
A Missing proofs from the introduction

Lemma A.1. Recall the definition of the primal problem (1FP):

max
𝑥∈R𝑛

≥0

{︃
𝑓(𝑥)

def
=

𝑛∑︁
𝑖=1

log 𝑥𝑖 : 𝐴𝑥 ≤ 1𝑚

}︃
. (1FP)

Then, its Lagrange dual can be formulated as:

min
𝜆∈Δ𝑚

{︃
𝑔(𝜆)

def
= −

𝑛∑︁
𝑖=1

log(𝐴𝑇𝜆)𝑖 − 𝑛 log 𝑛

}︃
. (1FP-Dual)

Where ∆𝑚 def
= {𝜆 ∈ R𝑚 :

∑︀
𝜆𝑖 = 1, 𝜆 ≥ 0} is the 𝑚-dimensional (probability) simplex.

Proof. By definition of Lagrangian duality, the dual of (1FP) is

min
𝑦≥0

{︃
max
𝑥≥0

{︃
𝑛∑︁
𝑖=1

log(𝑥𝑖)− 𝑦𝑇 (𝐴𝑥− 1𝑚)

}︃}︃
=

min
𝑦≥0

{︃
⟨𝑦,1𝑚⟩+ max

𝑥≥0

{︃
𝑛∑︁
𝑖=1

(︀
log(𝑥𝑖)− (𝑦𝑇𝐴)𝑖𝑥𝑖

)︀}︃}︃

We can explicitly compute the 𝑥𝑖 variables by differentiation, to obtain 𝑥𝑖 = (𝑦𝑇𝐴)−1
𝑖 . Thus the

problem is equivalent to:

min
𝑦≥0

{︃
⟨𝑦,1𝑚⟩+

𝑛∑︁
𝑖=1

(︀
− log(𝑦𝑇𝐴)𝑖 − 1

)︀}︃
.

Now, let 𝜆 = 1
⟨𝑦,1𝑚⟩𝑦 and 𝑡 = ⟨𝑦,1𝑚⟩. Then, 𝑦 = 𝑡𝜆 with 𝜆 ∈ ∆𝑚 and we write the problem as:

min
𝜆∈Δ𝑚

min
𝑡≥0

{︃
𝑡−

𝑛∑︁
𝑖=1

log(𝜆𝑇𝐴)𝑖 − 𝑛 log 𝑡− 𝑛

}︃
.

The value of 𝑡 minimizing 𝑡− 𝑛 log 𝑡 is 𝑡 = 𝑛 by differentiation so the problem reduces to

min
𝜆∈Δ𝑚

{︃
−

𝑛∑︁
𝑖=1

log(𝐴𝑇𝜆)𝑖 − 𝑛 log 𝑛

}︃
. (8)

B Missing proofs from Section 2

Proof (Proposition 2.1). Recall 𝛽 = 𝜀
6𝑛 log(2𝑚𝑛2/𝜀) and that log(·) is the natural logarithm. We will

prove the proposition in three steps:

1) 𝑓(�̂�*)− 𝑓(𝑥*𝑟) ≤ 𝑓(�̂�*) + 𝑓𝑟(𝑥
*
𝑟) ≤ 3𝜀.

2) The point 𝑥𝜀𝑟 satisfies 𝐴 exp(𝑥𝜀𝑟) ≤ (1 + 𝜀/𝑛)1𝑚.
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3) The point �̂� = 𝑥𝜀𝑟 − log(1 + 𝜀/𝑛)1𝑛 satisfies 𝑓(𝑥*)− 𝑓(𝑢) ≤ 𝑓(exp(�̂�*))− 𝑓(exp(�̂�)) =

𝑓(�̂�*)− 𝑓(�̂�) ≤ 5𝜀 and 𝐴 exp(�̂�) ≤ 1𝑚.

For the first part, take the point 𝑥 = log(1−𝜀/𝑛)1𝑛+ �̂�* ∈ 𝐵. It satisfies𝐴 exp(𝑥) ≤ (1−𝜀/𝑛)1𝑚,
because �̂�* is feasible. Thus

𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1+𝛽
𝛽

𝑖 ≤ 𝑚(1− 𝜀/𝑛)1/𝛽 ≤ 𝑚
(︁ 𝜀

2𝑚𝑛2

)︁6
≤ 𝜀. (9)

We used 𝛽
1+𝛽 ≤ 1, 1+𝛽

𝛽 ≥ 1
𝛽 , and (1− 𝜀/𝑛)

