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Abstract

The recent progress in implicit 3D representation, i.e., Neural Radiance Fields
(NeRFs), has made accurate and photorealistic 3D reconstruction possible in a dif-
ferentiable manner. This new representation can effectively convey the information
of hundreds of high-resolution images in one compact format and allows photo-
realistic synthesis of novel views. In this work, using the variant of NeRF called
Plenoxels, we create the first large-scale radiance fields datasets for perception
tasks, called the PeRFception dataset, which consists of two parts that incorporate
both object-centric and scene-centric scans for classification and segmentation. It
shows a significant memory compression rate (96.4%) from the original dataset,
while containing both 2D and 3D information in a unified form. We construct
the classification and segmentation models that directly take this radiance fields
format as input and also propose a novel augmentation technique to avoid over-
fitting on backgrounds of images. The code and data are publicly available in
https://postech-cvlab.github.io/PeRFception/.

1 Introduction

Over the last few years, advances in implicit representations have demonstrated great accuracy,
versatility, and robustness in representing 3D scenes by mapping low dimensional coordinates to
the local properties of the scene, such as occupancy [1, 2], signed distance fields [3, 4], or radiance
fields [5, 6, 7]. They offer several benefits that explicit representations (e.g., voxels, meshes, and
point clouds) could not represent: smoother geometry, less memory space for storage, novel view
synthesis with high visual fidelity, to name a few. Thus, implicit representations have been used
for 3D reconstruction [1, 2, 8, 9], novel view synthesis [5, 6, 7, 10, 11, 12, 13, 14, 15], pose
estimation [16, 17, 18, 19], image generation [20, 21], and many more.

In particular, Neural Radiance Fields [5] (NeRF) and many follow-up works [10, 11, 12, 14, 15, 22]
have shown that implicit networks can capture accurate geometry and render photorealistic images by
representing a static scene as an implicit 5D function which outputs view-dependent radiance fields.
They use differentiable volumetric rendering, a scene geometry, and the view-dependent radiance
that can be encoded into an implicit network using only image supervisions. These components
allow the networks to capture high fidelity photometric features, such as reflection and refraction in a
differentiable manner unlike the conventional explicit 3D representations.

Given the success of the radiance fields, it is only natural to consider the radiance fields as one of
the standard data representations for 3D and for perception. However, these novel representations,
which can capture a scene with high fidelity, have not yet been used for perception tasks such as
classification and segmentation. One of the main reasons is that there is no large-scale dataset that
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Figure 1: Overall illustration of PeRFception dataset with its applications. Our PeRFception dataset
convey both visual (spherical harmonic coefficient) and geometric (density, sparse voxel grid)
features in one compact format, it can be directly applied to various perception tasks, including 2D
classification, 3D classification, and 3D segmentation.

allows training a perception system. Thus, in this work, we present the first large-scale radiance fields
datasets to accelerate perception research.

Indeed, NeRFs have drawbacks that prevent the broad adoption of radiance fields as to the standard
data format for 3D scenes and perception. First, training an implicit network is slow and can take
up to days. Inference (volumetric rendering) also can take minutes, limiting the use of NeRFs in
real-time applications. Second, the geometry and visual properties of a scene are implicitly encoded
as weights in a neural network. These facts prevent an existing perception pipeline from processing
the information directly. Third, implicit features or weights are scene-specific and are not transferrable
between scenes. However, for perception, channels or features must have a consistent structure, such
as RGB channels for images. For instance, if the order of channels is different from an image to an
image, the image classification pipeline would not work properly.

