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Abstract

Wasserstein distributionally robust optimization (WDRO) is a popular model to
enhance the robustness of machine learning with ambiguous data. However,
the complexity of WDRO can be prohibitive in practice since solving its “min-
imax” formulation requires a great amount of computation. Recently, several fast
WDRO training algorithms for some specific machine learning tasks (e.g., logis-
tic regression) have been developed. However, the research on designing efficient
algorithms for general large-scale WDROs is still quite limited, to the best of our
knowledge. Coreset is an important tool for compressing large dataset, and thus
it has been widely applied to reduce the computational complexities for many
optimization problems. In this paper, we introduce a unified framework to con-
struct the ϵ-coreset for the general WDRO problems. Though it is challenging
to obtain a conventional coreset for WDRO due to the uncertainty issue of am-
biguous data, we show that we can compute a “dual coreset” by using the strong
duality property of WDRO. Also, the error introduced by the dual coreset can be
theoretically guaranteed for the original WDRO objective. To construct the dual
coreset, we propose a novel grid sampling approach that is particularly suitable
for the dual formulation of WDRO. Finally, we implement our coreset approach
and illustrate its effectiveness for several WDRO problems in the experiments.
See arXiv:2210.04260 for the full version of this paper. The code is available at
https://github.com/h305142/WDRO_coreset.

1 Introduction

In the past decades, a number of optimization techniques have been proposed for solving machine
learning problems [49]. However, real-world optimization problems often suffer from the issue of
data ambiguity that can be generated by natural data noise, potential adversarial attackers [3], or the
constant changes of the underlying distribution (e.g., continual learning [42]). As a consequence,
our obtained dataset usually cannot be fully trusted. Instead it is actually a perturbation of the true
distribution. The recent studies have shown that even small perturbation can seriously destroy the
final optimization result and could also yield unexpected error for the applications like classification
and pattern recognition [20; 50].

The “distributionally robust optimization (DRO)” is an elegant model for solving the issue of
ambiguous data. The idea follows from the intuition of game theory [41]. Roughly speaking, the
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DRO aims to find a solution that is robust against the worst-case perturbation within a range of

possible distributions. Given an empirical distribution Pn = 1
n

n∑
i=1

δξi where δξi is the Dirac point

mass at the i-th data sample ξi, the worst-case empirical risk at the hypothesis θ is defined as
RPn(θ) = sup

Q∈U(Pn)

EQ[ℓ(θ, ξ)]. Here U(Pn) is the ambiguity set consisting of all possible distri-

butions of interest, and ℓ(·, ·) is the non-negative loss function. The DRO model has shown its
promising advantage for enhancing the robustness for many practical machine learning problems,
such as logistic regression [45], support vector machine [29], convex regression [5], neural net-
works [44; 48], etc.

In this paper, we consider one of the most representative DRO models that is defined by using opti-
mal transportation [52]. Wasserstein distance is a popular measure for representing the difference
between two distributions; it indicates the minimum cost for transporting one distribution to the
other. For p ≥ 1, the p-th order Wasserstein distance between two probability distributions P and P′

supported on Ξ is

Wp(P,P′) =

(
inf

π∈Π(P,P′)

∫
Ξ×Ξ

dp(ξ, ξ′)π (dξ, dξ′)

) 1
p

, (1)

where d(·, ·) is a metric on Ξ, and Π(P,P′) is the set of all joint probability distributions on Ξ × Ξ
with the marginals P and P′. By using the above Wasserstein distance (1), we can define the ambigu-
ity set U(Pn) to be the p-th order Wasserstein ball Bσ,p(Pn), which covers all the distributions that
have the p-th order Wasserstein distance at most σ > 0 to the given empirical distribution Pn. The
use of Wasserstein ball is a discrepancy-based approach for choosing the ambiguity set [41, section
5]. Also let

RPn
σ,p(θ) = sup

Q∈Bσ,p(Pn)

EQ[ℓ(θ, ξ)] (2)

denote the corresponding worst-case empirical risk. The Wasserstein distributionally robust opti-
mization (WDRO) problem [27] is to find the minimizer

θ∗ = argmin
θ∈Θ

RPn
σ,p(θ) = argmin

θ∈Θ
sup

Q∈Bσ,p(Pn)

EQ[ℓ(θ, ξ)], (3)

where Θ is the feasible region in the hypothesis space. It is easy to see that the WDRO is a minimax
optimization problem.

Compared with other robust optimization models, the WDRO model enjoys several significant ben-
efits from the Wasserstein metric, especially for the applications in machine learning [55; 46; 6; 18].
The Wasserstein ball captures much richer information than the divergence-based discrepancies for
the problems like pattern recognition and image retrieval [43; 33; 17]. It has also been proved that
the WDRO model yields theoretical quality guarantees for the “out-of-sample” robustness [13].

