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Abstract

Placement and routing are two critical yet time-consuming steps of chip design in
modern VLSI systems. Distinct from traditional heuristic solvers, this paper on
one hand proposes an RL-based model for mixed-size macro placement, which
differs from existing learning-based placers that often consider the macro by
coarse grid-based mask. While the standard cells are placed via gradient-based
GPU acceleration. On the other hand, a one-shot conditional generative routing
model, which is composed of a special-designed input-size-adapting generator
and a bi-discriminator, is devised to perform one-shot routing to the pins within
each net, and the order of nets to route is adaptively learned. Combining these
techniques, we develop a flexible neural pipeline, which to our best knowledge,
is the first joint placement and routing network without involving any traditional
heuristic solver. Experimental results on chip design benchmarks showcase the
effectiveness of our approach. Source code will be made publicly available at:
https://github.com/Thinklab-SJTU/EDA-AI

1 Introduction
The scale of integrated circuits (ICs) has been enlarged dramatically, posing a challenge to the existing
Electronic Design Automation (EDA) technologies. The increasing circuit density raises additional
issues for VLSI placers and routers as the component size of modern VLSI design continues to drop
and on-chip connectivity becomes increasingly sophisticated. Due to growing on-chip connectivity,
concentrated needs and restricted resources, modern designs are prone to congestion issues and
wirelength minimization, which has become a critical task at every stage of the chip design process.
Accordingly, placement and routing that physically arranges the locations and the routes of nets
become more crucial in modern VLSI systems, which are also very time-consuming.

The components of a netlist, including macros and standard cells, are mapped to positions on the
chip layout by placement, with standard cells being basic logic cells (e.g. logic gates) and macros as
functional blocks (e.g. SRAMs). Moreover, the increasingly extensive use of intellectual property
(IP) modules and pre-designed macro blocks make mixed-size placement an indispensable part of
physical design. The goal of placement is to optimize power, performance, and area (PPA) metrics
meanwhile obeying the constraints e.g. placement density and routing congestion. It is worth noting
that, in this paper we address the global routing problem, while the detailed routing involves more
physical constraints, and is beyond the scope of this paper.

Global routing, on the other hand, creates routing channels inside a layout based on the placement
assignment by connecting pins of positioned IC components to a net while adhering to technological
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limits. It is tightly coupled with the placement task, as an excellent placement solution can result in
better chip area utilization, timing performance, and routability etc. The objective of routing is to
minimize total wirelength without violating the limits of congestion and critical timing.

Differing from the traditional learning-free solvers for placement and routing, learning-based models
are recently explored and applied to (macro) placement [1, 2] and routing [3], which are mostly based
on reinforcement learning (RL). Like in vision, language and other domains, an end-to-end network
is often welcomed for the possibility for global optimization of the whole system, while such pure
neural networks for joint placement and routing remains unresolved in literature. In particular, there
are two standing issues worth further study in this paper: i) the macros are of mixed-size with varying
width/height [4], bringing difficulty to the discrete grid-based placement by (current reinforcement)
learning; ii) the scale of grid size in routing dataset e.g. ISPD-07 [5] can be intractable for RL as
currently its action has to be designed at the local grid point level [6] rather than generate the whole
routing across grids in one shot. In this paper, we aim to develop a flexible (mixed-size friendly)
approach. More ambitiously, we further aim to enable a pure neural pipeline with both learnable
placement net and routing net. Specifically, the placement part is fulfilled by a policy gradient based
RL method for macros by considering their sizes, followed with gradient-based optimization for
placing stand cells. The routing part involves a conditional generative model to finish the routing
across pins at net level. The highlights of this work are:

1) We propose an RL-based model for learning mixed-size macro placement, which differs from
existing learning-based placers [2, 1, 7] that often consider the macro by coarse grid-based mask. As
such, the placement results are more realistic and require less post-processing to resolve collision.

2) We propose a conditional generative routing network to perform routing, in one-shot for each
net. In contrast, existing RL-based solvers [6] need to perform routing step by step at grid point
level within each net, in a sequential and inefficient manner. Moreover, the order for nets to route is
adaptively optimized by learning instead of a pre-fixed one as performed in existing routers.

3) Combining these techniques, we develop a neural network-based pipeline for placement and
routing, which to our best knowledge, is the first pure neural networks for placement and routing2.

4) Experimental results on benchmarks show the relatively cost-efficiency (compared with RL-based
routing solver [6]) and competitive performance. Source code will be made publicly available.

2 Related Work

For the inter-discipline nature of this paper, we briefly introduce the necessary background and related
work to properly position our work with different communities from EDA to machine learning. Due
to page limit, classical methods for placement and routing are presented in Appendix A.1.