𝑛
𝜀 ≤ 𝑒−1. Consequently, we have

𝑓(�̂�*)− 𝑓(𝑥*𝑟)
1
≤ 𝑓(�̂�*) + 𝑓𝑟(𝑥

*
𝑟)

2
≤ 𝑓(�̂�*) + 𝑓𝑟(𝑥)

= ⟨1𝑛, �̂�*⟩+

(︃
−⟨1𝑛, log(1− 𝜀/𝑛)1𝑛 + �̂�*⟩+

𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1+𝛽
𝛽

𝑖

)︃
3
≤ 𝑛 log(

1

1− 𝜀/𝑛
) + 𝜀

4
≤ 3𝜀.

(10)

Above, 1 is true by definition of 𝑓𝑟 being −𝑓 plus a non-negative regularizer. The point 𝑥 is in 𝐵
and 𝑥*𝑟 = arg min𝑥∈𝐵{𝑓𝑟(𝑥)} so we have 2 . Inequality 3 uses (9) and 4 uses log(𝑥) ≤ 𝑥 − 1
and 𝜀/𝑛 ≤ 1/2.

For the second part, suppose for the moment that there is some 𝑖 such that (𝐴 exp(𝑥𝜀𝑟))𝑖 > 1 + 𝜀/𝑛.
In that case

(𝐴 exp(𝑥𝜀𝑟))
1+𝛽
𝛽

𝑖 ≥ (1 + 𝜀/𝑛)(2𝑛/𝜀)·3 log(2𝑚𝑛2/𝜀) ≥
(︂

2𝑚𝑛2

𝜀

)︂3

,

since (1 + 𝜀/𝑛)2𝑛/𝜀 ≥ 𝑒 when 𝜀/𝑛 ≤ 1/2. We have 𝑥𝜀𝑟 ∈ 𝐵 so 𝑓𝑟(𝑥
𝜀
𝑟) ≥ −⟨1𝑛, 𝑥𝜀𝑟⟩ +

𝛽
1+𝛽

(︁
2𝑚𝑛2

𝜀

)︁3
≥ 𝛽

2

(︁
2𝑚𝑛2

𝜀

)︁3
. On the other hand, it holds for the point 𝑦 = − log(𝑚𝑛)1𝑛 that

𝑓𝑟(𝑦) = 𝑛 log(𝑚𝑛) +
𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp(𝑦))
1+𝛽
𝛽

𝑖

1
≤ 𝑛 log(𝑚𝑛) +𝑚 (1/𝑚)

1+𝛽
𝛽 ≤ 𝑛 log(𝑚𝑛) + 1

2
<

𝛽

2

(︂
2𝑚𝑛2

𝜀

)︂3

− 𝜀 < 𝑓𝑟(𝑥
𝜀
𝑟)− 𝜀,

(11)

contradicting the assumption 𝑓𝑟(𝑥𝜀𝑟) − 𝑓𝑟(𝑥*𝑟) ≤ 𝜀, as we would obtain 𝜀 < 𝑓𝑟(𝑥
𝜀
𝑟) − 𝑓𝑟(𝑦) ≤

𝑓𝑟(𝑥
𝜀
𝑟)− 𝑓𝑟(𝑥*𝑟), since 𝑦 ∈ 𝐵. So it must be (𝐴 exp(𝑥𝜀𝑟))𝑖 ≤ 1 + 𝜀/𝑛. Inequality 1 uses that the

maximum entry of 𝐴 is 1, and 𝛽
1+𝛽 ≤ 1. One can show 2 by proving the stronger inequality that

results from substituting 𝛽 by 𝜀/(6𝑛 · 2𝑚𝑛2/𝜀), which is a lower value. Computing derivatives in
both sides shows that this inequality holds if it does for 𝑚 = 1 and 𝜀 = 𝑛

2 , and the latter is easy to
check.

For the third part, we have 𝐴 exp(�̂�) = 𝐴
exp(𝑥𝜀

𝑟)
1+𝜀/𝑛 ≤ 1𝑚. And finally, putting all together we obtain

𝑓(�̂�*)− 𝑓(�̂�) = 𝑓(�̂�*)− 𝑓(𝑥𝜀𝑟) + 𝑛 log(1 + 𝜀/𝑛)

≤ 𝑓(�̂�*) + 𝑓𝑟(𝑥
𝜀
𝑟) + 𝑛 log(1 + 𝜀/𝑛)

≤ 𝑓(�̂�*) + 𝑓𝑟(𝑥
*
𝑟) + 𝜀+ 𝑛 log(1 + 𝜀/𝑛)

≤ 4𝜀+ 𝑛 log(1 + 𝜀/𝑛) ≤ 5𝜀.