However, due to the intractability of the the inner maximization problem (2), it is challenging to
directly solve the minimax optimization problem (3). As shown in the work of Esfahani and Kuhn
[13], the WDRO problem (3) usually has tractable reformulations [45; 35; 40; 29; 21; 4]. Although
these reformulations are polynomial-time solvable, the off-the-shelf solvers can be costly for large-
scale data. Another approach is to directly solve the minimization problem and the maximization
problem alternatively [39] under a finite-support assumption. Gao and Kleywegt [17] proposed a
routine to compute the finite structure of the worst-case distribution in theory. Nevertheless it still
takes a high computational complexity if the Wasserstein ball has a large support size. Several
fast WDRO training algorithms for some specific machine learning tasks, e.g., SVM and logistic
regression by Li et al. [31, 32], have been developed recently; but it is unclear whether their methods
can be generalized to solve other problems.

Therefore, it is urgent to develop efficient algorithmic techniques for reducing the computational
complexity of the WDRO problems. Coreset is a popular tool for compressing large datasets, which
was initially introduced by Agarwal et al. in computational geometry [1]. Intuitively, the coreset
is an approximation of the original input data, but has a much smaller size. Thus any existing
algorithm can run on the coreset instead and the computational complexity can be largely reduced.
The coresets techniques have been widely applied for many optimization problems such as clustering
and regression (we refer the reader to the recent surveys on coresets [36; 14]). Therefore a natural
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idea is to consider applying the coreset technique to deal with large-scale WDRO problems. Below
we introduce the formal definition of the coreset for WDRO problems.

Definition 1 (ϵ-coreset) Let ϵ be any given small number in (0, 1). An ϵ-coreset for the WDRO
problem (3) is a sparse nonnegative mass vector W = [w1, . . . , wn], such that the total mass∑n

i=1 wi = 1 and the induced distribution P̃n =
n∑

i=1

wiδξi satisfies

RP̃n
σ,p(θ) ∈ (1± ϵ)RPn

σ,p(θ), ∀θ ∈ Θ, (4)

where RP̃n
σ,p(θ) := sup

Q∈Bσ,p(P̃n)

EQ[ℓ(θ, ξ)] is the worst-case empirical risk of the coreset.

It is worth to emphasize that the above coreset for WDRO is fundamentally different from the
conventional coresets [14]. The main challenge for constructing the coreset of WDRO is from the
“uncertainty” issue, that is, we have to consider all the possible distributions in the Wasserstein ball
Bσ,p(P̃n); and more importantly, when the parameter vector θ varies, the distribution that achieves
the worst-case empirical risk also changes inside Bσ,p(P̃n).

1.1 Our Contribution

In this paper, we propose a novel framework to construct the ϵ-coresets for general WDRO problems.
To the best of our knowledge, this is the first coreset algorithm for Wasserstein distributionally robust
optimization problems. Our main contributions are twofold.

-From coresets to dual coresets. As mentioned before, it is challenging to directly construct the
coresets for the WDRO problems. Our key observation is inspired by the strong duality property
of the WDRO model [13; 4; 17]. We introduce the “dual coreset” for the dual formulation of the
WDRO problems. We can neatly circumvent the “uncertainty” issue in Definition 1 through the
dual form. Also, we prove that the dual coreset can yield a theoretically quality-guaranteed coreset
as Definition 1.

-How to compute the dual coresets. Further, we provide a unified framework to construct the dual
coresets efficiently. The sensitive-sampling based coreset framework usually needs to compute the
“pseudo-dimension” of the objective function and the “sensitivities” of the data items, which can
be very difficult to obtain [14] (the pseudo-dimension measures how complicated the objective
function is, and the sensitivity of each data item indicates its importance to the whole input data set).
Therefore we consider to apply the spatial partition approach that was initiated by Chen [9]; roughly
speaking, we partition the space into a logarithmic number of regions, and take a uniform sample
from each region. This partition approach needs to compute the exact value of the Moreau-Yosida
regularization [38], which is a key part in the dual formulation of WDRO (the formal definition
is shown in Proposition 1). However, this value is often hard to obtain for general Ξ and general
ℓ(·, ·). For instance, suppose Ξ admits a conic representation and the learning model is SVM, then
computing the Moreau-Yosida regularization is equivalent to solving a convex conic programming
[46, corollary 3.12]. For some machine learning problems, it is usually relatively easier to estimate
the bounds of the Moreau-Yosida regularization[46, Theorem 3.30]. Based on this observation, we
generalize the spatial partition idea and propose a more practical “grid sampling” framework. By
using this framework, we only need to estimate the upper and lower bounds of the Moreau-Yosida
regularization instead of the exact value. We also prove that a broad range of objective functions can
be handled under this framework.