Recent studies have resolved these limitations by adopting explicit sparse voxel grid geometry
and basis functions for features. First, to tackle the slow speed, many works propose to use the
explicit sparse voxel geometry, which reduces the number of samples along a ray by skipping empty
space [10, 11, 12, 14, 15, 22]. Second, instead of using the implicit representations of weights
of a network, directly optimizing features [14, 15, 22] assigned to explicit geometry reduces the
time to extract features from a network. Lastly, for consistent features between scenes, which is
crucial for perception or creating a scene with different objects in NeRF format, Yu et al. [14, 15]
show that spherical harmonic coefficients can represent a scene as accurately as NeRFs while
preserving consistent and structured features. In particular, Plenoxels [14] satisfy all criteria for data
representation which supports fast learning and rendering while maintaining a consistent feature
representation for perception and composition of scenes.

In this work, we adopt Plenoxels as the primary format for perception tasks and create both object-
centric and scene-centric environments. We mainly use two image datasets and convert them into
Plenoxels, the Common Object 3D dataset (CO3D) [23] and ScanNet [24], and name the converted
datasets as PeRFception-CO3D and PeRFception-ScanNet, respectively. As the size of Plenoxels can
be extremely large, we present a few techniques to compress the size of data and hyperparameters for
each setup to maximize the accuracy while minimizing the data size.

We use the PeRFception datasets to train networks for 2D image classification, 3D object classification,
and 3D semantic segmentation. We successfully train networks for each perception task, indicating
that our datasets effectively convey 2D and 3D information together in a unified format. Moreover,
we show that our representation allows more convenient background augmentation and sophisticated
camera-level manipulation.

We summarize our contributions as follows:
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• We introduce the first large-scale radiance fields datasets that can be readily used in downstream
perception tasks, including 2D image classification, 3D object classification, and 3D scene semantic
segmentation.

• We conduct the first comprehensive study of visual perception tasks that directly process the
implicit representation. The extensive experiments show that our datasets effectively convey the
information for 2D and 3D perception tasks.

• We provide the ready-to-use pipeline to generate the radiance fields datasets with fully automatic
processes. We expect this automatic process allows generating a very large scale 3D dataset in
future.

2 Related Work

2.1 Neural Implicit Representations

Representing a scene using an explicit representation such as voxels, meshes, or point clouds has
been the most widely used format, but these are discrete and introduce discretization errors. Neural
implicit representations, on the other hand, use a neural network to approximate the geometry or
properties of a scene continuously [1, 2, 3, 25]. Mildenhall et al. [5] showed that neural radiance
representation can generate high fidelity renderings with view-dependent illumination effects using
multi-layer perceptrons. Many of recent studies extend such implicit representation to dynamic
scenes [26, 27, 28, 29], conditional generation [30, 31, 32, 33], pose-free [16, 17, 19], and many
more. In particular, research on efficient rendering [10, 12, 15, 22] has been one of the major
directions since volumetric rendering could take minutes. Hedman et al. [10] propose to create
sparse voxel grids after training to accelerate rendering. Similarly, Plenoctree [15] uses an octree
data structure instead of sparse voxels for fast rendering. DVGO [22] and Plenoxels [14] also adopt
the sparse voxel structure, and improve both inference and training time. INGP [12] proposes a
multi-level hash encoding which enables the fast convergence. Recently, TensoRF [34] boosts both
training and inference time by factorizing 3D radiance fields into lower dimensional vectors or
matrices. In this work, we use Plenoxels for our data format since they have explicit geometry and
consistent features in form of spherical harmonic coefficients.

2.2 3D Perception Datasets

Over the last decade, many public large-scale datasets of real objects for 3D perception have been
published thanks to the advances in commodity sensors. In this section, we cover such large-scale 3D
datasets for objects and scenes.

