1 Proof of Proposition 2.1

Lemma 1.1. Vi € [0,d],
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Following the Vandermonde’s identity
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Then we can conclude that
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Proof. The additivity comes directly from inner product is additive.
Scale invariant is also standard to prove, but more tedeious.

Without loss of generality, denote p = agy® + -+ + a;y* + - + agy?,and ¢ = p © (1 + y)* =
boy® + -+ + byt + -+ + barry®TF. Using definition of ¢, we have:
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On the other hand, the coefficient of (1 + ) is also binomial coefficient, (¢) can be simplified

into
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Observe the ratio between weights of a; from both ¢)(p), 1)(¢q). Using Lemma 1.1, we can obtain
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Therefore, 1(p) = ¥(q).