Due to the space limit, we leave the omitted proofs, discussions and experimental results to the full
version of this paper [25].

1.2 Other Related Works

A number of coreset-based techniques have been studied before for solving robust optimization
problems. For example, Mirzasoleiman et al. [34] designed an algorithm to generate coreset to
approximate the Jacobian of a neural network so as to train against noisy labels. The outlier-resistant
coresets were also studied for computing the robust center-based clustering problems [15; 16; 24; 12].
For the general continuous and bounded optimization problems [47], Wang et al. [53] proposed a

3



dynamic framework to compute the coresets resisting against outliers. Several other techniques also
have been proposed for dealing with large-scale DRO problems, such as the PCA based dimension
reduction methods [10; 11] and the stochastic gradient optimization methods [30; 37].

2 Preliminaries

We assume the input-output space Ξ = X × Y with X ⊆ Rm and Y ⊆ R, and let P(Ξ) denote
the set of Borel probability distributions supported on Ξ. For 1 ≤ i ≤ n, each data sample is a
random vector ξi = (xi, yi) drawn from some underlying distribution P ∈ P(Ξ). The empirical
distribution Pn = 1

n

∑n
i=1 δξi is induced by the dataset {ξ1, . . . , ξn}, where δξi is the Dirac point

mass at ξi. We endow Ξ with the distance d(ξi, ξj) = ∥xi − xj∥ + γ
2 |yi − yj |, where ∥ · ∥ stands

for an arbitrary norm of Rm and the positive parameter “γ” quantifies the transportation cost on the
label. This distance function is used for defining the Wasserstein distance (1). We assume that (Ξ, d)
is a complete metric space.

In the rest of this paper, we consider the WDRO problems satisfying the following two assumptions.
The first assumption is on the smoothness and boundedness of θ. Similar assumptions have been
widely adopted in the machine learning field [56; 53].

Assumption 1 (Smoothness and Boundedness of θ [47])

(i) (Boundedness) The feasible region Θ of the parameter space for the WDRO problem (3)
is within a closed Euclidean ball B(θanc, lp) centered at some “anchor” point θanc ∈ Rd

with radius lp > 0;

(ii) (Lipschitz Smoothness2) There exists a constant L > 0, such that for any ξ ∈ Ξ and any
θ1, θ2 ∈ B(θanc, lp), we have |ℓ (θ1, ξ)− ℓ (θ2, ξ) | ≤ L ∥θ1 − θ2∥2 .

The second assumption states that the loss function ℓ(θ, ξ) is continuous and has a bounded growth
rate on data ξ. The detailed growth rate functions are discussed in Section 5.

Assumption 2 (Continuity and Bounded Growth Rate of ξ)

(i) (Continuity) The loss function ℓ(θ, ·) is continuous for any θ ∈ Θ;

(ii) (Bounded Growth Rate) There exists some positive continuous growth rate function C(θ)
and ξ0 ∈ Ξ such that

ℓ(θ, ξ) ≤ C(θ) (1 + dp (ξ, ξ0))
for any θ ∈ Θ and any ξ ∈ Ξ.

Now we state the strong duality for the WDRO, which is an important property to guarantee the
correctness of our dual coreset method.

Proposition 1 (Strong duality [13; 4; 17]) For any upper semi-continuous ℓ(θ, ·), any θ and any
nominal distribution P with finite p-th moment, the worst-case risk satisfies

RP
σ,p(θ) = inf

λ≥0
{λσp +HP(θ, λ)}, (5)

where HP(θ, λ) := EP [h(θ, λ, ξ)] and h(θ, λ, ξ) = sup
ζ∈Ξ

{ℓ(θ, ζ)− λdp(ζ, ξ)} is the Moreau-Yosida

regularization [38]. We use λP
∗(θ) to denote the λ attaining the infimum in (5).

Remark 1 By the definition of h, for any given θ ∈ Θ, we can deduce that there always exists some
λP
∗(θ) < ∞ attaining the infimum of (5).

For the sake of convenience, we abbreviate Rσ,p(θ) = RPn
σ,p(θ), H(θ, λ) = HPn(θ, λ), λ∗(θ) =

λPn
∗ (θ), and hi(θ, λ) = h(θ, λ, ξi). We define the asymptotic growth rate function

κ(θ) := lim sup
d(ξ,ξ0)→∞

ℓ(θ, ξ)− ℓ (θ, ξ0)

dp (ξ, ξ0)

2The methods proposed in this paper can be easily extended to other types of smoothness, e.g., gradient
Lipschitz continuity.
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so as to conclude the continuity of hi(·, ·) in the following two claims. Here ξ0 is the point in
Assumption 2 (ii).

