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Abstract

Multi-view subspace clustering aims to exploit a common affinity representation
by means of self-expression. Plenty of works have been presented to boost the
clustering performance, yet seldom considering the topological structure in data,
which is crucial for clustering data on manifold. Orthogonal to existing works, in
this paper, we argue that it is beneficial to explore the implied data manifold by
learning the topological relationship between data points. Our model seamlessly in-
tegrates multiple affinity graphs into a consensus one with the topological relevance
considered. Meanwhile, we manipulate the consensus graph by a connectivity
constraint such that the connected components precisely indicate different clusters.
Hence our model is able to directly obtain the final clustering result without reliance
on any label discretization strategy as previous methods do. Experimental results
on several benchmark datasets illustrate the effectiveness of the proposed model,
compared to the state-of-the-art competitors over the clustering performance.

1 Introduction

With the evolution of multimedia, now large amounts of data are represented by multiple types (i.e.,
views). A document, for example, can be presented by images, audio, text. Likewise, a text can be
expressed in different languages [1]. In order to integrate the complementary information among
multiple views, numerous sophisticated multi-view clustering algorithms have been proposed [2, 3],
which typically produce better results than single-view clustering [4, 5].

Over the past years, self-representation subspace clustering methods, which assume that each data
point can be reconstructed by a linear combination of other data points, have gained broad attention.
The self-representation property is able to capture the heterogeneous relationships between data and
therefore produces excellent clustering results [6]. Meanwhile, self-representation property based
multi-view subspace clustering algorithms have been developed up to now [7]. For instance, diversity-
induced multi-view subspace clustering (DiMSC) [8] adopts the Hilbert-Schmidt independence
criterion (HSIC) as a diversity term to measure the dependence of different views. By minimizing the
diversity term, the subspace representations are compelled to be distinct from each other. Instead
of integrating multi-view graphs into a consensus one, [9] involves the spectral clustering into their
object function to derive a unified indicator matrix. Therefore, the consistent clustering results of
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data points in different views are ensured. [10] separates the subspace representations of different
views by a shared consistent representation and a set of specific representations, which is expected to
better accommodate real-world data. To eliminate the redundant information of data observations or
kernel matrices, [11] utilizes eigendecomposition to get the robust data representations, which helps
to obtain the consensus representations of low redundancy and better clustering results. Lately, a
number of anchor-based multi-view subspace clustering methods [12–14] draw significant attention
because they can achieve promising performance with a large reduction in storage and computational
time.

Despite the significant progress made by the aforementioned methods, there are still drawbacks
that can be modified. On one hand, these methods do not consider the manifold topological struc-
ture. Considering that real-world datasets are usually sampled from a nonlinear low-dimensional
manifold [15–17], it is essential to explicitly explore the topological relationship for clustering data
on manifold. On the other hand, existing multi-view clustering methods usually adopt predefined
similarity graphs. That is, the graph learning and subsequent multi-view clustering in these methods
are separated. Thus the constructed graph may not be suitable, let alone optimal, for the subsequent
clustering. It is preferred to automatically learn the similarity information between data points and
involve graph learning as a part of the optimization procedure.

Regrading the deficiencies mentioned above, in this paper we argue that it is beneficial to explore the
implied data manifold by learning the topological relationship between data points. To do so, we
propose to seamlessly integrate multiple affinity graphs into a consensus one with the topological
relevance considered. Besides, we manipulate the consensus graph by a connectivity constraint such
that the connected components precisely indicate different clusters. Hence our model is able to directly
obtain the final clustering result without reliance on any label discretization step. By leveraging the
subtasks of affinity graph constructing, topological relevance learning, and discrete label partitioning
into a unified framework, each subtask can be enhanced in a mutual reinforcement manner. An
alternating iterative algorithm is carefully designed to solve the optimization problem of the proposed
model. Experimental results on several benchmark datasets demonstrate the effectiveness of our
method.

Notations. We use boldface uppercase letter, e.g., M, to denote the matrix. Mij represents the ij-th
element of M. ∥·∥F represents the Frobenius norm of a matrix and 1 is a column vector with all its
elements equal to 1. I denotes the identity matrix with proper size.

