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Abstract

Chromatic Correlation Clustering (CCC) (introduced by Bonchi et al. [6]) is a
natural generalization of the celebrated Correlation Clustering (CC) problem. It
models objects with categorical pairwise relationships by an edge-colored graph,
and has many applications in data mining, social networks and bioinformatics. We
show that there exists a 2.5-approximation to the CCC problem based on a Linear
Programming (LP) approach, thus improving the best-known approximation ratio
of 3 achieved by Klodt et al. [25]. We also present an efficient heuristic algorithm
for CCC leveraging a greedy clustering strategy, and conduct extensive experiments
to demonstrate the effectiveness and efficiency of our proposed algorithm.

1 Introduction

Clustering is the task of partitioning a set of objects into groups according to their relationships. One
of the most important clustering problems is Correlation Clustering (CC), which has attracted great
interests in recent years (e.g., [2, 10]). In the CC problem, the input instance is an undirected complete
graph with each edge labeled as either similar or dissimilar, and the goal is to partition the graph
nodes into an arbitrary number of clusters such that the number of disagreements is minimized, where
a “disagreement” occurs if a dissimilar edge links two nodes in the same cluster or a similar edge links
two nodes in different clusters. However, CC only models binary relationships, which is insufficient
in many applications. For example, the relationships in a social network could have multiple types
such as colleague, schoolmate, and family. To address this issue, Bonchi et al. [6] generalize the CC
problem to the Chromatic Correlation Clustering (CCC) problem, where an edge-colored graph is
used to model the multi-type relationships in practice, i.e., each edge is associated with one color
and each color represents a type of relationship. The goal of CCC is to partition the graph nodes into
several clusters and assign a color to each cluster to minimize the number of disagreements, where a
disagreement happens in any case other than that two non-adjacent nodes belong to different clusters
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or that two adjacent nodes belong to the same cluster with the cluster’s color being identical to the
color of the edge between these nodes. Due to its generality, CCC has wide applications including
link classification, entity de-duplication, mining protein complexes in protein-protein interaction
networks, and so on [3, 6, 25].

Related work. The original Correlation Clustering (CC) problem has been extensively studied
since the seminal work of Ben-Dor et al. [5]. Bansal et al. [4] proved its NP-hardness and gave the
first constant-factor approximation, which was improved to 4 in [9] by rounding the solution to a
linear programming relaxation. Ailon et al. [2] proposed a simple linear-time algorithm dubbed
Pivot that achieves 3-approximation, and also proposed an LP-rounding based algorithm with an
improved approximation ratio of 2.5. Chawla et al. [10] further improved this ratio to 2.06 by
using a more sophisticated LP-rounding technique, which nearly matches the known integrality gap
of 2 [9] for the LP formulation of CC. Some studies also proposed fast heuristic algorithms for
CC [16, 17, 29, 30, 34], but without providing any performance guarantee. Due to the importance of
CC, a lot of its variants and related problems have been investigated in the literature [2, 7, 8, 9, 10,
13, 14, 18, 21, 22, 24, 26, 27, 31, 32, 33].

Bonchi et al. [6] initiated the studies on the Chromatic Correlation Clustering (CCC) problem and
proposed a heuristic for it without a provable approximation ratio. Anava et al. [3] presented a
4-approximation algorithm for CCC based on LP-rounding, and also provided a more efficient
11-approximation algorithm dubbed Reduce and Cluster (RC) and a heuristic dubbed Deep Cluster
(DC). Recently, Klodt et al. [25] showed that the classical Pivot algorithm proposed in Ailon et al.
[2] for the CC problem also has an approximation ratio of 3 for CCC, and showed that the RC
algorithm proposed in [3] actually has an approximation ratio of 5 for CCC. Although Pivot has
the best-known approximation ratio for CCC, it works in a color-blind manner and hence has
unsatisfying practical performance. Therefore, Klodt et al. [25] further proposed a heuristic dubbed
Greedy Expansion (GE) which has better practical performance but without a performance guarantee.
Therefore, it still remains as an open problem to find an approximation ratio for CCC tighter than
the 3-approximation achieved by Pivot. CC (or CCC) also bears some similarities to the clique
partitioning, multicut and k-center/k-median problems, which have been studied in some excellent
proposals (e.g., [11, 15, 19, 20]). However, it is highly non-trivial (if possible) to adapt the solutions
of these studies to the CCC problem.

