
A Lessons from Our Benchmarking

We summarise our findings and open questions raised by these findings:

Datasets.

1. The selection of datasets and their relative contributions are important factors to determine the
model performance. To fairly evaluate and compare the impact of other factors (e.g., training
algorithms), it is crucial to keep the same dataset combination configuration, which is usually
ignored by prior works.

2. Diversity of attributes (e.g., human pose and shape, camera characteristics, backbone features) in
training datasets are critical for model performance. High diversity (leading to good overlap of test
set distributions) can give more satisfactory results. Using knowledge of the datasets’ train-test

distributions, merging training datasets that cover a large diversity in attributes could be effective

for training. Diversity of these attributes could guide future works could for creating, enhancing

or selecting datasets.

3. To adjust the contribution of different datasets, direct alteration of partitions (and thus increasing
the portion of valuable samples) is more effective than keeping the partitions same while reweight-
ing valuable samples. To get a good baseline model, we recommend to adopt more critical datasets
and increase their contribution during training. However, current partitions are still manually
defined. Open questions include how to automatically select datasets or adjust the contribution of

datasets for training. A possible direction would be to adopt AutoML approaches and consider

partitions as hyperparameters to tune.

4. Addition of SMPL fittings (albeit slightly noisy ones) are still highly effective for training.
Meanwhile, noisy keypoints are harmful for model performance. Addition of pseudo-annotations

for existing 2D-keypoint outdoor datasets could be a cost-effective way to enhance existing

datasets.

5. There are also some principles to build robust test sets. Specifically, the test sets should have: (1)
accurate ground-truth SMPL annotations captured using mocap or simulation. While EFT-COCO-
Val seems like a representative benchmark (i.e. good performance on EFT-COCO-Val correlates
to good performance on other benchmarks), we found errors in our visualisation of the SMPL
annotations, raising the concern if datasets with pseudo-annotations are suitable to be used as test
benchmarks. Currently, 3DPW is the only large-scale real-world outdoor dataset with accurate
SMPL ground-truth; (2) large diversity. Diversity in the test set is important and should model
closely to real world scenarios. We observe that the widely used test benchmark H36M is not very
indicative. Using H36M as the main benchmark would raise concerns if the model is generalisable
to a variety of scenarios.

Backbone and initialization

1. To fairly evaluate algorithms, it is crucial to properly ablate the backbones and initialisation with
conventional ones.

2. Optimal configurations comprise of transformer-based backbones with weights initialized from a
strong pose estimation model trained on in-the-wild dataset. Transferring knowledge from pose

estimation models is beneficial for mesh recovery tasks, prompting us to evaluate how we use the

same datasets for training.

Training strategies

1. The effect of data augmentations highly depends on the characteristics of the training dataset.
Their benefits are more obvious when the training sets contain less diverse and robust samples.
When combining multiple datasets during training, we can selectively run data augmentations to
different datasets based on their characteristics. Addition of augmentations could help to enhance

existing indoor datasets that lack diversity but contain valuable accurate ground-truth.

2. Prior works adopt MSE loss for regression of keypoints and SMPL parameters. Using L1 loss
instead can not only improve the model’s robustness against noisy samples, but also enhance the
model performance, especially when the selected datasets are not optimal.
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B Related Works

For a comprehensive survey on the task of monocular 3D human mesh recovery, Tian et al. [73] has
summarized different mesh recovery frameworks and compiled their reported benchmarks. Output
types, pseudo labels, datasets and evaluation protocols were factors suggested by Tian et al. [73]
that would lead to fluctuations in model performance but no experiments were run to back up their
claims. Conversely, our work provided systematic benchmarks and gather insights on how the choice
of datasets, architectures and training strategies affect training.

Datasets Kanazawa et al. [30] combined Human3.6M (H36M) [23], MPI-INF-3DHP [51], COCO
[45], LSPET [27], LSP [26] and MPII [1]. To leverage on multiple datasets, datasets are concatenated
according to a manually defined sampling ratio to prevent datasets with a huge amount of samples (i.e.
H36M) from overwhelming the model [30, 35]. Recently, more competitive datasets are introduced
[29, 6] for training high-performing models.