2 Preliminary

It is well-known that real-world datasets are often sampled from a nonlinear low-dimensional manifold
which is embedded in the high dimensional ambient space [15, 18–20]. Hence it is necessary to
exploit the manifold structure implied within the original data.

Recently, [17] pointed out that it is preferred to boost the learning performance by making use of
the manifold topological structure than the Euclidean structure. It is based on a simple yet intuitive
assumption that the topological connectivities between individuals could be propagated from near to
far. In other words, the spatial similarity between two individuals may be small, but their topological
relevance to each other would be high if they are linked by consecutive neighbors. A visualized
example is given in Figure 1. For better illustration, we visualize the topological relevance in both
a 2D version (left subfigure) as well as a 3D version (right subfigure). Taking the left subfigure as
an example, although the dark blue and light grey points are with low similarity in terms of spatial
location and velocity, they are closely connected to each other considering the high topological
relevance between them.

Instead of relying on the Euclidean structure, it is naturally expected to learn a more suitable manifold
topological structure such that the intrinsic similarities can be explicitly uncovered. Considering
that data points with a high similarity would share similar topological relevance, given a predefined
similarity graph Z ∈ Rn×n, where n is the number of data points, [17] investigated the topological
structure of data by solving

min
S

1

2

n∑
i,j,k=1

Zjk (Sij − Sik)
2
+ β ∥S− I∥2F , (1)
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Figure 1: Illustration of topological relevance. Left: the dark blue point and the light gray point show low
similarity on spatial velocity, but they keep high topological relevance to each other [17]. Right: a closer distance
in the Euclidean structure does not mean higher topological relevance.

where β is a trade-off parameter. i, j, and k are data point indexes. S represents the target topological
relationship matrix, and Sij denotes the data point j’s topological relevance to i. Note that the first
term in Eq. (1) is essentially a smoothness constraint that fits the above assumption, i.e., it guarantees
the data points j and k share a similar topological relationship with data point i if they are similar. And
the second term is incorporated to prevent the trivial solution. According to Eq. (1), the topological
consistency can be propagated through neighbors with high similarities, and the distant data points
will keep a close relationship if they are linked by consecutive neighbors. Notwithstanding, Eq. (1) is
fed with a predefined graph, which would lead to performance degradation as the predefined graph Z
might not be optimal for subsequent learning procedures. Hence it is preferred to automatically learn
similarity graphs from data.

Self-expression has been widely employed to recover the similarity graph in the form of subspace
representation [6]. Given a dataset X = [x1,x2, · · · ,xn] ∈ Rm×n with n data points and m features,
the self-expression based clustering problem can be defined as

min
Z
∥X−XZ∥2F + α ∥Z∥2F

s.t. Z ≥ 0, diag (Z) = 0,
(2)

where α is a trade-off parameter and diag (Z) represents the vector consists of diagonal elements
of Z. It is obvious that Eq. (2) learns the neighboring data points of a data point and the corre-
sponding weights by the sparse reconstruction from other data points. Moreover, the learned sparse
representation enjoys several nice properties, e.g., the datum-adaptive ability and robustness to
noise [21, 22].

Based on Eq. (2), we can easily extend it to a multi-view formulation when dealing with the multi-view
data {X(1),X(2), · · · ,X(m)}, which can be formed as

min
Z(v)

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+ α

∥∥∥Z(v)
∥∥∥2
F

s.t. Z(v) ≥ 0, diag
(
Z(v)

)
= 0,

(3)

where m is the number of views, and Z(v)(1 ≤ v ≤ m) denotes the affinity representation that
automatically learned from the v-th view.

3 The Proposed Methodology

To explicitly incorporate the manifold topological structure into multi-view clustering, we propose to
learn a topological relation graph based on Eq. (1). With the subspace representation automatically
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obtained in Eq. (3), we arrive at

min
Z(v),S

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+ α

∥∥∥Z(v)
∥∥∥2
F
+

1

2

m∑
v=1

wv

n∑
i,j,k=1

Z
(v)
jk (Sij − Sik)

2
+ β ∥S− I∥2F

s.t. Z(v) ≥ 0, diag
(
Z(v)

)
= 0, sTi 1 = 1, sij ≥ 0,

(4)
where the consensus graph S reveals the topological relationship across multiple views and is further
constrained to be non-negative and the sum of each row is 1. wv is the weight for the v-th views,
which can be considered as a constant within each iteration and will be introduced later.