(12)

�

Lemma B.1. Let 𝐴 satisfy the normalization in (1), and let 𝑥* be the optimizer of Problem (1FP).
Then 𝑥*𝑖 ≥ 1/𝑛, for all 𝑖 ∈ [𝑛].
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Proof. The normalization ensures that 𝑒𝑖 are feasible points, for 𝑖 ∈ [𝑛]. That is, 𝐴𝑒𝑖 ≤ 1𝑚 because
each 𝐴𝑖𝑗 ≤ 1. Since 𝑥* is the maximizer of Problem (1FP), by the first order optimality condition
we have ⟨∇𝑓(𝑥*), 𝑥− 𝑥*⟩ ≤ 0, for any feasible point 𝑥. Suppose there is a coordinate 𝑖 ∈ [𝑛] such
that 𝑥*𝑖 <

1
𝑛 . Then, ⟨∇𝑓(𝑥*), 𝑒𝑖 − 𝑥*⟩ = 1

𝑥*
𝑖
−
∑︀𝑛
𝑗=1 𝑥

*
𝑗/𝑥

*
𝑗 > 0, which is a contradiction. �

Lemma B.2. The iterates of Algorithm 1 remain in the box 𝐵.
Proof. For all 𝑘 ≥ 0, we have 𝑧(𝑘) ∈ 𝐵 by definition. If we have that 𝑦(𝑘−1) ∈ 𝐵, then 𝑥(𝑘) ∈ 𝐵
since 𝑥(𝑘) is a convex combination of 𝑦(𝑘−1) and 𝑧(𝑘−1). So we only have to prove that for all 𝑘 ≥ 0,
we have 𝑦(𝑘) ∈ 𝐵. We prove by induction that, for 𝑘 ≥ 1, it holds that 𝑦(𝑘) is a convex combination
of {𝑧(𝑖)}𝑘𝑖=0 and that the weight of 𝑧(𝑘) in this convex combination is 1

𝜂𝑘𝐿
. Firstly, we have 𝑦(1) =

(1 − 1
𝜂1𝐿

)𝑧(0) + 1
𝜂1𝐿

𝑧(1) (recall 𝑥(0) = 𝑧(0)). Now assuming our property holds up to 𝑘 − 1, use

the definition of 𝑦(𝑘) and 𝑥(𝑘), to compute 𝑦(𝑘) = 𝜏𝑧(𝑘−1) + (1− 𝜏)𝑦(𝑘−1) + 1
𝜂𝑘𝐿

(𝑧(𝑘) − 𝑧(𝑘−1)).

This is an affine combination of the 𝑧(𝑖)’s, by induction hypothesis. Moreover, the weights add up to
1 = 𝜏 + (1− 𝜏) + 1

𝜂𝑘𝐿
− 1

𝜂𝑘𝐿
, and the weight on 𝑧(𝑘) is 1

𝜂𝑘𝐿
. So we only have to prove the weight

on 𝑧(𝑘−1) is ≥ 0 in order to show that we indeed have a convex combination and not just an affine
one. By induction hypothesis, we know the weight on 𝑧(𝑘−1) coming from 𝑦(𝑘−1) is 1

𝜂𝑘−1𝐿
. Hence,

the weight on 𝑧(𝑘−1) is 𝜏 + (1− 𝜏) 1
𝜂𝑘−1𝐿

− 1
𝜂𝑘𝐿

= 𝜏 > 0, where the equality uses the definition of
𝜂𝑘. �

Proof (Lemma 2.2). Recall that we want to prove that for the parameters in Algorithm 1 and for
𝑢 ∈ 𝐵 we have

⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧(𝑘−1)− 𝑢⟩ ≤ 𝜂2𝑘𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘)− 𝑦(𝑘)⟩+
1

2𝜔
‖𝑧(𝑘−1)− 𝑢‖22−

1

2𝜔
‖𝑧(𝑘)− 𝑢‖22.