Claim 1 (Continuity of hi on θ) For each i ∈ {1, . . . , n} and any fixed λ ≥ 0, we have
|hi(θ, λ)− hi(θ, λ

′)| ≤ L∥θ − θ′∥2,
for any θ, θ′ ∈ Θ with κ(θ), κ(θ′) ≤ λ.

Claim 2 (Continuity of hi on λ) For each i ∈ {1, . . . , n} and any fixed θ ∈ Rd, we have
|hi(θ, λ)− hi(θ, λ

′)| ≤ max{rpi (θ, λ), r
p
i (θ, λ

′)}|λ− λ′|, ∀λ, λ′ ≥ κ(θ),

where ri(θ, λ) := min
ζ∈Ξ

{d(ζ, ξi) | ℓ(θ, ζ)− λdp(ζ, ξi) = hi(θ, λ)} is the closest distance between ξi

and all the ζs that attain the supremum of ℓ(θ, ζ)− λdp(ζ, ξi) in Ξ.

Remark 2 The reason that we let λ ≥ κ(θ) in the above claims is that each hi(θ, λ) goes to infinity
if λ < κ(θ). Without loss of generality3, we suppose hi(θ, κ(θ)) < ∞ in this paper.

3 From Coresets to Dual Coresets

In this section, we provide the concept of “dual coreset” and prove that it is sufficient to guarantee
the correctness with respect to the WDRO coreset. First, we present the definition of the dual coreset
via directly combining Proposition 1 and Definition 1. Suppose I is an interval depending on θ (we
will discuss this assumption in detail later).

Definition 2 (Dual ϵ-Coreset) A dual ϵ-coreset for the WDRO problem (3) is a sparse non-negative

mass vector W = [w1, . . . , wn] such that the total mass
n∑

i=1

wi = 1 and

H̃(θ, λ) :=

n∑
i=1

wihi(θ, λ) ∈ (1± ϵ)H(θ, λ) (6)

for any θ ∈ Θ and λ ∈ I .

Remark 3 Note that we require the approximation guarantee holds not only for any θ ∈ Θ, but
also for any λ ∈ I in the above definition. This is also a key difference to the traditional coresets.

By the discussion in Remark 2, we know I ⊂ [κ(θ),∞). If we directly let I = [κ(θ),∞), the
dual coreset of Definition 2 requires to approximate the queries from all λ ≥ κ(θ), which is too
strong and can be even troublesome for the coreset construction. Below we show that a bounded I
is sufficient for guaranteeing a dual coreset to be a qualified WDRO coreset.

Given a non-negative mass vector W = [w1, · · · , wn], the corresponding weighted empirical distri-
bution is P̃n =

∑n
i=1 wiδξi . Recall that we define a parameter λP

∗(θ) for duality in Proposition 1.
Together with Assumption 2, we show the boundedness of the λP̃n

∗ (θ) (abbreviated as λ̃∗(θ) for
convenience) for P̃n. Let [n] = {1, 2, · · · , n}. The following result is a key to relax the requirement
for the dual coreset in Definition 2.

Lemma 1 (Boundedness of λ̃∗) Given the empirical distribution Pn = 1
n

n∑
i=1

δξi , we define the

value ρ = max
i∈[n]

{d(ξi, ξ0)} that is the largest distance from the data samples to ξ0. Here ξ0 is

defined in Assumption 2 (ii). For any θ ∈ Θ and any mass vector W , the λ̃∗(θ) of the corresponding
weighted empirical distribution P̃n is no larger than

C(θ) ·
(
2p−1 +

1 + 2p−1ρp

σp

)
, (7)

where C(θ) is defined in Assumption 2 (ii). We use τ(θ) to denote this upper bound

C(θ)
(
2p−1 + 1+2p−1ρp

σp

)
.

3It is possible that hi(θ, κ(θ)) = ∞, e.g., ℓ(θ, ξ) is the loss function of ordinary linear regression. In this
case, the argument in this paper still holds with slight modification.
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Algorithm 1 Dual ϵ-Coreset Construction
Input: The empirical distribution Pn = 1

n

∑n
i=1 δξi , the Lipschitz constant L, the “anchors” θanc

and λanc, and corresponding radii lp and ld; the parameter ϵ ∈ (0, 1); lower bound oracle ai(·, ·)
and upper bound oracle bi(·, ·) for i ∈ [n].

1. Compute A = 1
n

∑n
i=1 ai(θanc, λanc) and B = 1

n

∑n
i=1 bi(θanc, λanc).