Nevertheless, the learned S in Eq. (4) does not contain explicit cluster structures. It is expected that
the consensus graph contains exactly c connected components where c is the number of clusters. It
sounds unrealistic that such a clear structured S could be achieved out of thin air. Fortunately, we can
solve this problem with a useful connectivity constraint. Moreover, in Eq. (4), we see that if the j-th
data point is connected with many similar neighbors, it will largely affect the objective value. Thus
we tend to normalize the objective function so that each point can be treated equally. Considering
the above concerns, we propose a normalized version of Eq. (4) with an additional connectivity
constraint, which can be finally formulated as

min
Z(v),S

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+ α

∥∥∥Z(v)
∥∥∥2
F
+

1

2

m∑
v=1

wv

n∑
i,j,k=1

Z
(v)
jk

 Sij√
D

(v)
jj

− Sik√
D

(v)
kk

2

+ β ∥S− I∥2F

s.t. Z(v) ≥ 0, diag
(
Z(v)

)
= 0, sTi 1 = 1, sij ≥ 0, rank (LS) = n− c,

(5)

where D(v) is the degree matrix of Z(v), LS is the Laplacian matrix of S, and rank (LS) = n− c is
a rank constraint that manipulates the target graph S containing exactly c connected components. In
this way, the subsequent label discretization step can be avoided since each connected component
precisely indicates an individual cluster. As for the weight wv of each view, we set it in a self-tuned
way inspired by [23, 24]:

wv = 1

/
2

√√√√√ n∑
i,j,k=1

Z
(v)
jk

 Sij√
D

(v)
jj

− Sik√
D

(v)
kk

2

. (6)

It is worth mentioning the salient contributions of our model formulated in Eq. (5) as follows:

• Orthogonal to other multi-view subspace clustering approaches, our model explicitly ex-
plores the implied data manifold by learning the topological relationship across multiple
views. To the best of our knowledge, this is the first work that delicately incorporates the
topological structure in multi-view subspace clustering.

• Our model flawlessly integrates the subtasks including affinity graph constructing, manifold
topological structure learning, and discrete label partitioning into a unified framework.
Hence our model is an end-to-end single-stage learning paradigm.

• An alternating iterative algorithm is introduced to solve the optimization problem. Exper-
iments on several benchmark datasets illustrate the effectiveness of the proposed model,
compared to the state-of-the-art competitors over the clustering performance.

3.1 Algorithm Derivation

In order to solve the problem in Eq. (5), we derive an optimization algorithm to optimize the objective
function. Since the corresponding optimization problem is not jointly convex in all variables, we
choose to solve it by updating one variable while fixing other variables.
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3.1.1 Update Z(v) for Each View

For Z(v), the corresponding problem is

min
Z(v)

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+ α

∥∥∥Z(v)
∥∥∥2
F
+

1

2

m∑
v=1

wv

n∑
i,j,k=1

Z
(v)
jk

 Sij√
D

(v)
jj

− Sik√
D

(v)
kk

2

s.t. Z(v) ≥ 0, diag
(
Z(v)

)
= 0.

(7)

Eq. (7) can be rewritten as

min
Z(v)

m∑
v=1

{
Tr
(
H(v)

)
+ αTr

(
Z(v)Z(v)T

)
+ wvTr

(
ST

(
I−D(v)−

1
2Z(v)D(v)−

1
2

)
S

)}
s.t. Z(v) ≥ 0, diag

(
Z(v)

)
= 0,

(8)

where H(v) =
(
X(v) −X(v)Z(v)

) (
X(v) −X(v)Z(v)

)T
. Taking the derivative of Eq. (8) w.r.t Z(v)

and setting the derivative to zero, we get following solution

Z(v) = max

((
2K(v) + 2αI

)−1 (
2K(v) + wvGGT

)
, 0

)
, (9)

where G = D− 1
2S, and K(v) = X(v)TX(v) can be treated as a liner kernel. Note that the nonlinear

kernel can also be applied in our model.

