94+5.49%
T% 94.01+£6.85% | 95.99+2.65%
8% 95.61£5.7% 96.1+2.43%
9% 94.91+6.09% | 96.43+2.23%
10% | 95.274+5.72% | 95.97+3.76 %

UNISAMP | DUALCORE
1% 0.137 0.554
2% 0.137 0.561
3% 0.121 0.546
4% 0.125 0.501
5% 0.133 0.503
6% 0.168 0.515
7% 0.228 0.695
8% 0.349 0.955
9% 0.327 0.984
10% 0.163 0.556

o UNISAMP DUALCORE
1% | 82.02+15.31% | 85.17+13.88%
2% 90.4449.08% 93.13+2.26%
3% | 90.29+10.71% | 92.17+6.62%
4% 91.29+9.01% 93.74+2.26 %
5% 93.554+2.43% 93.91+1.72%
6% 94.17+2.18% 93.13+6.47%
T% 92.68+7.33% 94.39+1.47 %
8% 94.15+2.05% 94.24+1.36%
9% 94.26+1.61% 94.04+1.28%
10% | 93.99+1.53% 94.241.67 %

0 =0.2
UNISAMP | DUALCORE
1% 0.118 0.517
2% 0.122 0.516
3% 0.11 0.445
4% 0.118 0.458
5% 0.159 0.537
6% 0.245 0.804
7% 0.33 0.965
8% 0.297 0.871
9% 0.159 0.519
10% 0.218 0.647

95
96

Table 11: Experimental results of the WDRO robust regression on APPLIANCES ENERGY with

6 =100
o UNISAMP DUALCORE
1% | 33.0933+£1.8918 | 32.3245+1.937
2% | 31.4399+1.5614 | 30.7886+1.2459
3% | 31.3852+0.6885 | 30.5185+0.4625
4% | 31.5143+0.4824 | 31.0308+0.3113
5% 31.036+0.507 30.401+0.2476
6% | 31.5388+0.3296 | 31.0017+0.1913
7% 32.239440.311 | 31.7412+0.1504
8% 30.225+0.2345 | 29.8135+0.1503
9% | 30.0463+0.2292 | 29.6167+0.1098
10% | 31.1906+0.2257 | 30.8201+0.107

Table 12: Normalized CPU time of the WDRO robust regression on APPLIANCES ENERGY with

6 =100
o UNISAMP | DUALCORE
1% 0.039 0.145
2% 0.076 0.224
3% 0.068 0.192
4% 0.072 0.207
5% 0.088 0.236
6% 0.097 0.244
7% 0.103 0.259
8% 0.157 0.348
9% 0.147 0.299
10% 0.184 0.374

[8] S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani. Regularization via mass transportation.

Journal of Machine Learning Research, 20(103):1-68, 2019.

97 [9] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli. Support vector machines under
98 adversarial label contamination. Neurocomputing, 160:53-62, 2015. doi: 10.1016/j.neucom.
99 2014.08.081.

	Omitted Proofs
	Proof of Theorem 1
	Proof of Claim 1
	Proof of Claim 2
	Proof of Lemma 2
	Proof of Lemma 3

	Omitted Details for Applications
	Experiments