2. Let N = ⌈log n⌉; initialize W = [0, 0, · · · , 0] ∈ Rn.
3. The dataset {ξ1, . . . , ξn} is partitioned into (N + 1)2 cells {Cij |0 ≤ i, j ≤ N} as (12).
4. For each Cij ̸= ∅, 0 ≤ i, j ≤ N :

(a) take a sample Qij from Cij uniformly at random, where the size |Qij | depends
on the parameters ϵ, lp, ld and L (the exact value will be discussed in our fol-
lowing analysis in Section 4.2);

(b) for each sample ξk ∈ Qij , assign the mass of quantity wk =
|Cij |
n|Qij | ;

Output: the mass vector W = [w1, w2, · · · , wn] as the dual ϵ-coreset.

Remark 4 (i) In practice, we usually normalize the dataset before training a machine learning
model, which implies that ρ is not large. (ii) It is worth noting that the above lemma can help us to
compute an upper bound for λ∗(θ). For example, if letting W = [ 1n , . . . ,

1
n ], (7) directly yields an

upper bound.

The following theorem shows that the query region I = [κ(θ), τ(θ)] is sufficient for obtaining a
coreset of the WDRO problem (3).

Theorem 1 (Sufficiency of the bounded query region) If we let query region I = [κ(θ), τ(θ)] in
Definition 2, the dual ϵ-coreset defined in such way also satisfies the coreset of Definition 1.

Therefore in the rest of this paper, we let I = [κ(θ), τ(θ)] in Definition 2. Theorem 1 also implies the
following corollary. So we can only focus on solving the dual WDRO problem (3) on the obtained
dual ϵ-coreset.

Corollary 1 Given α ≥ 1, we suppose the parameter vector θ0 yields an α-approximation obtained
on the dual ϵ-coreset. Then θ0 is also an (α · 1+ϵ

1−ϵ )-approximation of the original WDRO (3).

To end this section, similar to B(θanc, lp) in Assumption 2 (i), we define an interval [λanc− ld, λanc+
ld] centered at some “anchor” point λanc > 0 with radius ld > 0. To ensure that [κ(θ), τ(θ)] is within
the interval [λanc − ld, λanc + ld] for all θ ∈ Θ, we let λanc := max

θ∈Θ
{κ(θanc), τ(θ)

2 } and ld := λanc.

4 The Construction of Dual Coresets

Following the results of Section 3, we show how to compute a qualified dual coreset in this section.
Suppose we can evaluate the lower and upper bounds for each hi(·, ·) with respect to a given couple
(λanc, θanc), namely, we have

ai(θanc, λanc) ≤ hi(θanc, λanc) ≤ bi(θanc, λanc)

for 1 ≤ i ≤ n. We defer the details for obtaining such upper and lower bounds for each application
to Section 5.

4.1 The Construction Algorithm

We show the dual ϵ-coreset construction procedure in Algorithm 1, where the high-level idea is
based on the following grid sampling.

Grid sampling. Let N = ⌈log n⌉. Given the anchor (θanc, λanc), we can conduct the partitions over
the dataset based on the lower bounds ai(θanc, λanc) and upper bounds bi(θanc, λanc) separately. Let
A = 1

n

∑n
i=1 ai(θanc, λanc) and B = 1

n

∑n
i=1 bi(θanc, λanc). Then we have the following partitions.

A0 =
{
ξi | ai(θanc, λanc) ≤ A

}
, (8)

Aj =
{
ξi | 2j−1A < ai(θanc, λanc) ≤ 2jA

}
, 1 ≤ j ≤ N. (9)
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B0 =
{
ξi | bi(θanc, λanc) ≤ B

}
, (10)

Bj =
{
ξi | 2j−1B < bi(θanc, λanc) ≤ 2jB

}
, 1 ≤ j ≤ N. (11)

We denote the lower bound and upper bound partitions as A = {A0, · · · , AN} and B =
{B0, · · · , BN} respectively. Then, we compute the intersections over A and B to generate the
“grid”:

C = {Cij |Cij = Ai ∩Bj , 0 ≤ i, j ≤ N}. (12)

It is easy to see that C is a collection of disjoint “cells” and
⋃
i,j

Cij = P . For each ξk ∈ Cij , we have

µi · 2i−1A ≤ hk(θanc, λanc) ≤ 2jB (13)

where µi = 0 if i = 0 and µi = 1 otherwise. Through the grid partition C, we can take a set of
samples Qij from Cij uniformly at random, and assign the weight |Cij |

n|Qij | to each sample.