ShapeNet [35] and ModelNet [36] provide class and part annotations that are from synthetic CAD
models. Early object-centric 3D datasets augment image datasets with 3D CAD model annotations.
Pascal3D+ [37] and Objectron [38] contain 3D shapes that are matched with real-world 2D images
containing objects; however, 3D models are chosen from approximately aligned 3D models, not
precisely reconstructed from the corresponding 2D images. Redwood [39] is a large-scale object-
centric RGB-D scan video dataset, where only a few categories include 3D models and camera
poses. GSO [40] holds clear 3D models of real objects with textures, but missing physically rendered
images. 3D-Future [41] provides synthetic CAD shapes with high-resolution informative textures
developed by professional designers. CO3D [23] provides large-scale object-centric videos with
camera poses and high-quality point cloud models. They assess quality of reconstructed 3D shapes
using human-in-the-loop validation and marked 5,625 point clouds as successfully reconstructed.
Recently, ABO [42] offers a dataset consisting of household object images and high-quality 3D
models with 4K texture maps and full-view coverage. Professional artists manually designed its
high-quality spatially-varying Bidirectional Reflectance Distribution Functions (BRDFs), indicating
that the data generation processes were not fully automatic. We summarize the details of the
aforementioned datasets in Table 1.

Many scene-centric 3D datasets use depth sensors to scan a section or an entire room and create
dense annotations. SUN RGB-D [44] collected 13,355 RGB-D images, which are densely annotated
with 2D polygons and 3D bounding boxes. However, it does not include camera parameters, which is
essential information for surface reconstruction. NYUv2 [43] initially sparked interest for 3D scene
understanding, with 464 indoor scans, 1,449 frames of which are annotated with 2D polygons for
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Table 1: Specs for publicly available 3D datasets. “Real" denotes whether the objects are from
real-world images , “Full 3D" for the availability of 3D geometries for all the objects, and “Multi-
view" for multi-view images and corresponding real-world catalog images. ▲ is marked when the
corresponding information is partially provided.

Dataset # Classes # Objects Real Full 3D Multi-view

ShapeNet[35] 55 51K ✗ ✓ ✓
ModelNet[36] 40 128K ✗ ✓ ✗
Pascal3D+[37] 12 36K ✓ ✗ ✗
Redwood[39] 9 2K ✓ ✗ ✓
Objectron[38] 9 15K ✓ ▲ ▲

GSO[40] ✗ 2K ✓ ✓ ✗
3D-Future[41] 8 2K ✗ ✓ ✗

ABO[42] 98 8K ▲ ✓ ✓
CO3D[23] 51 19K ✓ ▲ ✓

PeRFception–CO3D 51 19K ✓ ✓ ✓

Dataset # Classes # Scenes Real Full 3D Multi-view

NYUv2 [43] 894 464 ✓ ✗ ▲
SUN RGB-D [44] 800 ✗ ✓ ✗ ▲

SUN3D [45] ✗ 415 ✓ ✓ ✓
2D-3D-S [46, 47] 12 13 ✓ ✓ ✓

ScanNet [24] 20 1,513 ✓ ✓ ✓
Matterport3D [48] 40 90 ✓ ✓ ✓

Replica [49] 88 18 ✓ ✓ ✓

PeRFception–ScanNet 20 1,513 ✓ ✓ ✓

semantic segmentation. SUN3D[45] is comprised of 415 RGB-D indoor video sequences in 254
different spaces; only eight sequences are annotated. Each sequence was captured densely, with a
large number of frames collected. 2D-3D-S [46, 47] is an instance-level annotated large-scale indoor
scene dataset. It offers diverse modalities of six indoor scenes in RGB images, depth maps, surface
normals, 3D meshes, and point clouds. Currently, ScanNet [24] is the most popular large-scale
indoor scene dataset that collected instance-level annotated 1,513 scans of RGB-D images and 3D
data. Matterport3D [48] contains large-scale RGB-D images annotated with surface and semantic
information. In particular, it covers a wide area of 90 building-scale scenes by capturing panoramic
views, but it does not provide annotations. Replica [49] is a small but high-quality surface-annotated
indoor scene reconstruction database. In this paper, we use two datasets, CO3D and ScanNet, to
cover both object- and scene-centric dataset respectively.

We select CO3D for object-centric dataset since it consists of camera-annotated real-world images
and has sufficient number of classes. In addition, we use ScanNet since it is one of the most popular
3D indoor dataset providing adequate number of data with rich annotations.