Learning-based Solvers for Placement. Machine learning has recently been introduced in placement
which may help reduce the heuristics. [7] devises a cyclic framework between reinforcement learning
(RL) and SA modules, in which the RL module alters the relative spatial sequence between circuit
components, while SA searches the solution space based on RL initialization. Following the seminal
work [1] of learning sequential decision-making for macro placement, the method called DeepPlace
in [2] proposes a joint learning technique for the placement and subsequent routing via RL.

Learning-based Solvers for Routing. The recent work [8] presents an attention-based RL method
for obtaining pin order within each net (rather than net order in this paper which is of much larger
size), followed by a classical pattern router. A DQN agent [6] is developed to decide on the routing
direction on a grid graph at each step. It makes up a simple 12-element vector to represent the state of
the environment. However, the model is trained on synthesized 8×8 and 16×16 grids, with no more
than 50 nets that consist of 2 or 3 pins. To make the learning more scalable, a two-page preliminary
work [9] formulates the routing of a net as an image-to-image translation and uses a variational
auto-encoder (VAE) [10] model to generate the result. However, the model is merely capable of
handling a net with no more than three pins on a 64×64 grid. Compared with classic routing solvers,
existing RL-based methods can be much more time-consuming, making the end-to-end learning of

2The recent work [2] also aims to achieve learning of both placement and routing, while for fast routing to
achieve fast rollout for fitness evaluation, it runs a heuristic rip-up and reroute algorithm while we for the first
time make the whole pipeline learnable for both placement and routing.

2



both placement and routing nets very difficult. Moreover, compared with [8] learning the pin order
inside a net, we try to learn the order for routing at the net level which is new in literature.

Generative Models for Placement and Routing. There are emerging works on introducing gen-
erative models for chip design. [11] proposes a generative adversarial network (GAN) [12] guided
well generation framework to mimic experts’ behavior from high-quality manually-crafted layouts.
[13] adopts a GAN for generating wells and guides the placement in analog circuit layout synthesis.
[14] proposes a generative model for the placement optimization of analog integrated circuit basic
blocks. ThermGAN [15] treats the thermal map estimation problem as an image-generation problem
using the generative model. [16] uses GAN to predict the congestion heatmap to assist classical
routers. The work [17] proposes a conditional GAN to solve the multi-terminal path-finding task. In
[18] the generative models are adopted to synthesize diverse layout patterns. More broadly speaking,
generative models have also been recently applied in combinatorial optimization, specifically via a
latent space learning and search scheme as done in CVAE-Opt [19]. In this paper, we adopt cGAN
to generate routes in one shot for each net by regarding the layout to be routed as an image. To our
best knowledge, no generative model has been successfully devised and applied to the pin routing
problem for each net, which in fact involves complicated and constrained routing.

3 Methodology

Approach Overview. Given a netlist as input, the goal of placement is to place the macros and
standard cells on the chip canvas, ideally with a minimized overlapping areas. Based on the placement
results, routing is performed in general to minimize the total wirelength while not violating the
constraints. For placement, we aim to flexibly and efficiently handle the mixed-size macros via an RL
scheme, and meanwhile optimize the net order for routing. For routing, we propose a conditional
generative model to obtain the routes in one-shot instead of performing sequential pin connection as
done in previous learning-based [6] as well as classic routers [20, 21]. The stacking RL placement
network and generative routing network can be learned via gradient back propagation in an end-to-end
manner, which meanwhile completes the whole task in line with the state-of-the-art learning-based
placement and routing solvers [2, 1]. Note our work is pure learning based in contrast to [2] that still
involves unlearnable classic routers in the whole pipeline. The pure neural architecture implies that
our model has the potential to enjoy higher capacity by using larger model for further improvement.

3.1 Reinforcement Learning for Mixed-size Placement

A natural idea for classical placers to address the mixed-size issue for placement is to adopt a
hierarchical approach based on partitioning. However, it sacrifices the solution quality since each
sub-problem is solved independently. Meanwhile, DeepPlace as a learning-based placer assumes
that each macro only occupies one cell in the grid graph and ignores pre-placed macros, which leads
to a severe overlap issue in the final placement result. This motivates us to extend the formulation
of DeepPlace by considering the real size of macros as well as initial placement information. We
still adopt [22] as the CNN backbone and GCN [23] as the GNN backbone which consists of three
layers that contain 16, 32 and 16 feature channels. The policy network is updated by Proximal Policy
Optimization (PPO) [24], in line with the effective setting adopted in [2]. The revised elements of the
Markov Decision Processes (MDPs) for mixed-size placement are defined as:

• State st: the state representation still consists of global image I portrayed the layout and netlist
graph H contains detailed position of placed macros, except that the initial state of I is no longer a
zero matrix In×n = O. Instead, our model preprocesses the positions of fixed macros in the dataset
and sets Ixy as 1 if (x, y) has already been occupied before placement.