3.1.2 Update S

Dropping the unrelated terms of Eq. (5) w.r.t. S, thus we need to solve

min
S

1

2

m∑
v=1

wv

n∑
i,j,k=1

Z
(v)
jk

 Sij√
D

(v)
jj

− Sik√
D

(v)
kk

2

+ β ∥S− I∥2F

s.t. sTi 1 = 1, sij ≥ 0, rank (LS) = n− c.

(10)

We see that Eq. (10) is difficult to solve due to the rank constraint. Let σi (LS) be the i-th smallest
eigenvalue of LS . The constraint rank (LS) = n− c would be satisfied if

∑c
i=1 σi (LS) = 0 since

LS is a positive semidefinite matrix. According to Ky Fan’s Theorem [25]:
c∑

i=1

σi (LS) = min
F

Tr
(
FTLSF

)
s.t. F ∈ Rn×c,FTF = I,

(11)

where F ∈ Rn×c denotes the cluster indicator matrix. We incorporate the constraint term∑k
i=1 σi (LS), i.e., minF Tr

(
FTLSF

)
, into the cost function, thus Eq. (10) can be rewritten as

min
S,F

1

2

m∑
v=1

wv

n∑
i,j,k=1

Z
(v)
jk

 Sij√
D

(v)
jj

− Sik√
D

(v)
kk

2

+ β ∥S− I∥2F + 2λTr
(
FTLSF

)
s.t. sTi 1 = 1, sij ≥ 0,

(12)

where λ is a self-tuned parameter.

Based on Eq. (12), first we search the optimal solution of F, which can be obtained by solving

min
F∈Rn×c,FTF=I

Tr
(
FTLSF

)
, (13)

which is essentially a spectral problem and F can be achieved by calculating the c eigenvectors of LS

corresponding to the c smallest eigenvalues.
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Algorithm 1: Algorithm to solve Eq. (18)
Input: a nonzero matrix A and a nonzero vector b.

Set 1 < ρ < 2, initialize η > 0, q.
Output: S.

1: repeat
2: Update p according to (20).
3: Update si according to (21).
4: Update η ← ρη.
5: Update q← q+ η (si − p).
6: until converge

Algorithm 2: The Algorithm for Eq. (5)

Input: Multi-view data {X(1),X(2), . . . ,X(m)} with m views, cluster number c, parameters α and
β.
Initialize the weight of each view wv = 1

m .
Initialize the affinity graph Z(v) according to Eq. (2).
Initialize the consensus graph. S =

∑m
v=1 wvZ

(v).
Output: The indicator matrix S ∈ Rn×n with exactly c connected components.

1: repeat
2: Update Z(v) according to Eq. (9).
3: Update S by Algorithm 1.
4: Update F according to Eq. (13).
5: Update wv according to Eq. (6).
6: until converge

Then we search the optimal solution of S. It is clear that Eq. (12) w.r.t. S can be formulated in a
vector form as

min
S

n∑
i=1

{
m∑

v=1

1

2
wv

n∑
j,k=1

Z
(v)
jk

 Sij√
D

(v)
jj

− Sik√
D

(v)
kk

2

+ β

n∑
j=1

(Sij − Iij)
2
+ λ

n∑
j=1

∥fi − fj∥22 Sij

}

s.t. sTi 1 = 1, sij ≥ 0.
(14)

Note that Eq. (14) is independent for different i, thus we have the following compact formulation

min
sij≥0,sTi 1=1

sTi

(
m∑

v=1

wv

(
I−D(v)−

1
2Z(v)D(v)−

1
2

))
si + β ∥si − ei∥22 + sTi ui, (15)

where ei denotes the i-th column vector of identity matrix I, and ui represents a vector with its j-th
element uij = λ ∥fi − fj∥22.