Use Lemma B.3.b) below with loss ℓ(𝑘) = ∇𝑓𝑟(𝑥(𝑘)), learning rate 𝜂 = 𝜂𝑘, and regularizer
𝜓(𝑥) = 1

2𝜔‖𝑥‖
2
2, that yields Bregman divergence 𝐷𝜓(𝑥, 𝑦) = 1

2𝜔‖𝑥−𝑦‖
2
2. Use that 𝑧(𝑘−1)−𝑧(𝑘) =

𝜂𝑘𝐿(𝑥(𝑘) − 𝑦(𝑘)). �

Lemma B.3 (Mirror Descent Lemma). Let 𝒳 ⊆ R𝑛 be a closed convex set and let 𝜓 : 𝒳 → R be
a 1-strongly convex map with respect to ‖ · ‖. Let ‖ · ‖* be the dual norm to ‖ · ‖ and let ℓ(𝑘) ∈ R𝑛

be an arbitrary loss vector. Given 𝑧(𝑘−1) ∈ 𝒳 , let 𝑧(𝑘) def
= arg min𝑧∈𝒳 {𝐷𝜓(𝑧, 𝑧(𝑘−1)) + 𝜂⟨ℓ(𝑘), 𝑧⟩}.

Then, for all 𝑢 ∈ 𝒳 we have

a) 𝜂⟨ℓ(𝑘), 𝑧(𝑘−1) − 𝑢⟩ ≤ 𝜂2

2 ‖ℓ
(𝑘)‖2* +𝐷𝜓(𝑢, 𝑧(𝑘−1))−𝐷𝜓(𝑢, 𝑧(𝑘)).

b) 𝜂⟨ℓ(𝑘), 𝑧(𝑘−1) − 𝑢⟩ ≤ 𝜂⟨ℓ(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩+𝐷𝜓(𝑢, 𝑧(𝑘−1))−𝐷𝜓(𝑢, 𝑧(𝑘)).

Proof. We note that, by definition, we have 𝜕
𝜕𝑥𝐷𝜓(𝑥, 𝑦) = ∇𝜓(𝑥)−∇𝜓(𝑦). The lemma is due to

⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑢⟩ = ⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩+ ⟨𝜂ℓ(𝑘), 𝑧(𝑘) − 𝑢⟩

1
≤ ⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩ − ⟨∇𝜓(𝑧(𝑘))−∇𝜓(𝑧(𝑘−1)), 𝑧(𝑘) − 𝑢⟩

2
= ⟨𝜂ℓ(𝑘), 𝑧(𝑘−1) − 𝑧(𝑘)⟩ −𝐷𝜓(𝑧(𝑘), 𝑧(𝑘−1)) +𝐷𝜓(𝑢, 𝑧(𝑘−1))−𝐷𝜓(𝑢, 𝑧(𝑘))

3
≤ 𝜂2

2
‖ℓ(𝑘)‖2* +𝐷𝜓(𝑢, 𝑧(𝑘−1))−𝐷𝜓(𝑢, 𝑧(𝑘)).

Inequality 1 comes from the first-order optimality condition of the definition of 𝑧(𝑘), that is,
⟨∇𝜓(𝑧(𝑘)) − ∇𝜓(𝑧(𝑘−1)) + 𝜂ℓ(𝑘), 𝑢 − 𝑧(𝑘)⟩ ≥ 0 for all 𝑢 ∈ 𝒳 . 2 is the triangle equality of
Bregman divergences, and can be easily checked by using the definition.

If we drop the term −𝐷𝜓(𝑧(𝑘), 𝑧(𝑘−1)) after 2 , we obtain part 𝑏) of this lemma. 3 leads to part 𝑎),
which is the classical mirror descent lemma. It uses the bound𝐷𝜓(𝑧(𝑘), 𝑧(𝑘−1)) ≥ 1

2‖𝑧
(𝑘)−𝑧(𝑘−1)‖2,

which holds due to the strong convexity of 𝜓. And then we applied the inequality ⟨𝑣, 𝑤⟩ − 1
2‖𝑤‖

2 ≤
1
2‖𝑣‖

2
* for 𝑣, 𝑤 ∈ R𝑛, that holds by Cauchy-Schwarz and ‖𝑣‖* · ‖𝑤‖ ≤ 1

2‖𝑣‖
2
* + 1

2‖𝑤‖
2.

�
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We now prove the descent step Lemma 2.3. In the proof, we will use Lemma B.4 below, which is a
crucial generalization of [DFO20, Lemma 3.1]. We first prove Lemma 2.3.
Proof (Lemma 2.3). We have 𝑥(𝑘)−𝑦(𝑘) = (𝑧(𝑘−1)−𝑧(𝑘))/𝜂𝑘𝐿 by definition of the gradient descent
step. With this, we first conclude that 1

2 ⟨∇𝑓𝑟(𝑥
(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩ ≥ 0, as∇𝑖𝑓𝑟(𝑥(𝑘)) and 𝑥(𝑘)𝑖 − 𝑦

(𝑘)
𝑖

have the same sign for all 𝑖 ∈ [𝑛], cf. (4).