Table 12: Summary of the datasets used in various mesh recovery methods and their reported performance
(PA-MPJPE in mm) on 3DPW and H36M datasets. Abbreviation for the dataset - Human3.6M [23]: H36M,
MPI-INF-3DHP [51]: MI, MuCo-3DHP [52]: MuCo, PoseTrack [2]: PT, OCHuman [86]: OCH. 3DPW Protocol

2 (P2) refers to the evaluation (PA-MPJPE) on 3DPW test set without training on 3DPW train set while Protocol

1 (P1) includes fine-tuning on 3DPW train set. We use the notation [*]EFT/ SPIN/ DP/ SMPLify-X to denote
datasets with EFT, SPIN, DensePose or SMPLify-X fittings.
Method Datasets used Backbones Losses 3DPW (P2)# 3DPW (P1)# H36M#

HMR [30] H36M, MI, COCO, LSP, LSPET, MPII ResNet-50 Mixed 76.7 - 56.8
NBF [57] H36M, UP-3D, HumanEva-I ResNet-50 Mixed - - 59.9
GraphCMR [36] H36M, UP-3D, COCO, LSP, MPII ResNet-50 Mixed 70.2 - -
HoloPose [18] H36M, MPII, [COCO]DP ResNet-50 - - - 46.5
SPIN [35] H36M, [MI]SPIN, COCO, LSP, LSPET, MPII ResNet-50 Mixed 59.2 - 41.1
Jiang et al. [24] H36M, MI, PT, LSP, LSPET, MPII, COCO ResNet-50 - 52.7
Zhang et al. [87] H36M, [COCO]DP, UP3D, [LSP, LSPET, MPII, COCO]SPIN - - 41.7
Pose2Mesh [8] MuCo, [H36M]SMPLify-X, COCO, Freihand PoseNet - 58.9 47
HKMR [15] H36M, MI, COCO, LSP, LSPET, MPII ResNet-50 L1 43.2
I2L-MeshNet [53] MuCo, [H36M]SMPLify-X, COCO, Freihand ResNet-50 - 57.7 41.1
DaNet [84] H36M, [COCO]DP, UP3D, [LSP, LSPET, MPII, COCO]SPIN - - 54.8 40.5
Pose2Pose [54] MuCo, [H36M]SMPLify-X, COCO-Wholebody, Freihand - - 55.3 47.4
HybrIK [40] H36M, MI, COCO ResNet-34 - 48.8
METRO [43] H36M, UP-3D, MuCo, COCO, MPII, Freihand HRNet-W64 - 47.9 36.7
BMP [85] H36M, MI, MuCo, COCO, LSP, LSPET, PT, MPII ResNet-50 MSE 63.8 51.3
HUND [81] H36M, 3DPW, COCO-2017, OpenImages - - 57.5 53
EFT [29] [COCO, MPII, LSPET]EFT ResNet-50 Mixed 54.2 52.2
ProHMR[37] H36M, [MI, COCO, MPII]SPIN ResNet-50 Mixed 59.8 41.2
DSR [12] H36M, MI, [COCO]EFT ResNet-50 Mixed 54.1 51.7
ROMP [71] H36M, UP-3D, [MI, COCO, MPII, LSP]SPIN, AICH ResNet-50 - 54.9 62

ROMP[71] H36M, UP-3D, [MI, COCO, MPII, LSP]SPIN, AICH,
PT, CrowdPose, MuCo, OH ResNet-50 - 53.3 56.8

Graphormer [44] H36M, MuCo, UP-3D, COCO, MPII HRNet-W64 L1 45.6 34.5
THUNDR [82] H36M, 3DPW, COCO-2017, OpenImages ResNet-50 - 51.5 39.8
PyMAF [83] H36M, [MI]SPIN, COCO, LSP, LSPET, MPII ResNet-50 - 58.9 51.2 40.5

