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Abstract

Predicting conversion rate (e.g., the probability that a user will purchase an item) is
a fundamental problem in machine learning based recommender systems. How-
ever, accurate conversion labels are revealed after a long delay, which harms the
timeliness of recommender systems. Previous literature concentrates on utilizing
early conversions to mitigate such a delayed feedback problem. In this paper,
we show that post-click user behaviors are also informative to conversion rate
prediction and can be used to improve timeliness. We propose a generalized de-
layed feedback model (GDFM) that unifies both post-click behaviors and early
conversions as stochastic post-click information, which could be utilized to train
GDFM in a streaming manner efficiently. Based on GDFM, we further establish a
novel perspective that the performance gap introduced by delayed feedback can
be attributed to a temporal gap and a sampling gap. Inspired by our analysis, we
propose to measure the quality of post-click information with a combination of
temporal distance and sample complexity. The training objective is re-weighted
accordingly to highlight informative and timely signals. We validate our analysis
on public datasets, and experimental performance confirms the effectiveness of our
method.

1 Introduction

Conversion rate (CVR) prediction has become a core problem in display advertising with the
prevalence of the cost-per-conversion (CPA) payment model[1–3]. With CPA, advertisers bid for
predefined user behaviors such as purchases or downloads. Similar demands also arise from online
retailers that aim to improve sales volume[4], which need to recommend items with high conversion
rates to users. However, conversions (e.g., purchases) may happen after a long delay [5], which leads
to a delay in conversion labels. The adverse impact of such a delayed feedback problem becomes
increasingly significant with a rapidly changing market, where the features of users and items are
updated every second. Thus, how to timely update the CVR prediction model with delayed feedback
attracts much attention in recent years [5–11].

Since conversions are gradually revealed after click events, previous literature concentrates on
utilizing available conversion labels that reveal earlier. Inserting early conversions into the training
data stream will also introduce many fake negative samples [6], which will eventually convert but
have not converted yet. To mitigate the adverse impact of fake negatives, Chapelle [5] proposes a
delayed feedback model (DFM) to model conversion rate along with expected conversion delay, then
the model is trained to maximize the likelihood of observed labels. The delayed feedback model
is further improved by introducing kernel distribution estimation method [12] and more expressive
neural networks [10, 13, 14]. However, the need to maintain a long time scale offline dataset impedes
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training efficiency of DFM based methods in large scale recommender systems[6]. To enable efficient
training in a streaming manner, Ktena et al. [6] proposes to insert a negative sample once a click
sample arrives and re-insert a duplicated positive sample once its conversion is observed. The fake
negative samples are supposed to be corrected by an importance sampling[15] method. Importance
sampling based methods are further improved by adopting different sampling strategies [7–9, 16].

Besides the conversion labels, many events related with conversion exist in real-world recommender
systems[17–19]. For example, after clicking through an item, a user may decide to add this item
to a shopping cart. Statistical data reveals that such post-click behaviors have a strong relationship
with conversions: About 12% of items in a shopping cart will finally be bought, while the proportion
is less than 2% without entering a shopping cart[17]. Intuitively, utilizing post-click behaviors
can potentially mitigate the delayed feedback problem in CVR prediction since the time delay of
post-click behaviors is usually much shorter than conversions. However, the corelations between
post-click behaviors and conversions are far more complex than only considering conversions, and
the problem is further complicated by the streaming nature of training with delayed feedback.