Our contributions. In this paper, we propose a 2.5-approximation to the CCC problem based on an
LP approach, improving the best-known ratio of 3 achieved by Klodt et al. [25] and being very close
to previously known integrality gap of 2 [9]. We achieve this ratio by using a simple yet effective
algorithm based on rounding the optimal solution to a linear programming relaxation of CCC, which
is very different from the rounding algorithm proposed in [3]. More specifically, we first classify all
vertices of the graph into several groups, with the vertices in each group colored the same, and then
cluster the nodes in each group using a procedure similar to the canonical Pivot algorithm. Both the
classifying phase and the clustering phase described above use the LP-solution to CCC to ensure
guaranteed clustering quality. Although our LP-based clustering algorithm is randomized, it can be
de-randomized to achieve a deterministc 2.5-approximation. Due to this novel clustering framework,
our performance analysis is more involved than previous work to address the difficulty of counting
the number of disagreements in a color-sensitive manner.

We notice that the algorithms proposed by prior studies for CCC with the best empirical performance
are heuristics without performance guarantees. Therefore, we also propose a fast heuristic dubbed
GreedyVote that adopts a novel greedy strategy roughly explained as follows. GreedyVote creates
a cluster by firstly picking two neighboring “seed vertices”, and then growing the seed set by letting
the seed vertices vote for every unclustered vertex and greedily adding vertices with the largest
vote counts into the seed set. We conduct extensive experiments using real-world datasets and the
results strongly demonstrate the superiorities of GreedyVote in terms of both clustering quality and
efficiency, compared to the state-of-the-art algorithms with or without performance guarantees.

2 Preliminaries

In the Chromatic Correlation Clustering (CCC) problem, an input instance consists of a finite set L of
colors (representing positive relationships), a special color γ /∈ L (representing negative relationship
or no relationship), and an undirected complete graph G = (V,E) with a color function ϕ : E 7→
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L ∪ {γ}. The objective is to find a colored partition of the vertex set V that minimizes the number of
disagreements. More formally, a solution to this problem is a clustering S = (C,Φ) consisting of a
partition of the vertices C : V 7→ {C1, C2, . . . } and a cluster-coloring function Φ: range(C) 7→ L.
The number of disagreements between G and S can be written as

∑
uv∈E dG,S(uv), where

dG,S(uv) =


0 ϕ(uv) = γ ∧ C(u) ̸= C(v),
0 ϕ(uv) ∈ L ∧ C(u) = C(v) ∧ Φ(C(u)) = ϕ(uv),

1 otherwise.
(1)

For simplicity, we use d(uv) as a shorthand for dG,S(uv). There also exists a Linear Programming
(LP) relaxation of the chromatic correlation clustering problem [3], i.e., [CCC-LP] listed below.
Let us consider an integral solution satisfying xc

uv, x
c
u ∈ {0, 1} for all u ∈ V , uv ∈ E, c ∈ L to

[CCC-LP]. The variable xc
u indicates whether vertex u is in a cluster of color c ∈ L or not (i.e.,

if xc
u = 0 then u is in the cluster colored by c). Similarly, the variable xc

uv indicates whether two
vertices u and v are clustered into the same cluster colored by c ∈ L (i.e., if xc

uv = 0 then u and v
belong to the same cluster colored by c). Constraint (4) guarantees that each node belongs to one
colored cluster. Constraint (2) implies that the edge uv can be in the cluster colored by c ∈ L only
if both vertex u and v are in this cluster. Constraint (3) ensures that if uv and vw are in the same
cluster then the edge wu must also be in the same cluster. According to the definition of the variable
xc
uv , we know that an edge uv ∈ E with color c ∈ L does not cause a disagreement only if xc

uv = 0,
and that an edge uv with color γ does not cause a disagreement only if xc

uv = 1 for any color c ∈ L.
As such, the objective function of [CCC-LP] consists of two parts: the first part counts the number
of disagreements caused by the edges colored by c ∈ L, and the second part counts the number of
disagreements caused by the edges colored by γ. Note that we can omit the variable xc

u when |L| = 1
and then it becomes the same LP-formulation of CC [2], and hence the integrality gap of [CCC-LP]
is at least 2 [9].

min
∑

uv∈E : ϕ(uv)∈L

xϕ(uv)
uv +

∑
uv∈E : ϕ(uv)=γ

∑
c∈L

(1− xc
uv) [CCC-LP]

s.t. xc
uv ≥ xc

u, x
c
v ∀u, v ∈ V,∀c ∈ L (2)

xc
uv + xc

vw ≥ xc
wu ∀u, v, w ∈ V,∀c ∈ L (3)∑

c∈L

xc
v = |L| − 1 ∀v ∈ V (4)

xc
uv = xc

vu ∀u, v ∈ V,∀c ∈ L (5)
xc
uv, x

c
u ∈ [0, 1] ∀u, v ∈ V,∀c ∈ L (6)

3 An LP-based Approximation Algorithm

In this section, we present an LP-based approximation algorithm as shown in Algorithm 1, namely LP-
Clustering. It is randomized and we will show how to de-randomize it in Section C. Intuitively, we
aim to round the LP solution xc

v for all v ∈ V, c ∈ L and xc
uv for all uv ∈ E, c ∈ L to integers being

feasible to the LP problem such that the objective value of the rounded integer solution is close to that
of the optimal fractional solution as much as possible. In a nutshell, our LP-Clustering algorithm
consists of two phases, including a vertex partitioning phase by rounding xc

v for all v ∈ V, c ∈ L and
a clustering phase for each partition by rounding xc

uv for all uv ∈ E, c ∈ L. The detailed procedures
of the two phases are given as follows.