2.3 3D Perception Models

Unlike perceptions in the 2D domain, where the image is the de facto standard representation, there
is no canonical representation for spatial 3D data. Existing explicit representations, such as voxels,
meshes, and point clouds, target different aspects of data and have pros and cons. We categorize
methods into two groups based on the input representation. Point-based methods [50, 51] directly
consume the continuous 3D coordinates of point clouds or meshes using MLP and continuous/graph
convolutions. Recent studies have tried to define custom convolution layers [52, 53, 54, 55, 56] upon
the continuous coordinate space, or non-local operations [57, 58, 59]. Overall, these methods exhibit
fast and simple processing, but it often requires a large computational cost due to neighbor search.

On the other hand, voxel-based methods discretize input coordinates into voxels, which introduces
small quantization errors but allows fast neighbor lookup using a data structure. Specifically, recent
advances in spatial sparse convolutions [60, 61, 62] that operates on sparse voxels utilize an efficient
GPU hash table and require small memory footprint for neighbor search. It has shown successful
adoption in many perception tasks, including semantic segmentation [61, 62, 63] , object detec-
tion [64], representation learning [65], and registration [66, 67, 68, 69]. We use the spatial sparse
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convnets to create the first perception network on our PeRFception datasets due to its scalability in
terms of memory footprint and computational cost.

3 Preliminary

Yu et al. [14] proposed a novel scene representation called Plenoxels that combines a sparse voxel
grid for coarse geometry with spherical harmonic coefficients for radiance fields. Unlike conventional
MLP-based NeRFs [5, 6, 10, 11], which use a single neural network to represent an entire scene,
Plenoxels optimize coefficients of spherical harmonic in each non-empty voxel independently, which
uses the same differentiable model for volumetric rendering described in NeRF [5] as follows:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp(−
i−1∑
j=1

σjδj), (1)

where Ti denotes light transmittance of a i-th sample, σ is opacity, c is color, and δ is distance to the
next sample on a ray r. Plenoxels lookup the stored densities and spherical harmonic coefficients in
the sparse voxel grids. For scenes with background, Plenoxels also use the lumisphere background
representation to render the backgrounds.

We modified the official Plenoxels implementation to set the initial grid properly and hyperparameters.
As the size of Plenoxels can be extremely large, we present a few techniques to compress the size
of data and hyperparameters. More implementation details are in Section. 4.1, Section. 4.2, and the
appendix.

Among many recent implicit radiance field representations [12, 14, 22, 34, 70, 71], we use Plenox-
els [14] for our data representation for a few reasons—firstly, as we are creating radiance repre-
sentations for O(10k) scenes, the training and rendering have to be fast for scalability. Ideally, the
reconstruction process should take less than an hour, and our Plenoxel-based reconstruction takes
30 minutes per scene. Secondly, the representation should be able to capture unbounded scenes
to represent the backgrounds. Lastly, we want features from the reconstruction to be consistent
across scenes for 3D perception tasks. For instance, if we train a radiance field MLP per scene, each
scene representation or feature would differ from others, and we cannot directly feed the features to
a perception network without converting them to other consistent representations. Plenoxels uses
explicit spherical harmonics features and density, which are consistent across scenes allowing us to
train a perception network directly. We compare various radiance fields in Table 2 below. Note that
Plenoxels [14] is the only representation that fits all the criteria.

Table 2: Properties of recent radiance fields representations.

Method Data structure Density Color Training Time

PointNeRF [70] Point Cloud Explicit Implicit > 1 day
DVGO [22] Dense Grid Explicit Hybrid < 30 min

DVGO-v2 [71] Dense Grid Explicit Hybrid < 20 min
INGP [12] Multi-level Hash Hybrid Hybrid < 5 min

TensoRF [34] Decomposed Grid Explicit Hybrid < 30 min
Plenoxels [14] Sparse Grid Explicit Explicit < 30 min

4 Generating PeRFception dataset

We generate two datasets PeRFception-CO3D and PeRFception-ScanNet to train perception networks.