In this work, we propose a Generalized Delayed Feedback Model (GDFM) which generalizes the
delayed feedback model (DFM)[5] to unify post-click information and early conversions. Based on
GDFM, we establish a novel view on learning with delayed feedback. We argue that training using
post-click information in the delayed feedback problem is intrinsically different from traditional
learning problems from three perspectives: (i) Estimating conversion rates via post-click actions
requires more samples than using conversion labels directly, which highlights the importance of
sample complexity. (ii) The post-click actions bring information of past distributions, which incurs
a temporal gap. (iii) The signals provided by post-click actions are highly stochastic and lead to
large variance on the target model during training, which may instead hinder the performance of
the conversion rate prediction. Inspired by our analysis, we propose to (i) measure the information
carried by a post-click action with conditional entropy, which we empirically show is related to the
sample complexity of estimating the conversion rate; (ii) measure the temporal distribution gap by
time delay; (iii) stabilize streaming training with a regularizer trained on past data distribution. We
conduct various experiments on public datasets with delayed feedback under a streaming training and
evaluation protocol. Experimental results validate the effectiveness of our method. To summarize,

• We propose a generalized delayed feedback model (GDFM) to support various user behaviors
beyond conversion labels and arbitrary revealing times of user actions.

• From a novel perspective, we attribute the difficulty of efficiently utilizing user behaviors to
a sampling gap and a temporal gap in delayed feedback problems.

• Based on our analysis, we propose a re-weighting method that could selectively use the
user actions that are most informative to improve performance. Our method achieves stable
improvements compared to baselines.

2 Background

In recommender systems, the data stream is collected from user behavior sequence. Without loss
of generality, we take an E-Commerce search engine as an example, while a similar procedure also
holds for display advertising[2, 3] and personalized recommender[4]. When a user searches for a
keyword, the search engine will provide several items for this user. Here, a (user-keyword-item) tuple
is called an impression, which corresponds to a sample x. After viewing an item’s detail page, the
user may purchase it. The probability that a user will buy after clicking is called conversion rate
(CVR). Conversion can be any desired user behavior, such as registering an account or downloading
a game. Without loss of generality, we only consider one type of conversion in the rest of this paper,
while our method can be applied to multi-class case[20] without modification. If an impression
sample x is finally converted, it will be labeled as y = 1 and y = 0 otherwise. The conversion rate
of x corresponds to p(y = 1|x).
The distribution p(x) and p(y|x) changes rapidly in real-world recommender systems. For example,
when a promotion starts, the conversion rate may increase steeply for items with a large discount,
and such promotion happens every day. The CVR model has to be updated timely to capture
such distribution change. However, the ground-truth conversion labels are available only after a
long delay: Many users purchase several days after a click event x[5]. Usually, a sample will be
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(a) Proxy feedback loss (b) Network architecture

Figure 1: (a) The proxy feedback loss on the jth action aj . (b) The neural network architecture of
GDFM.

labeled as negative after a long enough waiting time, e.g., 30 days[5], this delay time of conversion
label is denoted as δy. Besides conversion labels, post-click actions (behaviors) are denoted as
aj , j ∈ {1, ...,m}. Each action aj is paired with a revealing time δj , which means the value of aj
is determined after a δj delay. For example, we can query the database to see whether a user has
put an item into the shopping cart 10 minutes (δj) after clicking. If true, this action is labeled as
aj = 1, and aj = 0 otherwise. There can be several revealing times for a single type of action, e.g.,
we may choose to reveal the shopping cart information at 10 minutes, 30 minutes and 1 hour, they
are treated as different actions since the revealing time is different. It is noteworthy that revealing
the conversion labels is also treated as a type of action. To capture the characteristic that the data
distribution changes along with time, the data distribution is denoted by pt(x,y) = pt(x)pt(y|x) at
time t. Our goal is to predict pt(y|x) at time t by training a model qθ(y|x), where θ denotes model
parameters. Without data distribution shift, it is straightforward to optimize likelihood by sampling
from pt. However, in the delayed feedback problem, the latest available labels have a δy delay. Thus,
simply training using available labeled data will lead to qθ(y|x) = pt−δy (y|x) instead.