SPEC [34] Pano360, SPEC-SYN, SPEC-MTP, 3DPW, MI,
H36M, [COCO, MPII, LSPET]EFT

ResNet-50 - 53.2

PARE [33] [COCO, MPII, LSPET]EFT, MI, H36M ResNet-50 Mixed 52.3
PARE [33] [COCO, MPII, LSPET]EFT, MI, H36M HRNet-W32 Mixed 50.9 46.5

Table 12 summarises the datasets used in various human mesh recovery algorithms. Many algorithms
are trained on their own unique combination of datasets and their best score on 3DPW-test set is
directly compared to other methods trained with a different dataset mix.

To complicate matters, Zanfir et al. [81] noted that multiple protocols have also been used for testing.
Following SPIN [35], the majority of approaches evaluated on 3DPW test set without any fine-tuning
on the training set (protocol 2). However, there are also a number of papers in which 3DPW train set is
used during training (protocol 1) [34, 80, 48, 43, 68, 19]. On H36M[23], there are at least 4 protocols:
the ones originally proposed by the dataset creators, on the withheld test set of Human3.6M, or
protocols 1 and 2 proposed by Kolotouros et al. [35] by re-partitioning the original training and
validation sets for which ground truth is available. More recently, Zanfir et al. [81] added evaluation
on Panoptic-test [28] and MuPoTs-3D-test [52], Patel et al. [58] recommended AGORA-test and Joo
et al. [29] suggested EFT-OCHuman-test and EFT-LSPET-test for more challenging benchmarks.

Architectures Following Kanazawa et al. [30], ResNet-50 [21] is the default backbone in many mesh
recovery methods [29, 33, 32, 35]. More recently, Kocabas et al. [33] adopted HRNet-W32 [70] in
place of ResNet-50 [21] and attributed the performance gains to HRNet-W32’s [70] ability to produce
more robust high-resolution representations. Cai et al. [5] has also studied other backbone options,
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including deeper CNNs such as ResNet-101 and 152 [21], as well as DeiT [74], a vision transformer.
Expectedly, larger models demonstrate better capabilities [5], although Cai et al. [5] did not find that
vision transformers improve performance over CNN-based ones.

Training strategy
A mixture of losses has been typically used in mesh recovery tasks following Kanazawa et al. [30].
Mean Squared Error (MSE) loss is typically used for keypoints supervision, while L1 loss is used for
supervision of SMPL parameters.

Various augmentation methods used in pose estimation works have been adopted for mesh recovery
[33, 35, 85, 15, 52, 66, 29, 67, 59, 10, 79]. However, varying effectiveness has been reported.
Georgakis et al. [15] and Zhang et al. [85] found that occlusion is highly effective while minor
performance gains are observed by Kocabas et al. [32]. Joo et al. [29] found that applying extreme
crop augmentation only marginally improves performance, while Kocabas et al. [33] reported that
cropping harms performance on 3DPW benchmarks. In the above experiments, different dataset
mixes and benchmarks are used, warranting the need for a more rigorous investigation into the effect
of augmentation on individual datasets.

C Occlusion

(a) MPI-INF-3DHP [51] (b) MuCo-3DHP [52] (c) PROX [20]

Figure 6: Example images sourced from (a) MPI-INF-3DHP [51] (b) MuCo-3DHP [52] and (c) PROX
[20].

In fully in-the-wild settings, people often appear under occlusion either due to self-overlapping body
parts, close contact with other persons, or interactions with the environment [58]. Person-person or
person-object occlusion can be a more important factor that predominates the background. This can
be observed from two cases (Fig. 6). (1) MuCo-3DHP [52] is a dataset created through compositing
MPI-INF-3DHP [51] with the inter-person occlusion. From Table 2, we observe that the HMR
model trained with MuCo-3DHP has better performance than that with MPI-INF-3DHP (78.05 versus
107.15 in PA-MPJPE (mm)). (2) PROX [20], despite being the only indoor 2D keypoint dataset,
gives the best performance compared with other outdoor 2D keypoint datasets with the PA-MPJPE
of 84.69 (mm) on 3DPW. PROX contains numerous instances of people interacting with the indoor
furniture (Fig. 6), which can improve the model performance.