We apply Lemma B.4 with 𝑦(𝑘) corresponding to 𝑥+ ∆ and 𝑥(𝑘) corresponding to 𝑥. To this end,
we choose 𝑐𝑖 ≥ 0 satisfying 1 below

𝑐𝑖𝛽

4(1 + 𝛽)
|∇𝑖𝑓𝑟(𝑥(𝑘))|

1
= |𝑥(𝑘)𝑖 − 𝑦

(𝑘)
𝑖 |

2
=

1

𝜂𝑘𝐿
|𝑧(𝑘−1)
𝑖 − 𝑧(𝑘)𝑖 |

3
≤ 𝜔

𝐿
|∇𝑖𝑓𝑟(𝑥(𝑘))|,

where 2 holds by definition of 𝑦(𝑘) and 3 holds by the mirror descent update (4). Thus, it suffices
to pick 𝑐𝑖 such that 𝑐𝑖 ≤ 4𝜔(1+𝛽)

𝛽𝐿 ≤ 1, where the last inequality holds true by the definition of 𝐿. In
fact, the value of 𝐿 was chosen to satisfy the previous inequality. Hence, Lemma B.4 can be applied.
We obtain:

𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑦(𝑘)) ≥

𝑛∑︁
𝑖=1

(︁
1− 𝑐𝑖

2

)︁
∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦

(𝑘)
𝑖 ) ≥ 1

2
⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩.

as desired. �

Lemma B.4. Let 𝑐 ∈ [−1, 1]𝑛 and let ∆ ∈ R𝑛 be defined as ∆𝑗 = − 𝑐𝑗𝛽
4(1+𝛽)∇𝑗𝑓𝑟(𝑥), for 𝑗 ∈ [𝑛].

Then

𝑓𝑟(𝑥+ ∆)− 𝑓𝑟(𝑥) ≤
𝑛∑︁
𝑗=1

(1− 𝑐𝑗
2

)∆𝑗∇𝑗𝑓𝑟(𝑥).

Proof. By using a Taylor expansion, there is a 𝑡 ∈ [0, 1] such that

𝑓𝑟(𝑥+ ∆)− 𝑓𝑟(𝑥) = ⟨∇𝑓𝑟(𝑥),∆⟩+
1

2
∆⊤∇2𝑓𝑟(𝑥+ 𝑡∆)∆. (13)

The gradient and Hessian of 𝑓𝑟 are given by

∇𝑗𝑓𝑟(𝑥) = −1 +

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽

𝑖 𝑎𝑖𝑗 exp(𝑥𝑗),

∇2
𝑗𝑘𝑓𝑟(𝑥) = 1{𝑗=𝑘}

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽

𝑖 𝑎𝑖𝑗 exp(𝑥𝑗)

+
1

𝛽

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽−1

𝑖 𝑎𝑖𝑗 exp(𝑥𝑗)𝑎𝑖𝑘 exp(𝑥𝑘).

(14)

In order to control how much the function changes, we will require

1

2
∇2
𝑗𝑘𝑓𝑟(𝑥) ≤ ∇2

𝑗𝑘𝑓𝑟(𝑥+ 𝑡∆) ≤ 2∇2
𝑗𝑘𝑓𝑟(𝑥).

We can guarantee the inequality on the right if we guarantee that each summand in the expression
above does not grow by more than a factor of 2, and respectively the one on the left if it does not
decrease by more than a factor of 2. Let ∆max = max𝑖∈[𝑛]{∆𝑖} and ∆min = min𝑖∈[𝑛]{∆𝑖}. It
suffices to have exp(∆max)

1
𝛽+1 ≤ 2 and exp(∆min)

1
𝛽+1 ≥ 1/2. Hence, it suffices to have for all

𝑗 ∈ [𝑛], the following:

− ln 2

1 + 1
𝛽

≤ ∆𝑗 ≤
ln 2

1 + 1
𝛽

. (15)

In fact, we will use ∆𝑗 = − 𝑐𝑗4 ·
𝛽

1+𝛽∇𝑗𝑓𝑟(𝑥) for all 𝑗 ∈ [𝑛], which satisfy the condition since
|𝑐𝑗∇𝑗𝑓𝑟(𝑥)| ≤ 1. In such a case, by using the function sign(𝑥) = 1 if 𝑥 ≥ 0 and −1 otherwise, we
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have:

1

2
∆⊤∇2𝑓𝑟(𝑥+ 𝑡∆)∆

1
≤

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽

𝑖 ∆2
𝑗𝑎𝑖𝑗 exp(𝑥𝑗)

+
1

2𝛽

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽−1

𝑖

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

∆𝑗∆𝑘𝑎𝑖𝑗𝑎𝑖𝑘 exp(𝑥𝑗) exp(𝑥𝑗)2
sign(Δ𝑗Δ𝑘)

2
≤

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽

𝑖 ∆2
𝑗𝑎𝑖𝑗 exp(𝑥𝑗)

+
1

2𝛽

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽−1

𝑖

𝑛∑︁
𝑗=1

∆2
𝑗𝑎𝑖𝑗 exp(𝑥𝑗) ·

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑎𝑖𝑗𝑎𝑖𝑘 exp(𝑥𝑗) exp(𝑥𝑘)4sign(Δ𝑗Δ𝑘)

3
≤ 𝛽 + 1

𝛽

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽

𝑖 ∆2
𝑗𝑎𝑖𝑗 exp(𝑥𝑗)

4
=

𝛽 + 1

𝛽

𝑛∑︁
𝑗=1

∆2
𝑗 (∇𝑗𝑓𝑟(𝑥) + 1)

5
=

𝑛∑︁
𝑗=1

−𝑐𝑗
4

∆𝑗∇𝑗𝑓𝑟(𝑥)(∇𝑗𝑓𝑟(𝑥) + 1)

6
≤ −

𝑛∑︁
𝑗=1

𝑐𝑗
2

∆𝑗∇𝑗𝑓𝑟(𝑥).

(16)

We used the inequalities ∇2
𝑗𝑘𝑓𝑟(𝑥 + 𝑡∆) ≤ 2∇2

𝑗𝑘𝑓𝑟(𝑥) and −∇2
𝑗𝑘𝑓𝑟(𝑥 + 𝑡∆) ≤

−2−1∇2
𝑗𝑘𝑓𝑟(𝑥) in 1 . We used Cauchy-Schwarz in 2 with the 𝑛2-dimensional vectors

(∆𝑗

√︀
𝑎𝑖𝑗𝑎𝑖𝑘 exp(𝑥𝑗) exp(𝑥𝑘))𝑗,𝑘∈[𝑛] and (2sign(Δ𝑗Δ𝑘)

√︀
𝑎𝑖𝑗𝑎𝑖𝑘 exp(𝑥𝑗) exp(𝑥𝑘))𝑗,𝑘∈[𝑛] in order to

bound the last factor, so that the two first lines of the right hand side become proportional after bound-
ing 4sign(Δ𝑗Δ𝑘) ≤ 4 in 3 . In 3 , we also grouped these terms. In 4 , we used the definition of the
gradient. In 5 , we used the value of ∆. Finally, 6 is a direct consequence of the truncated gradient
definition (one can check the inequality for the three cases in ∇𝑗𝑓𝑟(𝑥) ∈ {[−1, 0), [0, 1], (1,∞)},
while taking into account the sign of ∆𝑗).

Now, substituting into (13) we obtain:

𝑓𝑟(𝑥+ ∆)− 𝑓𝑟(𝑥) ≤
𝑛∑︁
𝑗=1

(︁
1− 𝑐𝑗

2

)︁
∆𝑗∇𝑗𝑓𝑟(𝑥).

�

Proof (Lemma 2.4). It is enough to show that for all 𝑖 ∈ [𝑛] we have

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ) ≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ) (17)

because then we can conclude with

⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ 𝜂2𝑘𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩
1
≤ 3

2
𝜂𝑘𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩

2
≤ 3𝜂𝑘𝐿(𝑓𝑟(𝑥

(𝑘))− 𝑓𝑟(𝑦(𝑘))),

(18)

by adding up (17) in 1 and Lemma 2.3 in 2 . In the analysis of (17) we exploit the simple but
crucial fact that is that the gradient step for each coordinate is independent of the gradient step of
other coordinates, due to the constraint set being a box. We present the rest of the proof in three cases.
In the cases below, we will use∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑘)𝑖 − 𝑦

(𝑘)
𝑖 ) ≥ 0, cf. Lemma 2.3. And also the fact that

𝜂𝑘 ≤ 1/4, as we observe in (22).
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• If 𝜈(𝑘)𝑖 = 0 then∇𝑖𝑓𝑟(𝑥(𝑘)) = ∇𝑖𝑓𝑟(𝑥(𝑘)) ∈ [−1, 1]. In such a case, we have

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ) = 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 )

≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ).