3 Generalized Delayed Feedback Model

We propose the following generalized delayed feedback model to describe the relationship between
data features x, conversion labels y, post-click actions a, revealing time of actions δ, and data
distribution at time t:

pt(x,y,a, δ) = pt(y|x)p(a|x,y, δ)p(δ)pt(x) (1)

Our formulation unified previous delayed feedback models[5, 10–12] while enable more general
feedback and revealing times. pt(y|x) is the target CVR distribution, we assume that pt(y|x) is
independent to user actions a, which enables us to extend the existing CVR prediction framework
seamlessly. To model the post-actions, we introduce a post-action distribution p(a|x,y, δ), which
depends on sample features x, the conversion label y, and the revealing time δ. We assume the post-
action distribution p(a|x,y, δ) is fixed or changes much slower than pt(y|x), so that the post-action
distribution does not depend on time t. This assumption is critical for learning under delayed feed-
back since the relationship between post-actions and conversion should be stable so that post-actions
can be informative. Previous literature also relies on similar assumptions implicitly, for example,
a predictable delay time of conversion[5] or a loss function that depends on a stable post-action
distribution in our formulation[7–9]. Our formulation decouples the post-action distribution and
the conversion distribution, which enables us to formulate this assumption explicitly and conduct
further analysis based on this assumption. An alternative but more intuitive definition is to define
pt(x,y,a, δ) = pt(a|x, δ)p(y|x,a, δ)p(δ)p(x), which requires to sum out a and δ to make a pre-
diction. We discuss this approach in the supplementary material. We further introduce a revealing
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time distribution of post-actions p(δ), which is independent of other variables. δ is also known as the
elapsed time in previous literature [5, 8]. The revealing time enables us to inject action information at
controllable time δ, which is typically less than δy so that the model can be updated much earlier. We
introduce a streaming training method of GDFM in the next section.

3.1 Training GDFM

We introduce an action prediction model qϕ(a|x,y, δ) to estimate the action distribution p(a|x,y, δ),
the CVR prediction model is denoted as qθ(y|x), which will be used to predict the conversion rate
pt(y|x). In the data stream, not all the information in GDFM defined in Eq. (1) is available at
that same time, so we propose a streaming training method for GDFM that can utilize available
information in the data stream. According to the availability of a, y, there are several different cases.
We assume the current timestamp is t.

When a,x,y is available The action prediction model qϕ(a|x,y, δ) can be trained with following
loss when a, x and y are available.

Laction = −Ept−δy log qϕ(aj |x,y, δj) (2)

Note that with the assumption that p(aj |x,y, δj) is invariant with respect to t, loss Eq. (2) will be
minimized when p(aj |x,y, δj) = qϕ(aj |x,y, δj).

When y,x is available When we have the ground-truth label of y, we are able to update the CVR
model directly by minimizing cross entropy.

Lδy = −Ept−δy log qθt−δy (y|x) (3)

Note that this loss is minimized when pt−δy (y|x) = qθt−δy (y|x).

When a,x is available Since the delay times of user actions (δj) are smaller than the conversion
label delay δy, we can update the CVR model once a user action is observed. When we observe the
jth user action aj at revealing time δj , we can update the prediction model qθ(y|x) using following
proxy feedback loss:

L′
δj = −Ept−δj log q(aj |x, δj) = −Ept−δj log

∑
y

qϕ(aj |x,y, δj)qθ(y|x) (4)

which is depicted in Figure. 1 (a). However, it is unclear whether minimizing Eq. (4) will help
learning pt(x|y).

3.2 Narrowing the delayed feedback gap with post-actions

The training objective of the proxy feedback loss can be viewed as a multi-task training problem with
different actions, which is also explored by Hou et al. [10] and Li et al. [11]. However, learning with
delayed feedback is different from general multi-task learning problems without delayed feedback.
In learning with delayed feedback, since we are training on different data distribution at different
times, the tasks are intrinsically conflicted, which may be harmful to the target [10, 21]. We analyze
its effect in the following sections.