Whilst keeping other factors constant with the same indoor background, lighting and actors, training
with MuCo-3DHP [52] could boast significant improvement gains by adding person-person occlusion
(Fig. 6). This is also evident in distributions for pose (see Figure 12), shape (see Figure 13), camera
(see Figure 14), and backbone features (see Figure 15) where the distributions of MuCo-3DHP [52]
are closer to 3DPW-test [76] and other in-the-wild datasets as compared to MPI-INF-3DHP [51].

D Noisy Samples

Proportion of noisy samples. We inject noise to different ratios of samples under two situations: (1)
only SMPL annotations is noisy (Fig. 7a), which might occur when challenging poses are wrongly
fitted; (2) both keypoints and SMPL annotations are noisy (Fig. 7b) as incorrect keypoint estimations
lead to erroneous fittings.
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Figure 7: Examples of different ratio of noise. On top of noisy SMPL, (a) ground-truth (GT) keypoints
are used in scenario 1 while (b) noisy keypoints are used in scenario 2.

Scale and location of noise. Two scenarios were considered for controlled noise about the scale and
location. (1) We added noise to all SMPL annotations and vary its scales (i.e., standard deviation).
The generated poses are still realistic (Fig. 8a). (2) We observe that fitted poses of certain body parts
(i.e. feet and hand) tend to be less accurate in existing fittings. We simulate cases for wrongly fitted
body parts by replacing a percentage of pose parameters (body parts) with random noise (Fig. 8b).

Figure 8: Examples of different scale and location of noise.

E Augmentation

Fig. 9 compares the training curves without and under different types of augmentation. Training
without augmentation increases the indoor-outdoor domain gap, as evidenced from the increasing
errors (PA-MPJPE in mm) on 3DPW throughout the training episode. Addition of augmentation
helps to close the indoor-outdoor domain gap and prevents over-fitting (Fig. 9). Amongst the
augmentations, self-mixing seems to be the most helpful for H36M.

Fig. 10 compares the distribution of predicted camera features under different augmentations. For the
model that is trained on H36M with self-mixing, the distribution of predicted camera attributes is
more similar to that predicted by a well-trained model (Fig. 10a). When training with EFT-COCO,
applying augmentation has a minute effect on the camera distribution (Fig. 10b), probably due to
the diverse variety of camera angles present. This could explain why applying augmentation to
EFT-COCO has a less pronounced effect on 3DPW performance (Table 8).
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Figure 9: Per-epoch evaluation on 3DPW (PA-MPJPE in mm when trained on H36M under different
augmentations.

Figure 10: Effect of applying augmentation on the distribution of predicted camera features for
(top) H36M and (bottom) EFT-COCO.

F Qualitative evaluation

Under the same model capacity and dataset mixes, our variant (HMR+) outperforms HMR [30]
and SPIN [35] both qualitatively (Fig. 11) and quantitatively (Table 1). HMR+ adopts the training
strategies of COCO-weight initialization, L1 loss and selective augmentation. Using the same dataset
selection and backbone (HRNet-W32) as PARE [33], qualitative and quantitative differences are
more subtle as PARE [33] is already a robust model (Fig. 11).
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Figure 11: Qualitative results on COCO, LSPET and OCHuman test sets. From left to right: (a) HMR
[30], (b) SPIN [35], (c) HMR+ (Ours) with ResNet-50 backbone (d) PARE [33] (e) HMR+ (Ours) with
HRNet-W32 backbone (f) HMR+ (Ours) with Twins-SVT backbone. (a)-(c) follow [31]’s dataset mix
while (d)-(f) follow [33]’s dataset mix. HMR+ adopts COCO-weight initialization, L1 loss and selective
augmentation.