Remark 5 (i) The grid sampling is a variance reduction technique in the Monte-Carlo methods [19],
since the grid partition is also a stratification for hk(θanc, λanc) as shown in (13). If we consider
only the upper bounds bi(θanc, λanc) or the lower bounds ai(θanc, λanc), the obtained partition is
not a valid stratification for hk(θanc, λanc). (ii) If we can obtain the exact value of hi(θanc, λanc),
i.e., ai(θanc, λanc) = bi(θanc, λanc) = hi(θanc, λanc), then the grid partition is exactly the spatial
partition that was studied before [9; 53].

4.2 Theoretical Analysis

In this section we analyze the complexity of Algorithm 1 in theory. Recall that we define ri(θ, λ) =
min
ζ∈Ξ

{d(ζ, ξi) : ℓ(θ, ζ) − λdp(ζ, ξi) = hi(θ, λ)} in Claim 2. The following theorem provides an

asymptotic sample complexity of Algorithm 1. To state the theorem clearly, we define two notations
R := max

i∈[n]
θ∈Θ

{rpi (κ(θ), θ)} and H := min
θ∈Θ

λ∈[λanc−ld,λanc+ld]

H(θ, λ).

Theorem 2 Set |Qij | = Õ

((
B · B+Llp+Rld

AH

)2

· d
ϵ2

)
4 in the Algorithm 1. Then the returned W is

a qualified dual ϵ-coreset with probability at least 1 − 1
n . The construction time is O(n · timeab)

where timeab is the time complexity for computing the lower bound ai(θanc, λanc) and the upper
bound bi(θanc, λanc) for each hi(θanc, λanc).

Remark 6 Note that the value H ≥ minθ∈Θ EPnℓ(θ, ξ), which should not be too small in practice
since the loss function ℓ(·, ·) usually contains positive penalty terms. The value of R will be discussed
in Section 5.

We show the sketched proof of Theorem 2 below. Based on the continuity of hi(·, ·) and the Hoeffd-
ing’s inequality [22], for a fixed couple (θ, λ), we provide an upper bound on the sample complexity
first. The bound ensures that the estimation for each cell Cij has a bounded deviation with high
probability.

Lemma 2 Let δ be a given positive number. We fix a couple (θ, λ) ∈ B(θanc, lp)× [κ(θ), τ(θ)] and
take a uniform sample Qij from Cij with the sample size

|Qij | = O

(
(2jB − µi · 2i−1A+ 2Llp + 2Rld)

2δ−2 log
1

η

)
. (14)

Then, we have the probability

Prob

∣∣∣∣∣∣ 1

|Qij |
∑

ξk∈Qij

hk(θ, λ)−
1

|Cij |
∑

ξk∈Cij

hk(θ, λ)

∣∣∣∣∣∣ ≥ δ

 ≤ η. (15)

4Õ(g) := O(g · polylog(nLlpRld
ϵH

))
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We aggregate the deviations from all the cells to obtain the overall estimation error for the coreset.
To guarantee the approximation quality of (6), we need to design a sufficiently small value of the
deviation δ for each cell Cij under our grid partition framework.

Lemma 3 In Lemma 2, we set the deviation δ = ϵ1(2
j−1 + 2i−1)A for 0 ≤ i, j ≤ N . Then we

have

Prob
[
|H̃(θ, λ)−H(θ, λ)| ≤ 3ϵ1H(θanc, λanc)

]
≥ 1− (N + 1)2η. (16)

To generalize the result of Lemma 3 to the whole feasible region B(θanc, lp) × [0, 2ld], we apply
the discretization idea. Imagine to generate the axis-parallel grid with side length ϵ3lp√

d
× ϵ2ld inside

B(θanc, lp)× [0, 2ld]; the parameters ϵ2 and ϵ3 are two small numbers that will be determined in our
following analysis. For each grid cell we arbitrarily take a (θ, λ) as its representative point. Let G
be the set of the selected representative points; it is easy to see the cardinality |G| = 1

ϵ2
· O( 1

ϵd3
).

Through taking the union bound over all (θ, λ) ∈ G for (16), we obtain the following Lemma 4.

Lemma 4 With probability at least 1− (N + 1)2|G|η, we have

|H̃(θ, λ)−H(θ, λ)| ≤ 3ϵ1H(θanc, λanc) for all (θ, λ) ∈ G. (17)

By using the above lemmas, we are ready to prove Theorem 2.