• Action at: the action of RL agent is to find the central of current macro, and position (xo, yo) is
available if all points p in the region R satisfy Ip = 0, where R = {(x, y) | |x−xo| ≤ h

2 , |y− yo| ≤
w
2 } and h, w denote the height and width of the current macro respectively.

• Reward rt: to further control the overlap in the final placement, the reward at the end of episode
is a negative weighted sum of wirelength, routing congestion and overlapping area from the final
solution: RE = −Lwl − λ1 · Lcg − λ2 · Lol as weighted by λ1 and λ2.
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3.2 Conditional Generative Learning for Pin Routing in Net

The Global Routing Grid Protocol. In global routing, the physical chip is usually divided into
rectangular areas, as shown in the left part of Fig. 1. Each area is called a global routing cell (Gcell),
which corresponds to a node vi ∈ V in the grid graph G(V,E) on the right side. While each edge
eij ∈ E represents the joint boundary between abutting Gcells vi and vj . For edge e, its capacity
ce is the allowed maximum number of wires that can cross e, and the usage ue is the actual number
of wires that e has been assigned. The overflow oe = max(0, ue − ce) denotes the amount of wires
beyond ce. Each route conforms to the rectilinear Steiner tree structure [25].

Figure 1: A chip partitioned into global cells with
mixed-size macros, and its grid graph layout.

Grid-based Conditional Generative Routing.
The overall routing task is composed of numer-
ous nets whose routing can be independent to
each other. A single net consists of a series of
pins placed in the nodes of the grid graph. Thus
in this paper, we mainly consider the routing
over multiple pins in one net. Given a single net,
we formulate the one-net routing problem as the
mapping from a one-net routing image x to the
corresponding route layout image y, where x
contains three channels: 1) the locations of pins,
2) the availability of horizontal grid edges, and 3) the availability of vertical grid edges, and one
channel for y. As to the output, the value of each pixel of y denotes the likelihood of whether
this grid point belongs to the route or not. Hence, the synthesis of routes can also be viewed as a
binary classification of the pixels in y. The pixels whose likelihood is higher than the threshold are
subsequently collected to form the route. In case of disconnected routes, we apply maze routing to
refine the outcomes. In the initial design of our model, we do not adopt the random noise z, which
mainly leads to producing fairly stochastic outputs, since the routing task barely requires stochasticity.

Our routing model adopts the conditional generative adversarial framework, which has shown
effectiveness in image generation. The generator is composed of a basic generator for the input
size of 64 × 64 or below (the smaller ones are padded to 64 × 64) and an extension for the input
size of larger than 64 × 64. The discriminator consists of two sub-discriminators to estimate routes
from validity and realness perspectives. We, furthermore, design an enhanced loss to improve the
performance of our model. The structure of the generative model is visualized in Fig. 2.

3.2.1 Layout Input-size-Adapting Generator
During routing, the physical chips are decomposed into Gcells in terms of various widths and heights
as shown in Fig. 1, causing the diversity of the scale of the corresponding grid graphs. To make it
more tractable, we develop an input-size-adapting generator to handle various grid graphs.

First, we construct a basic generator, Gbase, to solve grids not larger than 64×64 as the chip is divided
into 64× 64 tiles in the macro placement stage. The architecture proposed by [26] is partly adopted
as the backbone of Gbase, which has been proven successful in generative tasks. Our basic generator
contains four components : 1) a convolutional front-end, 2) a series of residual blocks, 3) a transposed
convolutional component, and 4) a convolutional layer to generate the output.

Second, to handle larger grids, we establish another generator Glarge, which is composed by two
sub-networks: Ginner and Gouter (Gi and Go, for simplicity). Gi and Go are termed as the guiding
network and the filling network, respectively. The guiding network consists of the first three parts that
Gbase owns. In contrast, the components of filling network are similar to Gbase, and correspondingly
we use Gk

o(k = 1, 2, 3, 4) to denote them. We feed the input grid to G1
o to obtain a feature map, and

downsample the input grid to feed Gi to acquire another feature map. G2
o takes in the element-wise

sum of these two feature maps and integrates the guiding information into Go, and the hybrid feature
map then is converted into the output. The architecture of our generator is illustrated in Fig. 2(left).
We can further incrementally stack additional sub-networks on Glarge, and model compression
techniques can be used to help keep the inner network neat. While training the networks, we first
pre-train the sub-networks separately, and then we jointly train them to fine-tune the whole network.