Phase 1 Partitioning (Lines 2–4): the vertex set V is partitioned into |L|+ 1 disjoint subsets such
that Sc = {v ∈ V : xc

v < 1
2} for each c ∈ L and O = V \

(⋃
c∈L Sc

)
. Note that Sc may

be an empty set for c ∈ L. And all Sc are determined.
Phase 2 Clustering (Lines 5–12): (i) for the partition O, each outlier v ∈ O is assigned to a singleton

cluster with an arbitrary color (Lines 5–6); (ii) and for each partition Sc, the algorithm
iteratively chooses an unclustered vertex from Sc uniformly at random as the center of a new
cluster Ck with color c, and adds each unclustered vertex u ∈ Sc to Ck with a probability of
(1− xc

uv) independently (Lines 7–12).

In the following, we elaborate the intuition. Recall that the variables xc
v indicates the impossibility of

vertex v being in a cluster of color c, while xc
uv represents the distance between vertices u and v with
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Algorithm 1: LP-Clustering
Input: An undirected complete graph G = (V,E) with a color function ϕ : E 7→ L ∪ {γ}, the

LP solution x, i.e., {xc
v : ∀v ∈ V,∀c ∈ L} and {xc

uv : ∀uv ∈ E,∀c ∈ L}
Output: A clustering {C1, C2, . . . } and a cluster-coloring function Φ

1 Initialize k ← 0 and O ← V ;
2 foreach c ∈ L do
3 Let Sc be the subset of nodes in O with value xc

v < 1
2 , i.e., Sc ← {v ∈ O : xc

v < 1
2};

4 Remove Sc from O;
5 foreach v ∈ O do
6 Create a new cluster Ck = {v} by increasing k by 1, and set Φ(Ck) as an arbitrary color;
7 foreach c ∈ L do
8 while Sc ̸= ∅ do
9 Pick a vertex v ∈ Sc uniformly at random;

10 Create a new cluster Ck ← {v} by increasing k by 1, and set Φ(Ck)← c;
11 foreach u ∈ Sc \ {v} do add u to Ck with probability 1− xc

uv;
12 Remove Ck from Sc;

13 return {C1, C2, . . . , Ck},Φ

respect to color c. Based on this observation, our LP-Clustering algorithm first determines the vertex
color for each vertex v by rounding xc

v , i.e., the color of the cluster to which vertex v belongs with the
maximum likelihood. That is, v will be assigned to a cluster with color c if xc

v < 1/2, which ensures
that xc

v ≤ xc̄
v for any c̄ ∈ L implied by Observation 4.1. This is equivalent to round xc

v to 0 and xc̄
v to

1 for every c̄ ̸= c. Meanwhile, we call a vertex v outlier if xc
v ≥ 1/2 for every c ∈ L, which is far

away from any other vertex u as to every color c due to the fact that xc
uv ≥ xc

v ≥ 1/2. Then, for each
outlier v, we just arbitrarily choose a color c (e.g., the one with the smallest value of xc̄

v) to round xc
v

to 0 and xc̄
v to 1 for every c̄ ̸= c. It is trivial to see that the rounding of xc

v actually utilizes a greedy
strategy such that for each v, the smallest xc

v is rounded to 0 while the others are rounded to 1.

Next, we finalize the clustering by rounding xc
uv with respect to the rounded value of xc

v for each
v ∈ V and c ∈ L. Specifically, for each outlier v ∈ O, assigning it to a singleton cluster, i.e., a cluster
containing this node only, is equivalent to round xc

uv to 1 for every u ∈ V \ {v} and c ∈ L. Since
xc
uv ≥ xc

v ≥ 1/2, such a rounding ensures the corresponding cost of the integer solution within twice
of that of the fractional solution. Moreover, for the subset Sc of V containing vertices with color c,
we iteratively select an unclustered vertex v from Sc uniformally at random and create a new cluster
Ck = {v}, until every vertex in Sc is included in some cluster. Then, we add each unclustered vertex
u ∈ Sc to Ck with a probability of (1− xc

uv), i.e., rounding xc
uv to 0 with a probability of (1− xc

uv)
and to 1 with the other probability so that the rounded xc

uv in expectation is exactly xc
uv. Such a

rounding again ensures the corresponding cost of the integer solution within a constant factor of that
of the fractional solution.