4.1 PeRFception-CO3D

CO3D [23] is a large-scale object-centric dataset that contains multi-view observations of objects. It
contains 18,669 annotated videos with a total 1.5 million of camera-annotated frames and 50 classes
from MS-COCO [72], and images crowd-sourced from Amazon Mechanical Turk (AMT). It also
provides reconstructed point clouds, generated by pretrained instance segmentation algorithm [73]
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Table 3: Specs of CO3D and ScanNet, and our PeRFception-CO3D and PeRFception-ScanNet. SH
denotes spherical harmonic coefficients, D for densities, and C for diffused color, "pcd" for point
cloud. 3D-BG marks whether the 3D representation includes backgrounds of scenes. We note the
number of frames in our proposed datasets as ∞ since our data representation is feasible to render
frames from infinitely many camrea intrinsics and extrinsics.

Dataset # Scenes # Frames 3D Shape Features 3D-BG Memory Memory (Rel)

CO3D 18.6K 1.5M pcd C ✗ 1.44TB ±0.00%
PeRFception-CO3D 18.6K ∞ voxel SH,D ✓ 1.33TB −6.94%

ScanNet 1.5K 2.5M pcd C ✗ 966GB ±0.00%
PeRFception-ScanNet 1.5K ∞ voxel SH,D ✓ 35GB −96.4%

PSNR: 29.87
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Figure 2: Visualization of a few example data of original datasets and our PeRFception datasets. From
the source images and corresponding parameters, we successfully construct PeRFception datasets
with both accurate geometry and photorealistic rendering. The color used in (e) is for visualization.

and COLMAP [74]. Although reconstructing depth and point clouds is automatic, its generation step
still requires human-in-the-loop validation. When the amount of data increases, this human-in-the-
loop validation becomes unsuitable. On the other hand, our 3D dataset generation does not require
manual verification since image reconstruction qualities on unseen views are used as a proxy for
reconstruction quality. We compare specs of the original CO3D and PeRFception-CO3D in Table 3.

Data Generation. We use the official implementation of Plenoxels [14] with a slight modification to
the default configuration. We reduce the resolution of the background lumisphere from 1,024 to 512
and the number of background layers from 64 to 16. For sharper surface, we set the lambda sparsity
value to 10−10, 10 times larger than the default configuration. A voxel grid is initialized with 1283

resolution and trained for 25,600 iterations. Then, it is upsampled once to 2563 resolution and trained
for further 51,200 iterations. Before saving the data, we quantize the trained parameters to unsigned
8-bit integers to minimize for storage except for density values. For each scene, we first filter out
defective images and uniformly sample 10% of the images as the test set to assess the rendering
quality. The quantitative and qualitative results of the rendering quality are reported in Table 4 and
Figure 2. More details are in the appendix.

4.2 PeRFception-ScanNet

ScanNet is a 3D-scanned indoor dataset that captures more than 1.5K indoor scenes with the com-
mercial RGB-D sensors. It provides 3D reconstructed point clouds of scenes with semantic labels
containing 20 common object classes, as well as the raw RGB-D frames with corresponding semantic
masks and camera parameters. In our experiment, we follow the official data split and report the
numbers on the validation split since the test set annotations are not publicly available. We compare
specs of the original ScanNet and PeRFception-ScanNet in Table 3.
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Table 4: Overall rendering qualities of PeRFception-CO3D and PeRFception-ScanNet on test set.
For class-wise rendering scores are reported in the appendix.