3.2.1 Post-actions can be informative

Since in GDFM we are using post-actions from t − δj instead of t − δy, we have a chance to do
better. But will optimizing Eq. (4) improve the performance of q(y|x)? Without loss of generality,
we consider an action a ∈ {a1, ..., ak}, and p(a|x) =

∑
y p(y|x)p(a|x,y) (condition on δ omitted),

y ∈ {y1, ..., yn}. Assuming we can estimate p(a|x) accurately and k ≥ n, we have following results:

Lemma 3.1. Use a matrix Mx ∈ Rk×n to denote the conditional probability p(a|x,y), where
(Mx)ji = p(a = aj |x,y = i). We can recover p(y|x) from p(a|x) if and only if rank(Mx) = n.

Proof sketch: p(a|x) is a linear transformation from p(y|x) and the transform matrix is given by
Mx. By construction, a solution exists and rank(Mx) = n guarantees that the solution is unique.
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Lemma. 3.1 highlights the benefits of utilizing post-actions: if the relationship between a post-
action and the target is predictable (we can train a model q(a|x,y) to approximate p(a|x,y)) and
informative (rank(M) = n) we can recover the target distribution even without the ground-truth
label y. Since rank(M) < n requires that some rows of M are linear combination of the others,
which rarely happens in real-world problems, we assume the assumption holds true in the next section.
We discuss the case that this assumption fails in Section. 3.2.4. However, even if rank(M) = n,
recovering p(y|x) is still challenging. Because we are estimating p(a|x) using samples from p(a|x),
and the difficulty of estimating p(y|x) via estimating p(a|x) also depends on properties of p(a|x,y).

3.2.2 Measuring information carried by actions

Not all actions carry the same amount of information about p(y|x). For example, an action may
carry zero information about y if it is constant and irrelevant to y; it may carry full information if it
always equals y. The general relationship between a and y is far more complex, which lies between
non-informative and fully informative. We want to estimate the information quantity of each action
to utilize actions more efficiently. To this end, we propose to use conditional entropy to measure
information carried by actions. The conditional entropy of y given a can by calculated by

H(y|a) =
∑
a,y

p(y,a) log
p(a)

p(y,a)
(5)

Conditional entropy measures the amount of information needed to describe y given the value of
a. When a is non-informative to y, that is p(a,y) = p(a)p(y), we have H(y|a) = H(y), which is
the maximum value of H(y|a); when a determines value of y, that is, there is a function y = f(a),
we have H(y|a) = 0. Since the scale of H(y|a) only depends on p(y), this information metric is
comparable among different a, which is a desired property.
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Figure 2: Conditional entropy and
transformed distance.

Empirically, we found that conditional entropy is also related
to the sample complexity of estimating p(y|x) via p(a|x) =∑

y p(a|x,y)p(y|x) (δ omitted) as in Eq. (4). In learning
with delayed feedback, we are sampling from different dis-
tribution pt at different time stamp t, which indicates that to
perform well, we should be able to learn fast. Thus, analy-
sis that is based on a large amount of i.i.d samples from a
fixed distribution can’t capture the difficulty of learning with
delayed feedback. Property testing [22] considers sample com-
plexity of learning distributions. Specifically, distinguishing
between two discrete distributions p and q with a probability
at least 1− ϵ requires Ω( 1

D2
TV(p,q)

log 1
ϵ ) samples from q and p.

Where DTV is the total variance distance which is defined by
DTV(p, q) =

∑
i |p(i)− q(i)|. Since we are estimating p(y|x)

through a proxy distribution p(a|y), the sample complexity
depends on how close the transformed distribution p(a|x) is.
Empirically, we found that using p(a|x) will make p(y|x) more difficult to learn, that is, the distance
of two distribution p1(y|x) and p2(y|x) will decrease when they are transformed to p1(a|x) and
p2(a|x) correspondingly. So the difficulty of learning p(y|x) via p(a|x) depends on the change of
distribution distance incurred by the stochastic transformation p(a|y). We empirically investigate
the relationship between the change of distribution distance and conditional entropy by Monte Carlo
sampling, the results in Figure. 2 indicate that as the conditional entropy increases, the transformed
distribution distance decreases exponentially, which motivates the following information weights

winfo(p(aj ,y)) = e−αH(y|aj) (6)

where α is a hyper-parameter. Eq. (6) roughly measures the reciprocal of sample complexity of
learning pt−δj (y|x) via pt−δj (aj |x), so that actions are weighted based on their effective information
carried by each sample.