In the following theorem, we give our main result that the LP-Clustering algorithm achieves a
2.5-approximation in expectation for the Chromatic Correlation Clustering (CCC) problem, which
improves the best-known factor of 3 achieved by Klodt et al. [25].

Theorem 3.1. The LP-Clustering algorithm achieves an approximation of 2.5 in expectation for the
CCC problem.

Next in Section 4, we prove our main theoretical result in Theorem 3.1, where the full proof of a core
lemma (i.e., Lemma 4.3) requires a non-trivial analysis and can be found in Appendix A.

4 Performance Analysis

4.1 Overview

For our randomized rounding approach based on the LP solution, the expected total number of
disagreements is E[

∑
uv∈E d(uv)], where d(uv) is defined in (1). Similarly, the objective function in
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[CCC-LP] can be written as
∑

uv∈E lp(uv), where lp(uv) denotes the cost on edge uv, i.e.,

lp(uv) :=

{
x
ϕ(uv)
uv , if ϕ(uv) ∈ L,∑
c∈L(1− xc

uv) if ϕ(uv) = γ.
(7)

Therefore, to prove Theorem 3.1, it suffices to show that

E
[ ∑
uv∈E

d(uv)
]
≤ 5

2
·
∑
uv∈E

lp(uv). (8)

Since the cost is characterized by each edge uv, according to the partitioning of V = O∪
(⋃

c∈L Sc

)
,

we partition the edge set E into |L|+ 2 disjoint subsets Eo, Ei and Ec for c ∈ L, i.e.,

Eo := {uv ∈ E : v ∈ O},
Ei := {uv ∈ E : u ∈ Sc, v ∈ Sc̄, c ̸= c̄},
Ec := {uv ∈ E : u ∈ Sc, v ∈ Sc}, ∀c ∈ L.

Clearly, E = Eo ∪ Ei ∪ (
⋃

c∈L Ec). In particular, Eo is the set of edges incident on outliers in O;
Ei is the set of edges between non-outliers cross two vertex partitions Sc and Sc̄; and Ec is the set of
edges between vertices within the same vertex partition Sc. In what follows, we establish the relation
between LP-Clustering and LP (i.e., the objective function of [CCC-LP]) in terms of the cost on
different category of edge.

For each edge uv ∈ Eo, it is an inter-cluster edge. By (1), we can get that d(uv) = 1 if ϕ(uv) ∈ L
and d(uv) = 0 otherwise. Meanwhile, constraint (2) ensures that xc

uv ≥ xc
v ≥ 1

2 for every u ̸= v and
c ∈ L when v is an outlier. This implies that lp(uv) = x

ϕ(uv)
uv ≥ 1

2 if ϕ(uv) ∈ L and lp(uv) ≥ 0
otherwise. We immediately have d(uv) ≤ 2 · lp(uv).
For each edge uv ∈ Ei, it is again an inter-cluster edge, indicating that d(uv) = 1 if ϕ(uv) ∈ L and
d(uv) = 0 otherwise. To derive lp(uv), we first present a useful property of the fractional solution.
Observation 4.1. Given a vertex v ∈ V and any two distinct colors c1, c2 ∈ L then xc1

v + xc2
v ≥ 1.

In fact, Observation 4.1 can be easily obtained by contradiction, since otherwise
∑

c∈L xc
v < |L| − 1,

which contradicts constraint (4). Denote by cu the vertex color of u such that xcu
u < 1

2 . Then, by
Observation 4.1, we have xc

u ≥ 1
2 for any c ̸= cu. As a consequence, lp(uv) = x

ϕ(uv)
uv ≥ x

ϕ(uv)
u ≥ 1

2

if ϕ(uv) ∈ L \ {cu}, lp(uv) = x
ϕ(uv)
uv ≥ x

c(u)
v ≥ 1

2 if ϕ(uv) = cu ̸= cv, and lp(uv) ≥ 0 otherwise.
This concludes that d(uv) ≤ 2 · lp(uv).
Finally, if we show that E[

∑
uv∈Ec

d(uv)] ≤ α ·
∑

uv∈Ec
lp(uv) for every c ∈ L and some α ≥ 2,

combing with the above analysis, we immediately derive an upper bound on the expected cost of our
output clustering, i.e.,

E
[ ∑
uv∈E

d(uv)
]
=

∑
uv∈Eo

d(uv) +
∑

uv∈Ei

d(uv) +
∑
c∈L

E
[ ∑
uv∈Ec

d(uv)
]

≤ 2 ·
∑

uv∈Eo

lp(uv) + 2 ·
∑

uv∈Ei

lp(uv) + α ·
∑
c∈L

∑
uv∈Ec

lp(uv)

≤ α ·
∑
uv∈E

lp(uv).