Remarks. The CNN-based generator coincides with routing: 2-D neighborhood structure, translation
equivariance and locality. Amid routing, chips are formulated as grids, which are further transformed
into images. Routing also exhibits translation equivariance since translating a whole net with the
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Figure 2: Architecture of the proposed generative routing model using cGAN. Left Top: the
standard generator to handle grid graphs layout as input no bigger than 64×64. We pad black pixels
to those smaller than 64×64. Left Bottom: the generator for larger grids. In the input layout, the
red pixels represent pins, and the black blocks denote edges without capacity. We append Glarge to
Gbase, and the two networks are jointly trained on large grids. The element-wise sum of the feature
map of Glarge and the feature map from Gbase is fed to the residual blocks of Glarge as the input.
Right: The architecture of the bi-discriminator with two branches for connectivity and realness
scoring. These two branches are trained with connectivity labels and realness labels, respectively.

context will not change the routing result. Moreover, for each grid node, the convolution kernel
gathers the information from locally adjacent vertices, especially those directly connected to it, to
form local routing features. The holistic route is then produced. Rather than simply stacking layers
to handle long-range dependencies, the well-trained guiding network provides global information
equivalent to long-range dependencies.

3.2.2 Bi-Discriminator to Consider both Realness and Connectivity
Routing problems have an inherent constraint that all pins should be connected. Therefore we
devise a discriminator to evaluate the connectivity of the output. To effectively train the connectivity
discriminator, we develop an algorithm to accurately figure out the connectivity of each fake and real
route, and then we employ the results as labels. Connectivity alone is not sufficient to evaluate the
authenticity of the output, so we adopt another discriminator to estimate the realness of the output, as
the original discriminator in GAN. Overall, the adversarial loss of our model can be expressed as

Ladv(G,D) =
∑
i=1,2

λi (Ex,y [logDi(x, y)] + Ex [log(1−Di(x,G(x)))]) , (1)

where D1 and D2 denote the connectivity discriminator and the realness discriminator, respectively,
and λ1 and λ2 represent the corresponding weights s.t. λ1 + λ2 = 1. The discriminators share the
convolutional front-end and a stack of L = 3 convolutional and residual blocks, and then they make
evaluations from different angles as depicted in the right part of Fig. 2.

3.2.3 Enhanced Model Loss
With the cGAN objective mixed with a traditional loss, such as L1 and L2 loss, training is inefficient
as most grid points are easy negatives that cannot yield effective learning signals. In addition, tons of
trivial negatives impair the training and give rise to a degraded model, and the output, thus, inclines
to converge to an empty route. To bridge the gap between easy negatives and scarce positives, we
apply the focal loss [27] and modify it to fit our task:

LFL(G) = −Ex,y

[
1

N

N∑
i=1

α [yi(1− gi)
γ log gi + (1− yi)g

γ
i log(1− gi)]

]
, (2)

where i = 1, . . . , N represents grid points, and yi and gi respectively denotes the real and generated
value of corresponding grid point. We also incorporate the L2 loss into our objective to approach the
real routes, and because it has been found beneficial to the synthesis [28, 29].
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Figure 3: Our neural macro placement and routing pipeline. Given netlist as input, our mixed-size
agent sequentially places macros on the chip layout. Generative router is then adopted to route the
net chosen by net order agent. Inspired by EM algorithm, we update generative router by placement
result from mixed-size agent, then placement and net order agents are learned jointly in a whole
reinforcement learning framework to minimize wirelength calculated by trained generative model.

The introduction of the connectivity discriminator improves the correctness of the results, but at the
same time, it may slightly increase the wirelength. Since the wirelength has an accurate theoretical
lower bound, i.e. half-perimeter wirelength (HPWL) of the bounding box of a net, we take the
difference between the length of the generated route and the HPWL as a regularization term to
limit the wire length. We use Lr(G) = Ex [∥l(G(x))− h(x)∥1] to represent the regularization term,
where l(G(x)) denotes the length of the generated route, and h(x) denotes the HPWL of the net.

The overall enhanced objective of our model gathers the above losses:

min
G

((
max
D

Ladv(G,D)
)
+ µFLLFL(G) + µL2LL2(G) + µrLr(G)

)
, (3)

where µFL, µL2 and µr are defined as the factors of LFL , LL2 and Lr, respectively.

3.3 Neural Macro Placement and Routing Pipeline
Combining the RL-based model for learning mixed-size macro placement with one-shot generative
routing network to perform routing as we introduce above, we propose a pure neural pipeline for
macro placement and routing. Fig. 3 shows the flow of our mixed-size macro placer with adaptive
reward function between coarse HPWL estimation to wirelength from the neural router. Given the
circuit information, our mixed-size agent sequentially places the macros on the chip layout, after
which the generative model for routing is adopted to connect the net chosen by net order agent and
finally calculate wirelength as feedback. Inspired by EM algorithm, we first update the generative
router using placement result from mixed-size agent (similar to E step), then placement and net
order agents are learned jointly in a whole reinforcement learning framework to minimize wirelength
calculated by trained generative model (corresponding to M step) following a recursive pattern.