Denote A =
∑m

v=1 wv

(
I−D(v)−

1
2Z(v)D(v)−

1
2

)
+ βI and b = 2βei − ui, Eq. (15) is equivalent

to optimizing
min

sij≥0,sTi 1=1
sTi Asi − sTi b. (16)

We see Eq. (16) is essentially a quadratic convex optimization problem, hence it can be solved
with the classical augmented Lagrangian multiplier (ALM) method [26]. Specifically, we can solve
Eq. (16) by tackling its counterpart

min
sij≥0,sTi 1=1,p=si

sTi Ap− sTi b. (17)

Based on Eq. (17), the corresponding augmented Lagrangian function can be defined as

min
sij≥0,sTi 1=1,p

sTi Ap− sTi b+
η

2

∥∥∥∥si − p+
1

η
q

∥∥∥∥2
2

, (18)
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where the second term in Eq. (18) is employed to guarantee that p = si, η and q are the penalty
coefficient and parameter, respectively.

It is clear that we can solve p and si in an iterative updating way:

1) Update p with fixed si. The corresponding cost function w.r.t. p is

Lp = sTi Ap+
η

2

∥∥∥∥si − p+
1

η
q

∥∥∥∥2
2

. (19)

Setting ∂Lp

∂p = 0, we obtain

p = si −
1

η

(
AT si + q

)
. (20)

2) Update si with fixed p. The corresponding cost function w.r.t. si can be reformulated as

min
sij≥0,sTi 1=1

∥∥∥∥si − p+
1

η
q+

Ap− b

η

∥∥∥∥2
2

, (21)

which leads to a closed-form solution and can be directly obtained by [21]. According to the
ALM principles [26], η can be exaggerated increasingly during each iteration, and q is updated by
q ← q+ η (si − p). Finally, we can obtain a optimal solution for S based on this effective ALM
strategy. The detailed algorithm to solve Eq. (18) is outlined in Algorithm 2.

Up to now, with the variable Z(v) updated by Eq. (9), S updated by Eq. (18), F updated by Eq. (13),
and wv updated by Eq. (6), the overall algorithm to solve the objective in Eq. (5) can be summarized
in Algorithm 2. Owing to space limitation, we give the convergence analysis and the time complexity
of Algorithm 2 in the Appendix B and Appendix C, respectively.

4 Experiments

We evaluate the proposed method by comparing it with following state-of-the-art competitors:
Diversity-induced Multi-view Subspace Clustering (DiMSC) [8], Auto-weighted Multiple Graph
Learning (AMGL) [27], Multi-view Clustering with Graph Learning (MVGL) [28], Weighted Multi-
view Spectral Clustering(WMSC) [29], Consistent and Specific Multi-view Subspace Clustering
(CSMSC) [10], Graph-based Multi-view Clustering (GMC) [24], Large-scale Multi-View Subspace
Clustering in linear time (LMVSC) [12], Scalable Multi-View Subspace Clustering with unified an-
chors (SMVSC) [13], and Multi-View Subspace Clustering via Co-training robust data representation
(CoMSC) [11]. The classic graph-based algorithm, spectral clustering (SC) [18], is also included as
a baseline. We apply SC by making use of the most informative view, i.e., one that achieves the best
performance (denoted by SCbest).

Table 1: Characteristics of all datasets. n, m, and c denote the number of samples, views, and clusters,
respectively. dv denotes the dimensionality of the features in the v-th view.

Dataset n m c d1 d2 d3 d4 d5 d6
3Sources 169 3 6 3560 3631 3068 – – –
MSRC 210 5 7 24 576 512 256 254 –
COIL-20 1440 3 20 1024 3304 6750 – – –
Caltech-7 1474 6 7 48 40 254 1984 512 928
100Leaves 1600 3 100 64 64 64 – – –
Caltech-20 2386 6 20 48 40 254 1984 512 928
MNIST 10000 3 10 30 9 30 – – –

The experiments are conducted on several benchmark datasets, namely, 3Sources, MSRC, 100Leaves,
COIL-20, Caltech-7, Caltech-20, and MNIST. The detailed information of all datasets is given in
Appendix A. The specific characteristics of these datasets are also summarized in Table 1. The
parameters for comparison algorithms are set according to the recommendations in their corresponding
paper. The parameter settings of our model will be introduced later. We repeat all algorithms 10 times
to eliminate the effect of random factors, and report the average scores. Four widely-used metrics,
i.e., clustering accuracy (ACC), Normalized Mutual Information (NMI), Purity, and F-score, are used
to achieve a comprehensive evaluation.
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Table 2: Clustering results of all methods on different datasets (%). The best performance is bolded, and the
second best performance is underlined.