Proof.(of Theorem 2) For any (θ, λ) ∈ B(λanc, ld) × [κ(θ), τ(θ)], we let (θ′, λ′) ∈ G be the repre-
sentative point of the cell containing (θ, λ). Then we have ∥θ − θ′∥2 ≤ ϵ3lp and |λ′ − λ| ≤ ϵ2ld.
Without loss of generality, we assume λ′ ≥ λ. By using the triangle inequality, we have

|hk(θ, λ)− hk(θ
′, λ′)|

≤|hk(θ
′, λ′)− hk(θ, λ

′)|+ |hk(θ, λ)− hk(θ, λ
′)|

≤Lϵ3lp +Rϵ2ld. (By Claim 2, Claim 1 and λ′ ≥ λ ≥ κ(θ))

(18)

The above inequality implies

|H(θ, λ)−H(θ′, λ′)| ≤ Rϵ2ld + Lϵ3lp (19)

and

|H̃(θ, λ)− H̃(θ′, λ′)| ≤ Rϵ2ld + Lϵ3lp. (20)

Overall we have |H̃(θ, λ)−H(θ, λ)|

≤
∣∣∣H̃(θ, λ)− H̃ (θ′, λ′)

∣∣∣+ ∣∣∣H̃ (θ′, λ′)−H (θ′, λ′)
∣∣∣+ |H (θ′, λ′)−H (θ, λ)|

≤3ϵ1H (θanc, λanc) + 2×
(
Rϵ2ld + Lϵ3lp

)
(By Lemma 4, (19) and (20))

(21)

By setting ϵ1 = Hϵ
9B , ϵ2 = Hϵ

6ldR
, ϵ3 = Hϵ

6Llp
and η = 1

n(N+1)2|G| and substituting them into (14), we
obtain the sample complexity as stated in Theorem 2. □

5 Applications

In this section, we show several WDRO problems that their complexities can be reduced by using
our dual coreset method.

5.1 Binary Classification

For the binary classification, Y = {−1, 1} and the loss function ℓ(θ, ξ) = L(y · θ⊤x) where L(·) is
a non-negative and non-increasing function. Let ∥ · ∥∗ be the dual norm of ∥ · ∥ on Rm. We consider
the Support Vector Machine (SVM) and logistic regression problems. The SVM takes the hinge
loss L(z) = max{0, 1− z} and the logistic regression takes the logloss L(z) = log(1 + exp(−z)).
If X = Rm and p = 1, by the result of Shafieezadeh-Abadeh et al. [46, Theorem 3.11], for both of
these two problems we have:
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• R ≤ γ, κ(θ) = C(θ) = ∥θ∥∗;

• ai(θ, λ) = bi(θ, λ) = hi(θ, λ) = max{L(yi ·θ⊤xi), L(−yi ·θ⊤xi)−λγ} for any λ ≥ κ(θ).

If X = [0, l]m is a m-dimensional hypercube with side length l > 0, hi(θ, λ) in fact is the optimal
objective value of a convex constrained programming problem. Therefore we cannot obtain the
exact value of hi(θ, λ) easily. To remedy this issue, we can invoke the upper and lower bounds of
hi(θ, λ) and conduct the grid sampling to efficiently construct the coreset.

5.2 Regression

For the regression problem, Y = R and the loss function ℓ(θ, ξ) = L(θ⊤x−y), where L(·) is a non-
negative function. Let ∥ · ∥∗ be the dual norm of ∥ · ∥ on Rm+1. We consider the robust regression
problem that takes the Huber loss L(z) = 1

2z
2 if |z| ≤ δ and L(z) = δ

(
|z| − 1

2δ
)

otherwise for
some δ ≥ 0. If p = 1 and X = Rm, by the result of Shafieezadeh-Abadeh et al. [46, Theorem 3.1],
we have

• R = 0, κ(θ) = C(θ) = δ∥(θ,−1)∥∗;

• ai(θ, λ) = bi(θ, λ) = hi(θ, λ) = L(θ⊤xi − yi) for any λ ≥ κ(θ).

6 Experiments

Our experiments were conducted on a server equipped with 2.4GHZ Intel CPUs and 256GB main
memory. The algorithms are implemented in Python. We use the MOSEK [2] to solve the tractable
reformulations of WDROs. Our code is available at https://github.com/h305142/WDRO_
coreset.

Compared methods. We compare our dual coreset method DUALCORE with the uniform sam-
pling approach UNISAMP, the importance sampling approach IMPSAMP [51], the layer sampling
approach LAYERSAMP [23], and the approach that directly runs on the whole training set WHOLE.

Datasets. We test the algorithms for the SVM and logistic regression problems on two real datasets:
MNIST[28] and LETTER[8]. To simulate the scenarios with contaminated datasets, we perform
poisoning attacks to the training set of LETTER. Specifically, we use the MIN-MAX attack from [26]
and ALFA attack from [54]. We add the standard Gaussian noise N (0, 1) to the training set of MNIST
and randomly flip 10% of the labels. The dual coreset algorithm for the robust regression problem
is evaluated on the real dataset APPLIANCES ENERGY[7].