3.3.1 Reward Adaptation between Coarse HPWL and Router’s WL
HPWL is a common metric for estimating the true wirelength decided by routing. In our neural
pipeline, however, we apply a one-shot generative routing network to route all the nets directly, which
reduces bias in the reward signal. Nevertheless, it is worth noting that the untrained policy network for
placement would start with random weights so that placement results are of low quality. As a result,
the distribution of pins in a single net will spread out, which is difficult for a generative model-based
router to produce accurate route layout images. To tackle this problem, we propose an adaptive
scheme to calculate wirelength for our placement agent, integrating HPWL and neural router’s output
simultaneously. We introduce λ to scale two values and define the smoothed wirelength WLs:

WLs = λ ·WLn + (1− λ) ·HPWL (4)
where WLn is the feedback of neural router. In each iteration, variable λ is updated by function
1− e−0.01·niter . Initially, λ begins with 0 so that the wirelength is determined by HPWL that serves
as a coarse reward signal. As the training proceeds, the feedback of neural router gradually becomes
a prominent factor to provide a more accurate objective for the placement agent.

3.3.2 Learning Net Order to Route
The order in which nets are routed is one of the most critical factors that affects the routing quality [30].
Most classical routers determine the net order by heuristics, e.g., routing smaller nets earlier [31] due
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to the flexibility of finding free path. However, there are diverse definitions for “smaller net”, none
of which is proved to be optimal. What makes the situation worse, the complexity of real routing
procedure requires us to change the net order dynamically, which is hard to implement in such a
complicated system. Fortunately, our neural router divides the routing task into a series of one-net
routing problems and then solves them independently, making it convenient to learn the net order.

We build net order learning module upon the neural router by developing a RL agent to determine
which net to route next. Inspired by the structure of placement agent, the state of net order problem
consists of routing image R as a representation of current routing layout, and graph G indicating the
connectivity between nets. There are three channels of R: the locations of routed net, the capability
of horizontal and vertical grid edges. Graph G is an edge-to-vertex dual of netlist graph H , whose
vertices denote nets (i.e., hyperedges of H) and edges denote common cells between nets (i.e., nodes
of H). Note that the state of placement and net ordering tasks are quite similar while both seek to
minimize the total wirelength, we combine them into a whole RL framework by adopting same policy
network to generate feature embeddings for two tasks respectively. The united structure without
heuristic solver reflects the strongly coupled relationship between placement and routing, which
differs from [2] that merely applies router as a black box to calculate the reward.

4 Experiments
4.1 Protocols and Setup
Experiments are conducted on a server with RTX 3090 GPUs and AMD 3970X 32-Core CPU, and
implemented by PyTorch. We term our whole approach for placement and routing as PRNet.

Benchmarks & Datasets. For placement, we validate our RL agent for mixed-size macro placement
using ISPD-2005 benchmark [32] after pre-processing, such that most fixed macros are exchanged
for movable ones in line with [2]. For routing3, we choose the ISPD-07 [5] benchmarks to produce
routing instances and use the routes generated by the strong classic router [33] as training labels.

In the ISPD-07 benchmarks, some nets can contain up to hundreds of pins, but the average amount
of pins in a single net is still about 4. In other words, massive nets contain no more than 4 pins.
Therefore, the routing model should have sufficient ability to route the easy nets. From around 750K
routing instances, we collect 30K 64×64 nets as the Route-small-4 dataset whose instance contains
up to 4 pins, 80K 64×64 samples as Route-small, and 100K 128×128 samples as Route-large to
evaluate the model’s ability. Each of the three datasets is randomly divided into a training set (80%)
and a test set (20%). These three training sets are used to train generative routing models and pick up
the best one according to their performance on the test sets. Then we continue to train the best 64×64
model with additional 200K 64×64 instances and train the 128×128 model with additional 400K
128×128 instances, which is used to perform experiments on the ISPD-98 routing benchmarks [34].

Training. To train the placement and net ordering RL agent, we use PPO [24] to update the policy
network and Adam optimizer [35] is utilized with a learning rate of 2.5×10−4. For training the
routing models, we use Adam with learning rate of 2×10−4, β1 = 0.5, β2 = 0.999 and a weight
decay of 0.01. We employ a batch size of 64. A linear learning rate decay is also applied.