We thus obtain the following lemma.
Lemma 4.1. Given α ≥ 2, if the clustering returned by LP-Clustering satisfies for every c ∈ L,

E
[ ∑
uv∈Ec

d(uv)
]
≤ α ·

∑
uv∈Ec

lp(uv),

then LP-Clustering achieves an approximation guarantee of α for chromatic correlation clustering.

Therefore, to get the approximation ratio of LP-Clustering, by Lemma 4.1, we just need to show the
relation between E[

∑
uv∈Ec

d(uv)] and
∑

uv∈Ec
lp(uv) for each color c ∈ L.
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4.2 More Detailed Analysis

In what follows, we focus on the elementary analysis over Ec for every c ∈ L. For each given Sc,
LP-Clustering iteratively chooses some vertices to create a new cluster. Denote by St

c the unclustered
vertex set at the beginning of iteration t, by Et

c the induced edge set by St
c containing all the edges

with both endpoints in St
c, and by Ct

c the cluster created in this iteration. With removing Ct
c from St

c,
the edges incident on vertices in Ct

c, i.e., Et
c \ Et+1

c = {uv ∈ Ec : u, v ∈ St
c, (u ∈ Ct

c ∨ v ∈ Ct
c)},

are also removed from Ec. Then, the number of disagreements of these edges (i.e., Et
c \ Et+1

c ),
denoted by Dt, can be derived by

Dt =
∑

uv∈Et
c : ϕ(uv)=c

1(Etu−v) +
∑

uv∈Et
c : ϕ(uv)∈L\{c}

(
1(Etu−v) + 1(Etu+v)

)
+

∑
uv∈Et

c : ϕ(uv)=γ

1(Etu+v),

where 1(E) denotes the indicator function of the event E , Etu−v denotes the event that only one of u
and v is in Ct

c, and Etu+v denotes the event that both u and v are in Ct
c. Similarly, the LP cost on Et

c,
denoted by Lt, can be derived by

Lt =
∑

uv∈Et
c : ϕ(uv)∈L

(
1(Etu−v)+1(Etu+v)

)
xϕ(uv)
uv +

∑
uv∈Et

c : ϕ(uv)=γ

(
1(Etu−v)+1(Etu+v)

)∑
i∈L

(1−xi
uv).

Let T be the stopping time such that all vertices in Sc are clustered after T iterations. Then, we
know that

∑T
t=0 Dt =

∑
uv∈Ec

d(uv) and
∑T

t=0 Lt =
∑

uv∈Ec
lp(uv), since each edge in Ec

can only be removed exactly once. If we show that E[Dt] ≤ αE[Lt] for all t, then we know that
Zs =

∑s
t=0(αLt − Dt) is a submartingale (i.e., E[Zs+1 | Zs] ≥ Zs) and hence E[ZT ] ≥ E[Z0],

which yields that

α
∑

uv∈Ec

lp(uv)− E
[ ∑
uv∈Ec

d(uv)
]
= E[ZT ] ≥ E[Z0] = αE[L0]− E[D0] ≥ 0.

To get E[Dt] ≤ αE[Lt], it suffices to show its conditional version that E[Dt | St
c] ≤ αE[Lt | St

c] for
all St

c ⊂ Sc. Given St
c, each vertex w ∈ St

c is picked as the center of the cluster Ct
c with a probability

of 1
|St

c|
. Thus, given an event E , we have

E[1(E) | St
c] = Pr[E | St

c] =
1

|St
c|

∑
w∈St

c

Pr[E | center = w, St
c].

For simplicity, let

d(uv | w) :=


Pr[Etu−v | center = w, St

c], if ϕ(uv) = c,

Pr[Etu−v | center = w, St
c] + Pr[Etu+v | center = w, St

c], if ϕ(uv) ∈ L \ {c},
Pr[Etu+v | center = w, St

c], if ϕ(uv) = γ.

Moreover, according to the definitions of Etu−v and Etu+v , we have

Pr[Etu−v | center = w, St
c] = (1− xc

vw)x
c
uw + (1− xc

uw)x
c
vw,

Pr[Etu+v | center = w, St
c] = (1− xc

uw)(1− xc
vw).

Note that by setting xc
uu = 0 for each u ∈ St

c, the above equations also hold when w = u or w = v.
As a consequence, we have

d(uv | w) =


(1− xc

vw)x
c
uw + (1− xc

uw)x
c
vw, if ϕ(uv) = c,

1− xc
uwx

c
vw, if ϕ(uv) ∈ L \ {c},

(1− xc
uw)(1− xc

vw), if ϕ(uv) = γ.