3.2.3 Measuring temporal gap

Besides the sample complexity of estimating pt−δj (y|x) via action distribution, the intrinsic temporal
gap between pt and pt−δj also influence the predicting performance. Even if we have unlimited
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samples from pt−δj we are only able to recover pt−δj (y|x) instead of pt(y|x). So we also need to
take the revealing time δj into consideration. However, we can’t estimate the gap between pt−δj

and pt accurately since the exact distribution is unknown and changes along with time. Empirically
(Figure. 3) we found that the gap measured by KL divergence tends to increase as the time gap
increases. So we propose the following temporal weight

wtime(δj) = e−βδj (7)

which measures the gap between pt and pt−δj . β is a hyper-parameter that reflects the expected
changing speed of data distribution along with time, larger value of β indicates that we discard more
information from stale data.

Overall, we introduce a weight on loss Eq. (4) as follows:
wj = w(p(aj ,y), δj) = winfo(p(aj ,y))wtime(δj) (8)

For simplicity, our wj does not depend on x, the extension to x dependent weights is straightforward.
The weight wj can be decomposed into two components, the first component winfo measures how
informative action aj is to the target y. The second component wtime measures the gap between pt

and pt−δj . The procedure of calculating weight vector w ∈ Rm is summarized in Algorithm. 2.

Algorithm 1 Streaming training of GDFM
1: for {x,y,a, δ} in data stream do
2: for {x,y,a} that y is unlabeled do
3: Update qθ(y|x) with Eq. (10).
4: end for
5: for {x,y,a} that y is labeled do
6: Update qϕ(a|x,y, δ) with Eq. (2).
7: Update qθt−δy (y|x) with Eq. (3).
8: end for
9: end for

Algorithm 2 Estimating wj

Input: Dataset {y,a}
Parameter: α, β.

1: Estimate p(a,y) by counting.
2: Calculate H(y|a) with Eq. (5).
3: Calculate winfo with Eq. (6).
4: Calculate wtime with Eq. (7).
5: Calculate weights wj with Eq. (8).
6: Normalize w to have mean(w) = 1.

3.2.4 Reducing variance by delayed regularizer

Estimating probability with sampling will incur instable variance during stream training, which may
harm performance. Since we are estimating using a stochastic proxy p(a|x), the variance will be
even higher. To reduce variance and stabilize training, we introduce a regularizer loss Eq. (9) that
constraints update step during training, where qθt−δy (y|x) is trained with loss Eq. (3).

Lreg = KL(qθt−δy (y|x)||qθ(y|x)) (9)
Besides reducing variance during training, another critical function of Lreg is to make GDFM safe
to introduce more actions. The analysis in Section. 3.2.1 shows that if an action is informative,
we can learn p(y|x) through p(a|x). However, if rank(M) < n (typically because k < n) or the
information carried by p(a|x) is too weak to recover p(y|x) as analyzed in Section. 3.2.2, GDFM
may fail to learn p(y|x) because of interference from action signals. The regularizer loss Lreg

introduces the ground-truth labels of y from pt−δy , which guarantees that the performance learned by
GDFM will not be much worse than pt−δy (the Vanilla method in experiments). In this perspective,
Lreg make it safer to introduce various post-click information into our training pipeline without
worrying about sudden performance drop, which is critical in production environments. The overall
loss function with revealing time δj is

Lδj = wjL′
δj + λLreg (10)

The streaming training procedure of GDFM is summarized in Algorithm. 1.