• If 𝜈(𝑘)𝑖 > 0 and 𝑧(𝑘)𝑖 > −𝜔 then the mirror descent step did not need to project along
coordinate 𝑖, and we have 𝑧(𝑘)𝑖 = 𝑧

(𝑘−1)
𝑖 − 𝜔𝜂𝑘, and thus 𝑦(𝑘)𝑖 = 𝑥

(𝑘)
𝑖 − 𝜔/𝐿. In this case

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 )

1
≤ 𝜂𝑘∇𝑖𝑓𝑟(𝑥(𝑘))𝜔 + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥(𝑖) − 𝑦(𝑖))

= 𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥
(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ) + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 )

≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ).

Above, we obtain 1 from 𝑧
(𝑘)
𝑖 − 𝑢𝑖 ≤ 𝜔 because 𝑧(𝑘), 𝑢 ∈ 𝐵, the fact that 𝜈(𝑘)𝑖 and

𝑥
(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 are positive, and 1 = ∇𝑖𝑓𝑟(𝑥(𝑘)) ≤ ∇𝑖𝑓𝑟(𝑥(𝑘)), 0 < 𝜈

(𝑘)
𝑖 ≤ ∇𝑖𝑓𝑟(𝑥(𝑘)).

• If 𝜈(𝑘)𝑖 > 0 and 𝑧(𝑘)𝑖 = −𝜔 then

𝜂𝑘𝜈
(𝑘)
𝑖 (𝑧

(𝑘−1)
𝑖 − 𝑢𝑖) + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 )

1
≤ 𝜂𝑘∇𝑖𝑓𝑟(𝑥(𝑘))(𝑧

(𝑘−1)
𝑖 − 𝑧(𝑘)𝑖 ) + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 )

2
≤ 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ) + 𝜂2𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 )

≤ 3

2
𝜂𝑘𝐿∇𝑖𝑓𝑟(𝑥(𝑘))(𝑥

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ).

We have 1 because in this case, 𝑢𝑖 − 𝑧(𝑘)𝑖 , 𝑥(𝑘)𝑖 − 𝑦(𝑘)𝑖 , 𝜈(𝑘)𝑖 , ∇𝑖𝑓𝑟(𝑥(𝑘)) are all ≥ 0. We also
used 0 < 𝜈

(𝑘)
𝑖 < ∇𝑖𝑓𝑟(𝑥(𝑘)), 0 < ∇𝑖𝑓𝑟(𝑥(𝑘)) < ∇𝑖𝑓𝑟(𝑥(𝑘)). In 2 , we used 𝑧(𝑘−1)

𝑖 − 𝑧(𝑘)𝑖 =

𝜂𝑘𝐿(𝑥
(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖 ). �

Proof (Theorem 2.5). We start by bounding the gap with respect to 𝑥(𝑘):

𝜂𝑘(𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑢))

1
≤ ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑢⟩
= ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑧(𝑘−1)⟩+ ⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧(𝑘−1) − 𝑢⟩

2
=

(1− 𝜏)𝜂𝑘
𝜏

⟨∇𝑓𝑟(𝑥(𝑘)), 𝑦(𝑘−1) − 𝑥(𝑘))⟩+ ⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧(𝑘−1) − 𝑢⟩

3
≤ (1− 𝜏)𝜂𝑘

𝜏
(𝑓𝑟(𝑦

(𝑘−1))− 𝑓𝑟(𝑥(𝑘))) + ⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ ⟨𝜂2𝑘𝐿∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩

+
1

2𝜔
‖𝑧(𝑘−1) − 𝑢‖22 −

1

2𝜔
‖𝑧(𝑘) − 𝑢‖22]

4
≤ (1− 𝜏)𝜂𝑘

𝜏
(𝑓𝑟(𝑦

(𝑘−1))− 𝑓𝑟(𝑥(𝑘))) + 𝐶𝑘(𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑦(𝑘))) +

1

2𝜔
‖𝑧(𝑘−1) − 𝑢‖22

− 1

2𝜔
‖𝑧(𝑘) − 𝑢‖22

5
≤ 𝜂𝑘𝑓𝑟(𝑥

(𝑘)) + (𝐶𝑘 − 𝜂𝑘)𝑓𝑟(𝑦
(𝑘−1))− 𝐶𝑘𝑓𝑟(𝑦(𝑘)) +

1

2𝜔
‖𝑧(𝑘−1) − 𝑢‖22 −

1

2𝜔
‖𝑧(𝑘) − 𝑢‖22

(19)