Putting it together, we can express E[Dt | St
c] as

E[Dt | St
c] =

1

|St
c|

∑
w∈St

c

∑
uv∈Et

c

d(uv | w) = 1

2|St
c|

∑
u,v,w∈St

c

d(uv | w),

where d(uu | w) := 0 for all u,w ∈ St
c. Similarly, let

lp(uv | w) :=

{
(1− xc

uwx
c
vw)x

ϕ(uv)
uv , if ϕ(uv) ∈ L,

(1− xc
uwx

c
vw)

∑
i∈L(1− xi

uv), if ϕ(uv) = γ.
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Algorithm 2: GreedyVote
Input: An undirected graph G = (V,E) with a color function ϕ : E → L, parameters ϵ and m.
Output: A clustering {S1, S2, . . . , Sk} and a cluster-coloring function Φ.

1 Initialize k = 0;
2 while E ̸= ∅ do
3 Let M be a set of m edges sampled with replacement from E;

4 Let uv be the edge in M that maximizes |Nϕ(uv)(u)∩Nϕ(uv)(v)|
|N(u)∪N(v)| ;

5 Create a new cluster Sk = {u, v} by increasing k by one, and remove Sk from V ;
6 while V ̸= ∅ do
7 Let each vertex in Sk vote for every vertex in V such that vote 0.5 when there is an edge

between the two vertices, and an extra 0.5 if the edge color is ϕ(uv);
8 Let w ∈ V be the vertex with the largest vote count and let ℓ be the vote count of w;
9 if ℓ ≥ ϵ|Sk| then Add w to Sk and remove w from V ;

10 else Break;
11 Let c be the most frequent color of the edges with both endpoints in Sk, and set Φ(Sk) = c;
12 Remove all edges in {uv ∈ E|u ∈ Sk} from E;
13 foreach v ∈ V do
14 Create a new cluster Sk = {v} by increasing k by one;
15 Let Φ(Sk) = c where c is an arbitrary color in L;
16 return {S1, S2, ..., Sk},Φ

Then, E[Lt | St
c] can be expressed as

E[Lt | St
c] =

1

|St
c|

∑
w∈St

c

∑
uv∈Et

c

lp(uv | w) = 1

2|St
c|

∑
u,v,w∈St

c

lp(uv | w),

where lp(uu | w) := 0 for all u,w ∈ St
c. Observing that d(uv | w) ≤ α · lp(uv | w) does not always

hold, thanks to the symmetry, we consider D(uvw) := d(uv | w) + d(vw | u) + d(wu | v) as a
whole. That is,

E[Dt | St
c] =

1

6|St
c|

∑
u,v,w∈St

c

(
d(uv | w) + d(vw | u) + d(wu | v)

)
=

1

6|St
c|

∑
u,v,w∈St

c

D(uvw).

Similarly, letting L(uvw) := lp(uv | w) + lp(vw | u) + lp(wu | v), we have

E[Lt | St
c] =

1

6|St
c|

∑
u,v,w∈St

c

(
lp(uv | w) + lp(vw | u) + lp(wu | v)

)
=

1

6|St
c|

∑
u,v,w∈St

c

L(uvw).

Therefore, it suffices to show that D(uvw) ≤ αL(uvw). We thus obtain the following lemma.
Lemma 4.2. Given a vertex set Sc, if it always holds that D(uvw) ≤ αL(uvw) for all u, v, w ∈ St

c,
we have E[

∑
uv∈Ec

d(uv)] ≤ α ·
∑

uv∈Ec
lp(uv)

Finally, the following lemma gives such a relation.
Lemma 4.3. For all c ∈ L and u, v, w ∈ St

c, we have D(uvw) ≤ 2.5L(uvw).

The proof of Lemma 4.3 is based on a nontrivial case analysis with respect to the the edge color
of ϕ(uv), ϕ(vw) and ϕ(wu), which can be found in Appendix A. Now, putting it together of
Lemmas 4.1–4.3 concludes Theorem 3.1.

5 A Greedy Clustering Heuristic

For the CCC problem, prior studies have shown that some heuristics without any performance
guarantees (e.g., the Deep Cluster algorithm in [3] and the Greedy Expansion algorithm in [25])
can empirically perform much better than the existing algorithms with provable approximation
ratios including the Pivot algorithm with the best-known ratio of 3. This motivates us to design
a fast heuristic with better performance in practice, namely the GreedyVote algorithm shown in
Algorithm 2. Roughly speaking, GreedyVote repeats in iterations and creates a cluster Sk in the kth
iteration according to the following two phases of operations:
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Phase 1 Seed selection (Lines 3–5): Randomly select m candidate edges and pick one of them
(denoted by uv) to create a “seed set” Sk = {u, v};

Phase 2 Vote to grow (Lines 6–10): Each vertex in the seed set Sk votes for (or scores) every
currently unclustered vertex, and the vertex w with the largest vote count is added into Sk if
satisfying the condition in Line 9. Repeat this process until there are no qualified vertices.