Dataset PSNR(↑) SSIM(↑) LPIPS1(↓) Train Time PSNR > 15 PSNR > 20 PSNR > 25

PeRFception-CO3D 28.82 0.8564 0.3451 21.6 min 99.8% 98.2% 87.3%

PeRFception-ScanNet 22.87 0.7912 0.4590 11.3 min 98.3% 68.1% 34.0 %

Data Generation. ScanNet videos are captured using handheld cameras where auto-exposure option
is held. So, a fair number of frames contain motion blur which could lead to poor scene geometries. In
practice, we generate the batches of rays before training and load them in CPU memory for efficient
memory bandwidth utilization during training. Since the number of frames for each scene in ScanNet
varies, we use uniformly-sampled 1,500 image frames at most. For the scenes with fewer than 1,500
images, we use them all after filtering out blurry images with a low variance of Laplacian [75].
Another characteristic of ScanNet is that, unlike object-centric datasets where cameras face inward,
the images are captured from inside a room facing outward. These result in fewer images observing
the same part of the space, which results in poor reconstruction of Plenoxel’s geometry on ScanNet
dataset. Specifically, the Plenoxel reconstruction artificially creates an excessive number of voxels in
the empty space (i.e. floaters) to minimize the image reconstruction loss.

Instead, to supply an additional geometric prior to Plenoxel training, we initialized the voxel grid
using the unprojected depth maps provided in ScanNet rather than starting from the dense voxel grid.
However, since the provided depth maps of ScanNet are contaminated with noisy observations, we
use TSDF integration to obtain smoother and complete scene surfaces and incorporate the connected
component analysis to filter out the disconnected outlier points in the unprojected point clouds.
This leads to stable and more accurate reconstruction and does not excessively generate floaters to
minimize the rendering loss. The resulting PeRFception-ScanNet dataset occupies only 35GB in disk
whereas the original video streams of ScanNet requires about 966GB disk space. This is a significant
compression rate (96.4%), which emphasizes the accessibility of our representation as a dataset.
Detailed dataset specs of the original ScanNet and PeRFception-ScanNet are reported in Table 3.
We report the rendering quality on Table 4 and visualize the qualitative novel view renderings on
Figure 2.

5 Experiment

We benchmark popular 2D image classification, 3D object classification, and 3D segmentation
networks to demonstrate that our unified data format can be used for various perception tasks.

5.1 Classification on PeRFception-CO3D dataset

CO3D provides multi-view images of objects and 51 class labels for classification. We use the same
class labels for classification of PeRFception-CO3D dataset. We adopt a few classification models for
our dataset for both 2D [76] and 3D classification [62]. We split the dataset into the train, validation,
and test set by scenes since the original CO3D does not provide such splits. We use 10% of the
scenes for validation set and 10% for test set in each class. We use the same splits for 2D and 3D
classification.

5.1.1 Implementation Details

All the 2D classification models are trained with the cross-entropy loss with the weight decay factor
10−4. Following the recommendations from [77], we utilize the label smoothing with ϵ = 0.005,
remove bias decay, and initialize weights of the batch normalization layers on the residual connections
to 0. We use the SGD optimizer with momentum 0.9 and trained for 500 epochs with a batch size
64. For 50 epochs, we linearly warmed up the learning rate from 0 to 0.1 and decayed it using the
cosine annealing scheduler. It takes up to a day for training using a single RTX 3090 GPU. We
have benchmarked variants of ResNet (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152),

1The LPIPS metric sometimes generates “nan" although their visual qualities are great enough. Only 0.01%
of scenes are noted as failure.
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Figure 3: 2D classification accuracies (Acc@1) of the ResNet models trained either on CO3D or
PeRFception–CO3D and evaluated either on CO3D or PeRFception–CO3D. * denotes the Ima-
geNet [80] pretrained network. The models trained on PeRFception-CO3D dataset perform well on
both CO3D test dataset and PeRFception-CO3D test dataset. Furthermore, the background augmenta-
tion of PeRFception-CO3D dataset improves the 2D classification performance. The score table is in
the appendix.

ResNext [78] (ResNext50, ResNext101), and WideResNet [79] (WideResNet50, WideResNet101)
networks.