4 Experiments

4.1 Datasets and data analysis

We use two large-scale real-world datasets: 1) Criteo Conversion Logs2 is collected from an online
display advertising service within 60 days and consists of about 16 million samples with conversion

2https://labs.criteo.com/2013/12/conversion-logs-dataset/
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labels and timestamps[5]. 2) Taobao User Behavior3 is a subset of user behaviors on Taobao
collected within 9 days and consists of more than 70 million samples and 1 million users[23]. Taobao
dataset provides user behaviors within (page-view, buy, cart, favorite).

Figure 3: (Left) Conditional entropy (orange) and temporal gap (blue) changes along with time in
Criteo dataset. (Right) In Taobao dataset, the conditional distribution p(a|y) (bar) is stabler than
conversion rate (line).

We conduct data analysis on the datasets to validate our assumption on GDFM. The results are
depicted in Figure. 3. First, we investigate the change of conversion rate distribution p(y|x). Since
exact p(y|x) is not available, we train a CVR model on the first 30 days to estimate the conversion
rate at the 30th day, which is denoted as p0(y|x). Then we fine tune this model day by day to estimate
the conversion rate at pt(y|x), here t denotes the tth day. In this way, we can estimate the temporal
gap between p0(y|x) and pt(y|x) by their Kullback-Leibler divergence DKL(p

0||pt). In Figure. 3
(Left) we can see that the temporal gap grows along with time, which necessitate the analysis of time
dependent conversion distribution pt(y|x) in Section. 3. Secondly, we investigate the information
quality of actions with conditional entropy as proposed in Section. 3.2.2. Specifically, we use the
observed conversion at revealing time δ as post-action Aδ , and vary the revealing time from 0 to 30
days. We can infer from Figure. 3 (Left) that the information carried by this action steadily increase
(the conditional entropy decrease) along with time, which is intuitive that the latter actions are more
informative. Thirdly, we investigate the relationship between post-click actions and conversions. We
plot the conversion rate and the proportion of cart and favorite actions in converted samples (which
corresponds to p(a = 1|y = 1)) in the Taobao dataset in Figure. 3 (Right). We can see that the action
distribution p(a = 1|y = 1) is stabler comparing to conversion rate, which conforms our assumption
of stable action distribution in Section. 3.

4.2 Evaluation

Streaming evaluation 4 We follow a streaming evaluation protocol proposed by Yang et al. [8].
Specifically, the datasets are split into pretraining and streaming datasets. An initial conversion
rate prediction model as well as auxiliary models (e.g., the importance weighting model in ESDFM
and action distribution model qϕ in GDFM) are trained on this pretraining dataset to simulate a
stable state after a long time of streaming training in real-world recommender systems. Then the
models are evaluated and updated hour by hour in the streaming dataset. Each method is trained
with the available information at the corresponding timestamps. Following practice in [8–10, 16],
we report the receiver operating characteristic curve (AUC), precision-recall curve (PR-AUC) and
negative log-likelihood (NLL). The metrics are calculated within each hour. We report the average
performance on the streaming dataset.

Baseline methods To evaluate the performance of GDFM, we compare with the following methods:
1) Pretrain: The CVR model is trained on the pretraining dataset, then fixed in streaming evaluation.
The following methods start with this pre-trained model at the beginning of the streaming evaluation.
2) Vanilla: Wait for δy time, then use conversion labels to train the model. 3) Oracle: Use conversion
labels to train without delay. The oracle method corresponds to the upper bound of performance

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1&lang=en-us
4code available at https://github.com/ThyrixYang/gdfm_nips22
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with feedback delay. We compare two representative importance sampling methods. 4) FNW[6]: A
sample is labeled as negative on arrival, and a duplicate is inserted once its conversion is observed.
The fake negative weighted (FNW) loss adjusts the loss function; 5) ES-DFM[8]: After waiting for
a predefined time, a sample is labeled as negative if conversion has not been observed. If a sample
converts after the waiting time, a duplicate is inserted. The loss function is adjusted by the ES-DFM
loss. We also compare with a multi-task learning method based on DFM. 6) MM-DFM[10]: Treating
predicting the observed conversion label as a multi-task learning problem, the tasks are optimized
jointly using streaming data.