In the sequel, we provide more detailed explanations on the two phases mentioned above. The purpose
of the “seed selection” phase is to identify two neighboring nodes that are “most likely” to be in the
same cluster of a good solution. To achieve this, we use a metric inspired by the well-known Jaccard
Similarity to measure the goodness of u and v being clustered together, i.e., |Nϕ(uv)(u)∩Nϕ(uv)(v)|

|N(u)∪N(v)|
in Line 4, where N(u) denotes the set of all neighbors of u and Nc(u) : ∀c ∈ L denotes the set of
vertices adjacent to u by c-colored edges. Instead of checking every pair of neighboring nodes for
this metric, we randomly check m edges and pick the best one among them to save running time.

Given the initial seed set constructed by Phase 1, the purpose of the “vote to grow” phase is to identify
some qualified vertices and add them into Sk one by one. The rational for judging whether a candidate
vertex w should be added into Sk or not is roughly explained as follows. Let |Ec(Sk, w)| denote the
number of edges with color c (∀c ∈ L) linking w and any vertex in Sk, and let error(Sk) denote
the number of disagreements caused by edges with both endpoints in Sk. Let u and v be the initial
two seed vertices in Sk found by Line 4, and suppose that Sk is assigned the color of ϕ(uv). Then,
not adding w into Sk would cause at least Er1 = error(Sk) +

∑
c∈L |Ec(Sk, w)| disagreements,

while adding w into Sk would bring Er2 = error(Sk) + |Sk| − |Eϕ(uv)(Sk, w)| disagreements.
Clearly, adding w into Sk would be beneficial only when Er2 − Er1 = |Sk| − |Eϕ(uv)(Sk, w)| −∑

c∈L |Ec(Sk, w)| ≤ 0, or equivalently |Eϕ(uv)(Sk, w)| +
∑

c∈L |Ec(Sk, w)| ≥ |Sk|. Actually, it
is not hard to verify that the voting mechanism in Line 7 results in the vote count of any candidate
vertex w being equal to 0.5|Eϕ(uv)(Sk, w)|+0.5

∑
c∈L |Ec(Sk, w)|, while we replace |Sk| by ϵ|Sk|

in the if-condition of Line 9 to offset the inaccuracy of counting the number of disagreements by
considering every vertex individually.

When Phase 1 and Phase 2 described above finishes, no qualified vertices can be added into the current
clusters. So GreedyVote creates a cluster for each leftover vertex and assign it an arbitrary color in
L (Lines 13-15). It can be seen that GreedyVote can be implemented to run in O(|E|+∆|V |) time
for any constant m, where ∆ is the maximum degree of G (see Appendix B for a formal proof).

6 Performance Evaluation

In this section, we compare our GreedyVote (GV) algorithm (i.e., Algorithm 2) with six state-of-
the-art algorithms for the CCC problem, including: (1) The Pivot Algorithm [2]; (2) The Reduce
and Cluster (RC) Algorithm [3]; (3) The Deep Cluster (DC) algorithm [3]; (4) The Chromatic Ball
(CB) algorithm [6]; (5) The Greedy Expansion (GE) Algorithm [25]; and (6) The modified greedy
expansion (GER) Algorithm [25]. Among these algorithms, Pivot and RC have approximation ratios
of 3 and 5, respectively, and all other algorithms are heuristics. In our experiments, we set ϵ = 0.55
and m = 10 for the GV algorithm, and follow all the parameter settings (if any) of other algorithms
according to their proposals. We implement the evaluated algorithms using Python and also use the
public code of Klodt et al. [25] for implementation. All our experiments are conducted on an Intel(R)
Xeon(R) Gold 6126 CPU @ 2.60GHz with 128GB of RAM. Each algorithm is run for 50 times and
the average result is reported.

We use ten real-world datasets from different domains in our experiments, as listed in Table 1. Among
these datasets, Facebook1, Facebook2, Lastfm and Twitter are social network graphs downloaded
from [28], where vertices represent users and edges represent friendships. Each user has several
properties representing the ”social circles” interested by the user. Following the setting in Anava
et al. [3], we assign each social circle a color and set the color of each edge uv as the color of u and
v’s common social circle (if there are multiple common circles then choose an arbitrary one). The
DAWN dataset [1][25] models a drug abuse warning network where vertices represent drugs and
edges indicate that they were used together before an emergency room visit. Following [25] , the
color of the edge represents the most common outcome of the visit. The Cooking dataset [23][25]
models an ingredient co-occur network where vertices represent ingredients and edges indicate that
they co-occur in some recipes. Following [25], the color of the edge represents the most common
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Table 1: Characteristics of the datasets used in the experiments.

Datasets |V | |E| |L|
Facebook1 2871 62334 193
Facebook2 3978 78011 46
Lastfm 7624 27806 10
Twitter 74402 1003951 99
DAWN 2109 96047 10
Cooking 6714 479921 21
String1 17458 419190 4
String2 18152 401582 4
DBLP 73624 835414 100
MAG 80198 237261 11

Table 2: Compare all algorithms on the Number of Disagreements (NOD), where the reported data of
all algorithms except GV are normalized by those of GV. Lowest values are highlighted in bold.