Results. Let s and n be the coreset size and the training set size, respectively. We set c := s
n to

indicate the compression rate and fix the parameter γ = 7 for all the instances 5 (recall that γ is used
for defining the distance d(ξi, ξj) = ∥xi − xj∥ + γ

2 |yi − yj |). The experiments of each instance
were repeated by 50 independent trials. We report the obtained worst-case risk RPn

σ,p(θ∗) for each
method in table 1, 2 and 3. Due to the space limit, the detailed experimental results are placed to the
full version of this paper [25].

7 Conclusion

In this paper, we consider reducing the high computational complexity of WDRO via the coreset
method. We relate the coreset to its dual coreset by using the strong duality property of WDRO,
and propose a novel grid sampling approach for the construction. To the best of our knowledge,
our work is the first systematically study on the coreset of WDRO problems in theory. We also
implement our proposed coreset algorithm and conduct the experiments to evaluate its performance
for several WDRO problems (including the applications mentioned in Section 5). Following our
work, there also exist several important problems deserving to study in future. For example, it is in-
teresting to consider the coresets construction for other robust optimization models (e.g., adversarial
training [20]).

5We let γ = 7, which was same as the value set in [31]. We refer readers for a detailed discussion on γ to
the full version of this paper [25].
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c UNISAMP IMPSAMP LAYERSAMP DUALCORE
1% 0.72518±0.1268 0.70484±0.0915 0.70988±0.084 0.68933±0.0587
2% 0.64630±0.0344 0.65798±0.0447 0.63911±0.0305 0.63708±0.0257
3% 0.62709±0.0216 0.63015±0.0333 0.62381±0.0199 0.62546±0.0225
4% 0.62047±0.0176 0.6235±0.0183 0.61616±0.0143 0.61292±0.0149
5% 0.61338±0.0164 0.61524±0.0137 0.61013±0.0096 0.60986±0.0097
6% 0.60823±0.0084 0.61284±0.0131 0.60749±0.0119 0.60556±0.0092
7% 0.60716±0.0082 0.61198±0.0113 0.6059±0.0083 0.60381±0.0073
8% 0.60640±0.007 0.60936±0.0108 0.60376±0.0078 0.60238±0.0062
9% 0.60395±0.0066 0.60677±0.0086 0.60235±0.007 0.60056±0.0046
10% 0.60220±0.0069 0.60574±0.009 0.60007±0.0041 0.60113±0.0071

Table 1: Worst-case risk of logistic regression on LETTER, WHOLE=0.59267, σ = 0.3

c UNISAMP IMPSAMP LAYERSAMP DUALCORE
1% 0.68707±0.1094 0.66576±0.103 0.70577±0.1278 0.67866±0.1173
2% 0.59376±0.0565 0.60895±0.0683 0.58967±0.0529 0.59850±0.0548
3% 0.56860±0.036 0.57346±0.0453 0.56705±0.0377 0.56689±0.0347
4% 0.54429±0.0308 0.55050±0.0409 0.54366±0.0336 0.53634±0.0207
5% 0.53218±0.0234 0.54212±0.0295 0.52981±0.0182 0.53217±0.019
6% 0.5346±0.0248 0.53835±0.0288 0.52496±0.0177 0.52835±0.0184
7% 0.52784±0.0225 0.53388±0.0275 0.52039±0.015 0.52025±0.0147
8% 0.52246±0.019 0.51993±0.0119 0.51918±0.0126 0.51845±0.0116
9% 0.52025±0.0153 0.52402±0.0206 0.51289±0.0094 0.51196±0.0054
10% 0.51458±0.0083 0.51768±0.0166 0.51578±0.013 0.51066±0.0065

Table 2: Worst-case risk of SVM on LETTER, WHOLE=0.49734, σ = 0.1

c UNISAMP IMPSAMP DUALCORE
1% 28.57655±0.0005 28.57649±0.0004 28.57627±0.0002
2% 28.57619±0.0001 28.57617±0.0001 28.57607±0.0001
3% 28.57609±0.0001 28.5761±0.0001 28.57598±0.0001
4% 28.57600±0.0001 28.57601±0.0001 28.57593±0.0001
5% 28.57595±0 28.57598±0.0001 28.57588±0
6% 28.57593±0 28.57594±0.0001 28.57587±0
7% 28.57591±0 28.57592±0.0001 28.57585±0
8% 28.57589±0 28.57589±0 28.57584±0
9% 28.57589±0 28.57589±0 28.57583±0
10% 28.57588±0 28.57588±0 28.57582±0

Table 3: Worst-case risk of Huber regression on APPLIANCES ENERGY, WHOLE=28.57578, σ =
100. LAYERSAMP coinsides with DUALCORE for Huber regression. This is because h(θ, λ, ξi) =
ℓ(θ, ξi) for Huber regression (See Section 5.2).
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