Dataset SCbest DiMSC AMGL MVGL WMSC CSMSC GMC LMVSC SMVSC CoMSC Ours
ACC

3Sources 53.67 76.33 44.14 42.54 57.75 78.34 69.23 50.18 43.14 64.26 81.07
MSRC 58.95 72.38 70.67 70.48 69.00 80.48 74.76 74.71 81.43 80.86 85.24

COIL-20 72.75 76.15 79.30 75.21 76.58 75.06 79.10 75.56 61.07 71.90 80.42
Caltech-7 48.58 41.51 64.66 56.38 38.95 62.08 69.20 60.91 57.22 64.65 77.61
100Leaves 69.62 47.87 79.09 54.12 78.23 76.78 82.38 67.32 38.03 78.75 83.56
Caltech-20 41.74 28.45 49.69 57.29 33.98 47.47 45.64 47.10 61.36 53.32 68.99

MNIST 52.74 51.79 85.10 30.55 51.91 50.64 84.37 71.45 77.16 69.65 87.44
NMI

3Sources 49.99 63.77 18.35 27.11 49.33 70.75 54.80 30.51 24.21 59.32 70.81
MSRC 46.81 60.08 66.80 58.18 59.53 71.43 74.21 65.55 70.18 74.08 77.35

COIL-20 81.91 83.02 91.43 83.80 84.16 84.17 91.79 83.24 73.06 81.42 91.90
Caltech-7 28.99 32.10 52.76 51.63 28.08 51.82 60.56 44.33 44.96 55.96 64.51
100Leaves 86.17 70.98 90.48 63.96 90.44 89.05 90.25 84.64 64.92 90.42 92.48
Caltech-20 45.47 27.59 54.47 58.59 41.81 57.83 38.46 49.21 57.56 59.38 56.53

MNIST 47.13 34.08 76.08 24.04 47.31 46.13 76.39 63.46 62.40 64.80 77.49
Purity

3Sources 71.18 80.47 49.94 48.46 71.48 83.67 74.56 75.74 53.08 72.01 84.62
MSRC 60.00 72.38 74.14 70.48 71.38 80.48 79.05 75.33 81.43 81.76 85.24

COIL-20 75.25 78.94 84.37 77.78 78.19 77.56 84.79 79.08 61.72 78.94 85.00
Caltech-7 79.61 76.11 84.83 86.84 79.58 86.95 88.47 70.98 85.80 72.73 88.60
100Leaves 72.94 50.47 83.42 57.44 80.55 79.44 85.06 77.39 39.49 85.44 86.01
Caltech-20 70.54 54.83 68.33 74.85 67.29 77.91 55.49 52.48 71.32 61.12 75.02

MNIST 56.27 52.37 85.43 30.55 55.94 54.22 84.37 77.00 77.16 76.38 87.44
F-score

3Sources 48.49 70.68 38.18 44.75 50.79 73.17 60.47 41.87 38.46 60.49 75.25
MSRC 43.88 58.61 62.22 54.56 57.52 70.13 69.68 64.71 69.36 71.35 75.29

COIL-20 69.09 72.27 75.95 71.43 73.40 70.75 79.42 70.23 53.68 66.33 82.29
Caltech-7 40.01 42.26 61.41 59.77 37.78 61.74 72.17 56.37 55.46 64.92 79.77
100Leaves 61.94 33.12 59.14 8.58 72.63 69.64 50.42 58.20 23.20 73.19 69.29
Caltech-20 33.21 20.10 39.78 47.05 30.54 42.30 34.03 39.78 66.27 47.72 53.13

MNIST 41.53 32.80 74.99 24.46 41.08 41.41 74.43 59.42 62.39 61.04 77.67

(a) DiMSC (b) MVGL (c) CSMSC (d) CoMSC (e) Ours

Figure 2: Target consensus graph of dataset 100Leaves (first 7 categories) learned by different methods.