G Other benchmarks
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Table 14: HMR model performance (PA-MPJPE in mm) on 3DPW with different backbone architectures.
Backbone Params (M) FLOPs (G) 3DPW# H36M#

ResNet-50 [21] 28.79 4.13 64.55 46.47
ResNet-101 [21] 47.78 7.83 63.36 47.50
ResNet-152 [21] 63.42 11.54 62.13 47.33

HRNet [70] 36.69 11.05 64.27 49.95
EfficientNet-B5 [72] 33.62 0.03 65.16 44.31

ResNext-101 91.39 16.45 64.95 50.76
Swin [46] 51.72 32.48 62.78 46.79
ViT [11] 91.07 11.29 62.81 49.06

Twin-SVT [9] 59.27 8.35 60.11 46.08
Twin-PCVCT [9] 47.02 6.45 59.13 48.16

Table 15: HMR model performance (PA-MPJPE in mm) when trained with different combinations of
datasets.

Mix Datasets 3DPW# H36M#
1 H36M, MI, COCO 66.14 48.90
2 H36M, MI, EFT-COCO 55.98 45.18
3 H36M, MI, EFT-COCO, MPII 56.39 46.06
4 H36M, MuCo, EFT-COCO 53.90 46.01
5 H36M, MI, COCO, LSP, LSPET, MPII 64.55 49.47
6 EFT-[COCO, MPII, LSPET], SPIN-MI, H36M 55.47 46.44
7 EFT-[COCO, MPII, LSPET], MuCo, H36M, PROX 52.96 51.20
8 EFT-[COCO, PT, LSPET], MI, H36M 55.97 46.14
9 EFT-[COCO, PT, LSPET, OCH], MI, H36M 55.59 47.35
10 PROX, MuCo, EFT-[COCO, PT, LSPET, OCH], UP-3D, MTP, Crowdpose 57.80 50.51
11 EFT-[COCO, MPII, LSPET], MuCo, H36M 52.54 47.19

H Optimized configurations for other algorithms

In addition to Table 10, Table 16 considers different dataset mixes and backbones for the additional al-
gorithms we included. Similar to HMR, high-quality models for other algorithms are also established
with optimized dataset mixes, backbones and training strategies.

Table 16: Model performance of other algorithms with optimized configurations on the 3DPW test set.
Abbreviations for the datasets - Human3.6M [23]: H36M, MPI-INF-3DHP [51]: MI, MuCo-3DHP [52]: MuCo

Algorithm Dataset Backbone Variant PA-MPJPE# MPJPE# PA-PVE# PVE#
PARE [33] EFT-[COCO, LSPET, MPII], H36M, SPIN-MI HrNet-W32 EFT-COCO 50.90 82.0 - 97.9

PARE (Ours) EFT-[COCO, LSPET, MPII], H36M, SPIN-MI HrNet-W32 - 61.99 109.82 82.33 133.86
PARE (Ours) EFT-[COCO, LSPET, MPII], H36M, SPIN-MI HrNet-W32 L1-COCO-Aug 58.32 100.35 77.22 121.97
PARE (Ours) EFT-[COCO, LSPET, MPII], H36M, SPIN-MI Twins-SVT L1-COCO-Aug 51.96 93.46 81.33 130.20
PARE (Ours) EFT-[COCO, LSPET, MPII], H36M, MuCo Twins-SVT L1-COCO-Aug 51.93 91.43 68.40 110.32

GraphCMR [36] COCO, H36M, MPII, LSPET, LSP, UP3D ResNet-50 - 70.52 116.83 87.50 133.67
GraphCMR COCO, H36M, MPII, LSPET, LSP, UP3D ResNet-50 L1-COCO-Aug 60.26 99.28 75.75 113.17
GraphCMR EFT-[COCO, LSPET, MPII], H36M, SPIN-MI ResNet-50 - 60.51 101.69 77.51 121.37
GraphCMR EFT-[COCO, LSPET, MPII], H36M, SPIN-MI Twins-SVT L1-COCO-Aug 53.29 91.07 70.52 108.14
SPIN [35] H36M, MI, COCO, LSP, LSPET, MPII ResNet-50 - 59.2 96.9 - 135.1