Evaluation. In mixed-size placement, we adopt HPWL as the proxy of wirelength and overlapping
area to evaluate both methods while we introduce wirelength (WL) and routing congestion (RC) [36]
in overall placement and routing. For routing, since there is little metric for generative routing
model, we introduce the metrics correctness rate (CrrtR) and wirelength ratio (WLR) to evaluate
the generated results of generative models on the datasets. CrrtR signifies the ratio of the amount
of connected overflow-free routes to the number of all routes, or in short the accuracy of generated
result. WLR represents the ratio of the total wirelength of connected overflow-free routes to the total
wirelength of the corresponding real routes. Lower WLR indicates that the route requires fewer wires.
In the experiments on the ISPD-98 routing benchmarks, wirelength, overflow and runtime are used.

4.2 Results on Mixed-size Placement
We compare the total wirelength together with overlapping area of our mixed-size approach with the
state-of-the-art and open-sourced method called DeepPlace [2] as shown in Table 1. Both methods
generate intermediate macro placement via RL, and then adopt gradient-based optimization placer

3In fact we have limited choice for constructing our deep model training dataset, as there is little public
dataset for training generative models for routing, and few classical routers are open-source.
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(a) Result of DeepPlace [2]. (b) Result of our mixed-size placer.

Figure 4: Visualization of macro (in orange) /standard cell (in blue) placement by DeepPlace [2] and
our mixed-size placer on circuit bigblue1. Our placer tends to place large macros in the center of
canvas to avoid overlapping, while they are close to each other on the boundary for DeepPlace.

Table 1: Comparison on mixed-size placement task on the eight circuits from ISPD-2005.

Circuit # Cells # Mov. Mixed-size technique (ours) DeepPlace [2]

Wirelength↓ Overlap Area↓ Wirelength↓ Overlap Area↓

adaptec1 211K 514 82783826 12606828 80117232 66608273
adaptec2 255K 542 123307824 19485631 123265964 47085963
adaptec3 451K 710 232373680 58588016 241072304 140272759
adaptec4 496K 1309 234008876 73075220 236391936 169853555
bigblue1 278K 551 141020208 2041890 140435296 3519755
bigblue2 558K 948 144803296 70702107 140465488 103663199
bigblue3 1097K 1227 468632064 39664931 450633360 574956948
bigblue4 2177K 659 1001315712 67794270 951984128 87630042

ratio - - 1.000 1.0 0.987 3.9

as used in [37] to obtain complete placement solution. With only a slight increase of the total
wirelength (within 1.3% difference on average), our mixed-size macro placer achieves approximately
4× reduction over DeepPlace on the overlapping area, stressing the importance of modeling macro’s
shape in state space. Moreover, the reduced overlapping area requires less post-processing to resolve
collision, which facilitates improvement of wirelength in the long term. Examples of our mixed-size
placer and DeepPlace on circuit bigblue1 are visualized in Fig. 4.

4.3 Results on Routing
Comparison of Generative Backbones. We compare our model with a CVAE based router using
CNN as the backbone [9] and use CVAE*(CNN) to denote it. We then combine the CVAE*(CNN)
with a vanilla discriminator and our bi-discriminator to build CVAE*-GAN and CVAE*-bcGAN,
following the idea of [38]. In addition, we implement a U-Net based cGAN following pix2pix [29]
and use cGAN(U-Net*) to denote it. Then we remove the discriminator to obtain a U-Net [39]
generator and define it as U-Net*. We further replace the discriminator of cGAN(U-Net*) with
our bi-discriminator. We also try to train the RL agent following the work of [6], but it fails to
converge after 2-week training. Table 2 shows the comparison results. The ResNet-based [40] models
outperform the counterparts based on CVAE*(CNN) and U-Net*. Our model achieves approximately
2× correctness rate, 14.7% improvement of the wirelength on Route-small-4 and 2.4% on Route-
small over CVAE*(CNN). The vanilla cGAN discriminator slightly improves CVAE*(CNN) and
U-Net* on one side while sacrificing the other side, and it debases the ResNet generator. However,
the bi-discriminator strengthens the generators except for the CVAE*(CNN).