Table 1: Performance of compared methods on Criteo and Taobao dataset. The Pretrain method
corresponds to 0%, and the Oracle method corresponds to 100%, their absolute performance is in
parentheses. We also report the standard deviation of each method with 5 different random seeds.

Method
Criteo Taobao

AUC PR-AUC NLL AUC PR-AUC NLL

Pretrain 0.0%(0.815) 0.0%(0.607) 0.0%(0.414) 0.0%(0.703) 0.0%(0.054) 0.0%(0.084)

Vanilla 25.2±0.2% 25.1±0.2% 24.6±0.1% 58.9±0.8% 61.7±1.7% 46.0±1.9%
FNW[6] 62.0±0.3% 43.1±0.5% 40.3±1.2% 39.6±0.8% -30.5±1.7% -361±12%
ES-DFM[8] 71.4±0.5% 63.3±1.1% 66.2±1.2% 62.6±0.7% 19.6±3.2% -214±1.2%
MM-DFM[10] 69.7±1.2% 39.2±6.7% 54.2±3.6% 59.8±3.6% 62.1±2.6% -14.9±10.5%
GDFM(ours) 74.9±0.7% 68.1±1.6% 72.4±0.6% 79.4±0.5% 80.7±0.9% 49.6±3.1%
Oracle 100%(0.841) 100%(0.642) 100%(0.389) 100%(0.724) 100%(0.063) 100%(0.083)

Implementation Following [8, 9], we discretize and treat numerical features the same as categorical
features in the Criteo dataset. Since the Taobao dataset does not provide user features, we use the last
5 user behaviors as features[23]. Inspired by Weinberger et al. [24], we hash user ID and item ID into
bins and use an embedding to represent each bin. We use the same architecture for all the methods
to ensure a fair comparison. All the methods are carefully tuned. We use α = 2, β = 1, λ = 0.01,
lr = 10−3 for GDFM. The network structure and procedure to calculate the proxy feedback loss Eq.
(4) used by GDFM is depicted in Figure. 1 (b).

The performance is reported in Table. (1). Following [8, 9, 16], we report the relative improvement
of each method to the performance gap between the Pre-trained model and the Oracle model. From
the results, we can infer that, 1) GDFM performs significantly better than compared methods. 2) It is
noteworthy that FNW and ES-DFM brings a significant negative impact to NLL on the Taobao dataset,
which is caused by the fake negative samples introduced by them; 3) The performance of FNW
and MM-DFM has a more considerable variance compared with ES-DFM and GDFM (especially
NLL on Taobao), since ES-DFM uses a fixed weighting model to re-weight its loss, which has a
similar effect to GDFM’s explicit regularizer that can stabilize training; 4) On the Criteo dataset,
GDFM outperforms other methods without using post-click information other than conversion labels,
which indicates that our information measure is effective for early conversions; 5) On the Taobao
dataset, GDFM also utilizes post-click information such as cart and favorite. The results indicate that
introducing rich post-click information into GDFM can improve the performance of CVR prediction.

4.3 Experimental analysis of GDFM

To further investigate the source of performance gain of GDFM, we construct several experiments.
First, we remove the effect of information weights and the regularizer loss by setting the coefficients
to zeros correspondingly. The results reported in Table. (2) indicate that the performance of GDFM
is a combined effect of different components. Without α and λ, the performance drops significantly,
which indicates that sample complexity and training variance are influential factors in the Criteo
dataset. Dropping β has relatively little influence to performance, which indicates that the temporal
gap in the Criteo dataset has a weaker influence.