4.1 Results and Analysis

The clustering performance of all methods on four metrics is shown in Table 2. As we see, our
proposed method achieves the best performance in the majority of cases, which validates the effective-
ness of our method. Moreover, it is obvious that the improvement is remarkable. On dataset MSRC,
for instance, our method even achieves substantial improvements around 4.7%, 4.2%, 4.3%, and
10.5% over the most competitive methods in terms of ACC, NMI, Purity, and F-score, respectively.
Note that DiMSC, CSMSC, LMVSC, SMVSC, and CoMSC are all multi-view subspace clustering
methods that adopt the Euclidean structure. From the results, it is obvious our method that employs
manifold topological structure is much better than that in terms of clustering performance, which
verifies our assumption that manifold topological structure is more suitable to explicitly uncover
the intrinsic similarities. Taking the dataset 100Leaves as an example, we visualize the target graph
learned by different methods. For better visualization, we plot the first seven categories of dataset
100Leaves in Figure 2. As can be seen, DiMSC cannot even find the block diagonal structure of
the target graph. MVGL, CSMSC, and CoMSC are able to search the block diagonal structure but
contain lots of noise obviously. On the contrary, our model almost achieves a pure structured graph
with a much clear clustering structure.
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(a) Caltech-7 (b) 100Leaves (c) Caltech-20

Figure 3: NMI w.r.t. α and β.

4.2 Parameter Analysis

This section investigates the sensitivity of our method with respect to different parameter settings.
Note that λ involved in Eq. (12) is a self-tuned parameter, which can be set in a heuristic way. That
is, we can initialize λ to a random positive value (e.g., λ = 10), if the connected components of S
is greater than c in current iteration, we set λ ← λ

2 , and if it is less than c, we set λ ← 2λ. This
strategy guarantees S contains a clear clustering structure with exact c connected components. Hence
we only need to set the parameters α and β properly. Here we empirically search them in the range
[0.1,0.5,1,5,10,50] for simplicity. The clustering performance of three datasets is shown in Figure 3
(owing to space limitation, the results of other datasets are attached in Appendix D), we can find
that the clustering results of our method are relatively stable for different parameter settings, which
demonstrates the robustness of our model. As introduced before, the target consensus graph S can
be treated as an indicator matrix, where the points from the same cluster are connected to the same
component. Once we obtain S, the cluster label of each data point can be directly assigned without
any postprocessing. Hence our method is very stable. In general, we could obtain a promising
clustering performance by setting α = β = 10 in practical applications.

(a) 3Sources (b) MSRC (c) COIL-20

Figure 4: Convergence speed of our method, where OBJ denotes the objective value.

4.3 Convergence Study

Here we verify the convergence property of the proposed algorithm. The convergence curves along
with the corresponding performance of our algorithm on 3Sources, MSRC, and COIL-20 datasets are
recorded in Figure 4 (the convergence curves of other datasets are attached in Appendix D), where
the red line denotes the NMI of our method and the grey line indicates the objective value. As we
can see, the proposed optimization algorithm is efficient and converges very fast, usually within 10
iterations, which empirically illustrates the efficiency of the proposed algorithm.

5 Conclusion

In this paper, we propose to explore the implied data manifold by learning the topological relationship
between data points. To do so, we seamlessly integrate multiple affinity graphs into a consensus
one with the topological relevance considered. Besides, we manipulate the consensus graph by
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a connectivity constraint such that the connected components precisely indicate different clusters.
Hence our model can directly obtain the discrete result without any postprocessing. An alternating
iterative algorithm is carefully designed to solve the optimization problem of the proposed model.
Experimental results have shown that (1) manifold topological structure is suitable to explicitly
uncover the intrinsic similarities, thus beneficial for multi-view subspace clustering tasks; (2) our
model is quite robust with respect to different parameter settings, which demonstrates its stability;
(3) the proposed optimization algorithm is very efficient and converges fast. However, note that our
model cannot deal with the nonlinear data, which can be considered in future works. As mentioned in
Subsection 3.1.1, the kernel strategy would be an option to explore nonlinear structure. Furthermore,
we are also interested in extending the proposed framework to other machine learning frameworks,
such as semi-supervised learning and deep learning.
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