For 3D classification, we train 3D version of ResNets [76] with varying depths that are implemented
with spatially sparse convolutional layers [61, 62]. These networks directly take sparse voxels from
Plenoxels as input. The Plenoxels consist of two components: coordinates of sparse voxels and their
features (spherical harmonic coefficients and density values). To demonstrate the efficacy of such
features in perception task, we train the networks by providing different input features. We use the
SGD optimizer and set the initial learning rate as 0.1 for all experiments and decay it with the cosine
annealing scheduler for 100K iterations with batch size 16 on a single RTX 3090 GPU. We augment
the input data with both geometric augmentation (random rotation, coordinate dropout, random
horizontal flip, coordinate uniform translation, and random scaling) and feature-level augmentation,
random feature jittering. Further implementation details are in the appendix.

Background Augmentation. Plenoxels use both sparse voxels and lumispheres to render foregrounds
and backgrounds respectively. In other words, we can render each of them separately or manipulate
them to create various augmentations. Specifically, we create a novel augmentation that substitutes
the background in a scene with backgrounds from other scenes while preserving the foreground object.
We describe the composition of foregrounds and randomly selected backgrounds in the appendix. In
addition, we visualize several background augmentation examples in the appendix.

5.1.2 2D Classification on PeRFception-CO3D

We train both the scratch and ImageNet [80] pretrained version of ResNet [76] variants on the original
CO3D and PeRFception-CO3D to show that PeRFception-CO3D contains the same information as the
original CO3D dataset. Using our random pose selection algorithm(described in the appendix), which
discourages the selected pose to be extremely unobserved the train frames, we select 50 poses for each
scene. As shown in Fig 3, the model trained with the original CO3D has a larger gap than the model
trained with PeRFception-CO3D dataset. In addition, we observed using background augmentation is
beneficial for improving generalizability of classification networks, especially performs the best when
the augmentation is applied with probability p = 0.5. We conduct controlled experiments about the
probability p in the appendix. In addition, using a popular vision analysis tool GradCAM++ [81], we
demonstrate that using background augmentation helps the model not to memorize the backgrounds
in the appendix.

5.1.3 3D Classification on PeRFception-CO3D

PeRFception-CO3D provides a novel 3D data representation which we can directly feed into a
network without explicit rendering. We train spatially sparse 3D networks on PeRFception-CO3D
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Figure 4: 3D classification performance of 3D ResNet [62] models on our PeRFception-CO3D. We
visualize Acc@1 (Left) and Acc@5 (Right) score for each model and input features. "None" denotes
the case where 3D classification with only geometric cue of sparse voxels. D denotes the density and
SH denotes spherical harmonic coefficients.

and visualize the 3D classification accuracy on Figure 4. For each classification model, we utilize four
types of input features that are in our Plenoxels representation: ones (None), densities (D), spherical
harmonic coefficients (SH), and concatenation of spherical harmonic coefficients and densities (SH +
D). One interesting observation is that using either density values or spherical harmonic coefficients as
features improves performance much better. We conjecture this is because the density values provide
information about where the model should focus more, and the spherical harmonic coefficients
explicitly encode visual features.

5.2 Semantic Segmentation on PeRFception-ScanNet dataset

To further verify the fine-grained perception on the large-scale radiance fields data, we create and
evaluate 3D semantic segmentation networks on our scene-centric PeRFception-ScanNet dataset. We
assign semantic labels to each voxel by aligning the reconstructed PeRFception-ScanNet data with
the provided ground truth point cloud data. Then, for each voxel of PeRFception-ScanNet data, we
find the nearest point in the point cloud and when the distance is smaller than the predefined threshold
(5cm for our experiments), we assign the class label of the nearest point to the voxel. Otherwise, we
set the voxel label to IGNORE_CLASS.