Secondly, to validate the capacity of GDFM to deal with more actions, we construct an additional
user action in the Criteo dataset. This action is set to the same as y with a probability p, and
set to 1 − y with probability 1 − p. In this way, we can investigate how the information mea-
sure influences the performance of GDFM. We report the results with different p in Table. (3).
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Table 2: Effect of hyper-parameters on Criteo.

Method AUC PR-AUC NLL

w/o α 0.8333 0.6244 0.3983
w/o β 0.8343 0.6314 0.3964
w/o λ 0.8339 0.6226 0.3988
GDFM(full) 0.8349 0.6311 0.3960

Table 3: Adding more actions.

p Entropy AUC PR-AUC NLL

0.500 0.529 0.835 0.631 0.396
0.800 0.394 0.836 0.634 0.394
0.900 0.264 0.839 0.638 0.392
0.950 0.166 0.840 0.641 0.391

When p = 0.5, the newly inserted action does not contain information about y, and the perfor-
mance does not decrease, which indicates that GDFM can extend to more actions safely; When
p > 0.5, the action becomes more informative, and the performance of GDFM steadily improves,
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Figure 4: Information weights on the
Criteo dataset.

which indicates that GDFM can utilize the information
carried by actions efficiently; When p = 0.95, the action
is highly informative to y, the performance approaches
Oracle, which indicates that GDFM can efficiently extract
information from high-quality action features.

Thirdly, we plot the weigths winfo, wtime and w correspond-
ing to different revealing time δ, with α = 2, β = 1 as
in other experiments. We can infer from the Figure. 4
that 1) the information carried by actions increases as the
revealing time increases; 2) the temporal gap enlarges as
the revealing time increases; 3) the combined informa-
tion weights w reaches its maximum value on the 7th day,
which indicates that the information revealed on the 7th
day is most informative to conversion prediction. Informa-
tion revealed at other times still has non-negligible weights
that influence training.

5 Related work and discussion

Delayed feedback model (DFM) [5] firstly introduces survival analysis[25, 26] to deal with the
delayed feedback problem. The following methods predict the probability of whether a user converts
before a predefined waiting time[8–10]. However, how to define the strategy of duplicating training
samples varies among previous literatures[8–10, 16]. On the contrary, the revealing time distribution
is explicitly defined in GDFM, which indicates that each sample should be duplicated once at a
revealing time. The information weight w in GDFM is effectively adjusting the revealing time with
the aid of GDFM’s information measure.

To the best of our knowledge, we are the first to analyze the property of learning with delayed
feedback with a time-varying distribution. Existing analysis[5, 8, 9, 16] assumes the distribution
is stable (unlimited samples from p(x,y))[5], or the action distribution p(a|x) can be estimated
accurately[8, 9, 16]. Since pt(x,y) indeed varies along with time (otherwise streaming training is
unnecessary), assuming a static p(x,y) can not capture the property of the delayed feedback problem;
The action distribution p(a|x) =

∑
y p(a|x,y)p(y|x) also changes following pt(y|x). Thus, GDFM

can be a better model for understanding and analyzing the delayed feedback problem.

Delayed feedback problem has also attracted attention from bandit learning communities[27–29],
where the objective is to minimize regret in a decision problem. Vernade et al. [27] introduces a similar
idea of using intermediate observations before getting rewards and shows that such intermediate
observations can improve regret, which agrees with our analysis from a different perspective.

A limitation of GDFM is that the training cost grows linearly with the number of different revealing
time δj , which may be a potential bottleneck in large-scale streaming training.
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6 Conclusion

We present an analysis of the delayed feedback problem based on the assumption that the relationships
between post-click behaviors and conversions are relatively stable. Our results indicate that to improve
the performance of learning under delayed feedback, we should utilize post-click information as
complements. Therefore, we propose a generalized delayed feedback model to incorporate general
user behaviors and a re-weighting method to utilize behavior information efficiently. Experiments on
public datasets validate the effectiveness of our method.
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