Ablation Studies. We conduct ablation experiments to investigate the contributions of the design
choices in our model. In Table 2, we compare the full version with ResNet-based cGAN, as well
as the pure ResNet generator. The ResNet generator outdoes the cGAN, but the bi-discriminator
significantly improves the generator. Moreover, the enhanced loss improves the wirelength at the
marginal expense of correctness. Appendix A.3.1 contains further details of comparison among loss
functions, and Appendix A.3.2 shows the effectiveness of the input-size-adapting network.
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Table 2: Evaluation of different backbones w.r.t. correctness rate (CrrtR) and wirelength ratio (WLR)
for the routing on: Route-small-4 and Route-small. cGAN: the vanilla cGAN model with a single
realness discriminator; bcGAN: the bi-discriminator version. EL: enhanced loss in Eq. 3.

our router w/ different generative models Route-small-4 Route-small

CrrtR↑ WLR↓ CrrtR↑ WLR↓
CVAE*(CNN) [9] 0.414±0.020 1.179±0.033 0.397±0.008 1.042±0.006

CVAE*-cGAN(CNN) 0.557±0.065 1.292±0.108 0.439±0.021 1.315±0.015

CVAE*-bcGAN(CNN) 0.474±0.048 1.525±0.029 0.488±0.007 1.241±0.012

U-Net* [39] 0.724±0.001 3.306±0.266 0.524±0.005 1.232±0.016

cGAN(U-Net*) [29] 0.602±0.009 1.028±0.001 0.532±0.011 1.286±0.022

bcGAN(U-Net*) 0.721±0.012 1.134±0.055 0.552±0.007 1.104±0.054

ResNet [40] 0.783±0.002 1.023±0.003 0.594±0.004 1.030±0.007

cGAN(ResNet) 0.698±0.010 1.073±0.011 0.568±0.020 1.320±0.151

bcGAN(ResNet) 0.804±0.021 1.035±0.013 0.738±0.005 1.036±0.002

bcGAN(ResNet)+EL (full version of our router) 0.814±0.001 1.010±0.000 0.735±0.010 1.018±0.004

Table 3: Evaluation of wirelength (WL) and routing congestion (RC) for overall placement and
routing pipeline on ISPD-05 benchmark. “GR”: our generative router; “NOL”: net order learning.

Circuits RL-based Placer (i.e. DeepPlace [2]) RL-based Placer + GR RL-based Placer + GR + NOL (our PRNet)

WL↓ RC↓ WL↓ RC↓ WL↓ RC↓
adaptec1 6149 10.565 5940 10.464 5787 9.386
adaptec2 23659 46.278 23048 45.249 22977 35.504
adaptec3 30154 62.751 29711 73.324 29462 43.207
adaptec4 47933 128.257 47406 121.435 46964 65.796
bigblue1 7634 11.480 7385 12.391 7230 11.289
bigblue2 16775 26.318 16693 45.945 16617 25.498
bigblue3 42550 67.124 41617 70.187 40509 64.964
bigblue4 15847 34.903 15356 42.096 15283 24.223

Table 4: Evaluation of wirelength (WL) and runtime in seconds (Time) with three classical routers on
ISPD-98 routing benchmarks. Note that the overflow (OF) is all zero for all methods.

Circuits Our router NTHU-Route 2.0 [30] BoxRouter 2.0 [41] FastRoute 3.0 [42]

WL↓ Time(s)↓ WL↓ Time(s)↓ WL↓ Time(s)↓ WL↓ Time(s)↓
ibm01 62337 59.2 62498 1.54 62659 33 64221 0.64
ibm02 170270 179.9 169881 3.15 171110 36 172223 0.85
ibm03 146362 194.6 146458 1.49 146634 18 146753 0.49
ibm04 165874 254.4 166452 3.81 167275 116 170146 2.7

Test Results. We test our conditional generative router on the ISPD-98 benchmarks and compare the
wirelength, overflow and runtime with three classical routers that perform best on ISPD-98 bench-
marks. Table 4 shows the results. Our generative routing model presents competitive consequences
on wirelength, while it takes a longer time to accomplish the routing task, compared with strong
heuristic baselines [30, 41, 42]. Our model takes an image encoded from the whole grid with a net as
the input and sequentially solve each net in a one-shot manner, while classical routers only consider
the local area, which may obtain fewer wirelength yet consume more time. However, it is still much
more efficient and easier to train than the RL-based router [6] in our empirical experience.

4.4 Comparison with a Concurrent Version of Our Router and Other Classic Routers

By default, our generative router routes the nets sequentially (i.e. one net by one net) such that it
produces routes with lower wirelength and overflow. In another word, the batch size in the inference
stage for the deep routing network is 1 which is not common and does not release the computing
advantage of GPU. To speed up our generative router, we set the batch size to 16 in the inference
stage to enable our router to run in a concurrent manner.

However, the concurrent version may degenerate the performance of the outputs on wirelength and
overflow. As illustrated in Fig.1 in Appendix, the bounding box of net1 overlaps with that of net2,
and the bounding box of net3 is far away from them. When routing these three nets concurrently,
the routes of net1 and net2 may intersect with each other and cause conflict in the usage of routing
capacity, which leads to overflow and makes routing harder for the rest of nets.