Similar to 3D classification experiments, we use spatially sparse convolutional networks for predic-
tion, but we use U-shaped convnets with varying depth and width for segmentation. Additionally,
we employ the state-of-the-art large-scale 3D semantic segmentation model based-on transformer
architecture, Fast Point Transformer (FPT) [63], to analyze the performance of the recent transformer-
based 3D perception model on our dataset. For all networks, we trained for 60K iterations, with batch
size 8, 2cm voxel size, SGD optimizer with initial learning rate 0.1, and cosine annealing scheduler.
For FPT [63], we use voxel size of 5cm due to its extensive memory complexity. We train each
network with different input features as same with the 3D classification in Sec 5.1 to analyze the effect
of the plenoptic features to the 3D semantic segmentation task. We apply geometric augmentation
(random rotation, random crop, random affine transform, coordinate dropout, random horizontal flip,
random translation, elastic distortion), and feature-level augmentation (random feature jittering).

We use the standard experimental settings following [62], and report mean Intersection over Union
(mIoU), mean per-point accuracy (mAcc) on the validation split in Figure 5, and scenewise statistics
are in the appendix. We achieve up to 69.17% mIoU and 77.85% mAcc on the validation split of
PeRFception-ScanNet, which shows that our PeRFception-ScanNet dataset has accurate geometry
for networks to learn semantic of each object class. Consistent with 3D classification, the networks
trained with spherical harmonic coefficients and density as input feature exhibit higher segmentation
accuracy. These results indicate that the spherical harmonic coefficients and density values provide
additional cues for fine-grained geometric perception as well. The qualitative visualization of semantic
segmentation is shown in Figure 6. Additional quantitative and qualitative results are provided in the
appendix.
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Figure 5: Evaluated semantic segmentation performance, mIoU (Left) and mAcc (Right), on
PeRFception-ScanNet validation set with various input features. D denotes the density, SH de-
notes spherical harmonic coefficients.
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Figure 6: Qualitative results of semantic segmentation on PeRFception-ScanNet dataset. (1st,
3rd columns) Ground truth point cloud with ground truth semantic labels, (2nd, 4th columns)
Reconstructed sparse voxels with predicted semantic labels

6 Conclusion

In this work, we present the first perception networks for an implicit representation and conduct the
comprehensive study of various visual perception tasks. To this end, we created two large-scale im-
plicit datasets, namely PeRFception-CO3D and PeRFception-ScanNet, that cover object-centric and
scene-centric environments, respectively. Extensive experiments with diverse perception scenarios,
including 2D image classification, 3D object classification, and 3D scene semantic segmentation,
show that our datasets effectively convey the same information for both 2D and 3D in a unified and
compressed data format. This data format allows eliminating the need to separately store different
data formats, 2D images and 3D shapes. Consequently, the required disk space for storage is reduced
and the unified data format includes richer features. Furthermore, we propose a novel image augmen-
tation method that was infeasible in image datasets. We expect our fully automatic pipeline should
be a great candidate for establishing equally large datasets on 3D to tremendously large 2D image
datasets, potentially enabling larger models to be trained.

Limitation. Plenoxels allow high-quality rendering for both indoor and outdoor scenes with fast
training and rendering speed. However, the training step of Plenoxels strongly relies on calibrated
camera information. The camera parameters would be inaccurately calibrated in the scenes when
there are lots of symmetric or textureless patterns. Wrong camera information involves severe
artifacts on rendered images, such as the occurrence of floater or geometrically deformed voxel
shapes. We believe that jointly optimizing camera poses would be beneficial for improving the
fidelity of our dataset. Our work opens up the potential of using radiance field representation in some
conventional visual perception tasks and provides the first large-scale radiance field datasets that
effectively convey both the 2D and 3D information. We expect future work relevant to more accurate
and fast reconstruction could improve our work.

Ethical Concerns. Our work does not contain any serious ethical concerns of security threats or
human rights violations. However, our dataset is capable of generating unseen views from multi-view
images. Moreover, our object-centric dataset can be separated into foreground and background. It
leads to background augmentation, which has a considerable effect on the 2D classification task.
Thus, realistic fake videos whose camera trajectories are different from the original video or whose
foreground and background are from different scenes can be generated from our dataset.
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