SPIN (Ours) H36M, MI, COCO, LSP, LSPET, MPII ResNet-50 L1-COCO-Aug 50.54 80.49 68.29 96.67
SPIN (Ours) EFT-[COCO, LSPET, MPII], H36M, SPIN-MI ResNet-50 - 55.28 93.52 72.19 109.57
SPIN (Ours) EFT-[COCO, LSPET, MPII], H36M, SPIN-MI HRNet-W32 L1-COCO-Aug 47.59 80.77 64.22 96.22

MeshGraphormer [44] H36M, COCO-2017, UP3D, MPII, MuCo HRNet-W48 - 63.18 108.02 76.05 125.56
MeshGraphormer (Ours) H36M, COCO-2017, UP3D, MPII, MuCo HRNet-W48 L1-COCO-Aug 58.82 104.63 76.79 132.52
MeshGraphormer (Ours) H36M, COCO-2017, UP3D, MPII, MuCo Twins-SVT L1-COCO-Aug 58.13 98.03 73.32 116.95
MeshGraphormer (Ours) H36M, COCO-2017, UP3D, EFT-MPII, MuCo Twins-SVT L1-COCO-Aug 58.30 96.71 74.88 124.97

I Feature distributions of datasets

As several datasets do not contain ground-truth camera angles and poses, we trained a robust HMR
(3DPW errors of 51.66 mm) to obtain estimations of four attributes: 1) pose ✓ 2 R69 modeled by
relative 3D rotation of K = 23 joints in axis-angle representation, 2) shape � 2 R10 parameterized by
the first 10 coefficients of a PCA shape space, 3) camera translation tc 2 R3 obtained by predicting
weak perspective camera parameters, and 4) features f 2 R2048 obtained from the ResNet-50
backbone.

Following which, the distribution of each attribute is visualized after dimension reduction with
Uniform Manifold Approximation and Projection (UMAP) [49]. For visualization purposes, we
randomly downsample data points from each dataset and compare them with the features reduced
from 3DPW-test set.
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Figure 12: Feature distribution of poses between 3DPW-test (red) and the respective datasets (blue).
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Figure 13: Feature distribution of shapes between 3DPW-test (red) and the respective datasets (blue).
Notably, datasets such as Instavariety [31], PROX [20], COCO [45], AGORA [58] contain a diverse range
of shapes. Meanwhile, indoor datasets such as MPI-INF-3DHP [51] and H36M [23] have a rather distinct
distribution from 3DPW-test, which could be attributed to the small number of subjects in each dataset.
MuCo-3DHP [52] is the variant of MPI-INF-3DHP [51] that contains person-person occlusion. This helps
to increase diversity and close the distribution shift between 3DPW-test.
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Figure 14: Feature distribution of estimated cameras between 3DPW-test (red) and the respective datasets
(blue). Amongst datasets with only 2D keypoints, Instavariety [31], PROX [20] and COCO [45] have a
more diverse distribution, as compared to MPII, PoseTrack, OCHuman, LIP or Penn-Action. This might
also explain they achieve more competitive results on 3DPW-test benchmarks.
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Figure 15: Feature distribution of backbone features between 3DPW-test (red) and the respective datasets
(blue). Notably, Instavariety, COCO contain a diverse range of backbone features. Meanwhile, indoor
datasets such as MPI-INF-3DHP [51] and H36M [23] have a rather distinct distribution from 3DPW-test,
which could be attributed to the same colored background in both datasets. MuCo-3DHP [52] is the
variant of MPI-INF-3DHP [51] that contains augmented backgrounds. This helps to increase diversity
and close the distribution shift between 3DPW-test.
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