We first test our conditional generative routing model with each net routed sequentially (i.e. a batch
size of 1) on the ISPD-98 benchmarks. In addition, we run our generative router with nets routed
concurrently (a batch size of 16), which may trade wirelength and overflow for runtime, and we
reimplement the post-processing module by C++. The sequential and concurrent variants of our
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Table 5: Evaluation of wirelength (WL), overflow (OF) and runtime (Time) with three classical
routers on ISPD-98 routing benchmarks. Sequential denotes the variant of our router sequentially
routing each net, while Concurrent represents the concurrently routing variant. Numbers including
WL, OF and time for the compared router are directly quoted from the paper BoxRouter [45] where
the hardware setting is 2.8 GHz Pentium-4 Linux machine with 2G RAM. Note ibm05 is a trivial
case as also pointed out in [45] due to the sufficient routing resources.

Circuits Our router (Sequential) Our router (Concurrent) Labyrinth 1.1 [43] Fengshui 5.1 [44] BoxRouter [45]

WL↓ OF↓ Time(s)↓ WL↓ OF↓ Time(s)↓ WL↓ OF↓ Time(s)↓ WL↓ OF↓ Time(s)↓ WL↓ OF↓ Time(s)↓
ibm01 62337 0 59.2 64094 43 17.6 75909 340 4.46 66006 189 15.1 65588 102 8.3
ibm02 170270 0 179.9 173391 25 27.1 201286 371 7.34 178892 64 47.9 178759 33 34.1
ibm03 146362 0 194.6 148629 5 24.4 187345 258 8.66 152392 10 35.2 151299 0 16.9
ibm04 165874 0 254.4 168897 142 36.1 195856 947 21.88 173241 465 54.1 173289 309 23.9
ibm05 408421 0 189.9 409356 4 43.7 420581 0 5.35 412197 0 104.8 409747 0 49.5
ibm06 278029 0 232.9 279664 27 38.2 341618 495 14.04 289276 35 80.1 282325 0 33.0

generative routing model are defined as Sequential and Concurrent, respectively. We further compare
the wirelength, overflow and runtime with three more classical routers, Labyrinth 1.1 [43], Fengshui
5.1 [44] and BoxRouter [45] in Table 5. The results of three classical routers are directly quoted
from the paper BoxRouter [45]. The experiments of classical routers are performed on a 1.4GHz
PentiumIII workstation with Linux operating system, and our generative routers are performed on
a server with RTX 3090 GPUs and AMD 3970X 32-Core CPU. We also secure the source code of
Labyrinth 1.1 and run on our machine where results are shown in Table 4 in Appendix, while the
other two routers are not open-source and are difficult to reproduce.

Table 5 shows the results. On the one hand, our sequential generative routing model outperforms
the classical routers on wirelength and overflow, while it takes a longer time, compared with strong
heuristic baselines. On the other hand, our concurrent version dramatically speeds up the running
(3.36 ∼ 7.98× speedup) of generative routing model at the expense of total wirelength and overflow,
and it still performs better than the three classical routers on wirelength and overflow, except the
overflow on ibm05 and the overflow of BoxRouter on ibm03 and ibm06. Modifying our algorithms
and finding other techniques to cut down the runtime are still being explored.

4.5 Results of Overall Placement and Routing with Ablation Study on Net Order Learning
We compare our PRNetwith DeepPlace, along with an ablation study to verify the impact of net
order learning. The circuits used for evaluation are the same as in mixed-size placement, and we
concentrate on macros only for simplicity. Note that the real shape of macros is ignored and the
grid-based mask is coarser in [2], hence the results shown in Table 3 are not identical to those in
the original paper [2]. For all test cases, our neural placement and routing pipeline outperforms the
other two methods in terms of both wirelength (WL) and routing congestion (RC). The significant
difference in routing congestion without net order learning indicates that net order agent is able to
arrange the sequence of routing efficiently, especially on circuits adaptec3 and adaptec4. As a result,
it is easy for every net to find free routing path while keeping away from congested area. In addition,
training placement model with generative neural router in an end-to-end manner further improves the
final wirelength, despite a little degradation of routing congestion if we discard the net order agent.

5 Conclusion and Outlook
We have presented a neural mixed-size placement and routing pipeline. The routing is achieved by
one-shot generation of the whole path, with our devised net order learning module to dynamically
adjust the routing order. Experimental results show the effectiveness of our approach.

Limitation & potential negative impact. The conditional generative routing model is currently
trained on the routes generated by the state-of-the-art classical router. Therefore, its performance
may be limited by the trainer. Unsupervised/semi-supervised learning is possible alternatives. For its
negative side, AI-based placement and routing may cause the lose of jobs in EDA industry.
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