Datasets Pivot [2] RC [3] DC [3] CB [6] GE [25] GER [25] GV (ours)
Facebook1 1.486 1.283 1.218 1.246 1.015 1.022 38,773
Facebook2 1.419 1.305 1.236 1.220 1.015 1.025 52,164
Lastfm 1.442 1.267 1.267 1.056 1.013 1.034 23,046
Twitter 1.449 1.138 1.134 1.050 1.004 1.007 925,028
DAWN 1.460 1.236 1.253 1.115 0.995 1.035 84,492
Cooking 1.306 1.110 1.092 1.039 1.004 1.001 456435
String1 1.535 1.219 1.229 1.072 1.018 1.038 359,202
String2 1.424 1.409 1.214 1.429 1.018 1.017 112,340
DBLP 1.563 1.143 1.103 1.141 1.014 1.040 540,683
MAG 1.568 1.294 1.286 1.078 1.021 1.040 127,383

cuisine. String1 and String2 [12] are networks containing protein-protein interactions, where vertices
represent proteins and edges represent pairs of interacting proteins. Following [6][25], we assign each
protein-interaction a color and choose an arbitrary color for an edge if there are multiple interactions
between two proteins. Finally, DBLP and MAG [25] are co-authorship networks where vertices
represent authors and each edge is labeled (colored) by the most frequent journal or conference that
two authors co-authored.

In Table 2, we list the Number of Disagreements (NOD) of all the evaluated algorithms, where the
reported data of all algorithms except GV are normalized by those of GV. It can be seen that Pivot
performs the worst, as it works in a color-blind way. Although RC has a worse approximation ratio
than Pivot, it performs better than Pivot but worse than CB and DC, while CB and DC have similar
performance on NOD. The GER algorithm outperforms the Pivot, RC, CB and DC algorithms on
NOD, while GE even performs better than GER. However, it can be seen that our GV algorithm
outperforms the best baseline GE in the literature on all the datasets except DAWN, while the gap
between GV and GE is no more than 0.5% on the DAWN dataset. This demonstrates the superiority
of our GV algorithm on the metric of NOD.

In Table 3, we compare the running time of the implemented algorithms. It can be seen that Pivot and
GE generally incur the shortest and longest running time, respectively. Compared to GE, GV runs
faster on all datasets except String2, MAG and Cooking, with the performance gain ranging from
11.0% to 78.8%, while the average performance gain is 27%. This can be explained by the fact that
GV has a better time complexity of O(|E|+∆|V |) than the O(∆L|E|+∆|V |) time complexity of
GE, where ∆L is the maximum number of distinct colors of the edges incident to any vertex.

In summary, the experimental results demonstrate that, our GreedyVote algorithm outperforms all
the implemented state-of-the-art algorithms (with or without performance guarantee) in terms of the
objective function value of chromatic correlation clustering, and it also runs significantly faster than
GE in general, where GE is the heuristic proposed by Klodt et al. [25] with the best-known empirical
performance on clustering quality.
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Table 3: Compare all algorithms on the running time (seconds).

Datasets Pivot [2] RC [3] DC [3] CB [6] GE [25] GER [25] GV (ours)
Facebook1 0.06 0.43 0.64 0.08 0.86 0.80 0.54
Facebook2 0.07 0.55 0.89 0.10 0.93 1.04 0.66
Lastfm 0.03 0.25 0.34 0.06 0.54 0.52 0.41
Twitter 0.87 6.71 8.78 2.16 17.27 10.75 15.00
DAWN 0.06 0.57 1.16 0.12 1.31 1.01 1.18
Cooking 0.24 3.28 4.92 1.17 8.73 4.27 9.54
String1 0.23 2.77 4.72 0.78 8.99 5.90 5.85
String2 0.57 3.10 3.35 0.60 2.97 5.36 3.37
DBLP 0.97 6.78 7.03 2.15 18.81 9.74 10.52
MAG 0.48 2.54 2.90 0.66 3.96 4.53 3.99

7 Conclusion

We have revisited the Chromatic Correlation Clustering (CCC) problem, which generalizes the
correlation clustering problem and has many important applications in machine learning and data
mining. For this problem, prior studies have proposed both approximation algorithms with provable
performance ratios and heuristics with better practical performance. We have proposed a 2.5-
approximation to CCC based on rounding the solution to a linear programming relaxation of CCC,
and also a heuristic algorithm based on a “greedy voting” strategy. Our theoretical analysis and
extensive experiments on real-world datasets demonstrate that our approach outperforms the existing
ones both on the theoretical approximation ratio and on the practical performance in terms of time
efficiency and clustering quality.
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