19



We used convexity in 1 . The definition of 𝑥(𝑘) is used in 2 . Inequality 3 uses convexity and
Lemma 2.2. We applied Lemma 2.4 in 4 . In 5 , we substituted the value of 𝜏 , which is picked to be
𝜏

def
= 𝜂𝑘/𝐶𝑘 = 1

3𝐿 so we can cancel 𝑓𝑟(𝑥(𝑘)) in both sides of (19).

The choice of 𝜂𝑘 is made so that 𝐶𝑘 − 𝜂𝑘 = 𝐶𝑘−1 (or equiv. (3𝐿− 1)𝜂𝑘 = 3𝐿𝜂𝑘−1), which allows
to telescope the previous expression. Adding up (19) for 𝑘 = 1, . . . , 𝑇 with 𝑢 = 𝑥*𝑟 , we have(︃

−𝐶0 −
𝑇∑︁
𝑘=1

𝜂𝑘

)︃
𝑓𝑟(𝑥

*
𝑟) ≤ 𝐶0(𝑓𝑟(𝑦

(0))− 𝑓𝑟(𝑥*𝑟))− 𝐶𝑇 𝑓𝑟(𝑦(𝑇 )) +
1

2𝜔
‖𝑧(0) − 𝑥*𝑟‖22.

We dropped− 1
2𝜔‖𝑧

(𝑇 )−𝑥*𝑟‖22 ≤ 0. Now, since 𝜂𝑘 = 𝐶𝑘−𝐶𝑘−1 we have−𝐶0−
∑︀𝑇
𝑘=1 𝜂𝑘 = −𝐶𝑇 .

So reorganizing terms we obtain

𝑓𝑟(𝑦
(𝑇 )) ≤ 𝑓𝑟(𝑥*𝑟) +

1

𝐶𝑇

(︂
𝐶0(𝑓𝑟(𝑦

(0))− 𝑓𝑟(𝑥*𝑟)) +
1

2𝜔
‖𝑧(0) − 𝑥*𝑟‖22

)︂
1
≤ 𝑓𝑟(𝑥

*
𝑟) +

1

𝐶𝑇

(︂
𝐶0(𝑛(log(2𝑚𝑛) + 1) +

𝑛 log(𝑚𝑛)

2

)︂
2
≤ 𝑓𝑟(𝑥

*
𝑟) + 𝜀

(20)

Above, 1 uses 𝑓𝑟(𝑦(0)) ≤ 𝑛 log(𝑚𝑛/(1 − 𝜀/𝑛)) + 𝜀 ≤ 𝑛(log(2𝑚𝑛) + 1) and −𝑓𝑟(𝑥*𝑟) ≤ 0.
For the former, take into account that − log(𝑚𝑛)1𝑛 is feasible and so the regularizer at 𝑦(0) =
− log(𝑚𝑛/(1− 𝜀/𝑛))1𝑛 is at most 𝜀, cf. (9). Recall 𝜀 < 𝑛/2. We also bounded the last summand
by using that 𝑧(0), 𝑥*𝑟 ∈ 𝐵 so ‖𝑧(0) − 𝑥*𝑟‖22 ≤ 𝑛𝜔2.

At this point, the only free parameters left are 𝐶0 (via 𝜂0) and 𝑇 . We set 𝜂0 = 1
3𝐿 so that 𝐶0 = 1.

And we have that 𝐶𝑇 = 3𝐿𝜂𝑇 = 3𝐿𝜂0(1− 𝜏)−𝑇 = (1− 𝜏)−𝑇 . So if we pick 𝑇 such that
1

𝐶𝑇
= (1− 𝜏)𝑇 ≤ 𝜀

4𝑛 log(2𝑚𝑛)
, (21)

we will obtain 2 . We will pick the smallest 𝑇 that satisfies (21). That is,

𝑇 =

⌈︂
log(4𝑛 log(2𝑚𝑛)/𝜀)

log(1/(1− 𝜏))

⌉︂
≤
⌈︂

3𝐿 log

(︂
4𝑛 log(2𝑚𝑛)

𝜀

)︂⌉︂
= ̃︀𝑂(𝑛/𝜀).

On the other hand, by definition of 𝑇 as the minimum natural number satisfying (21), we have,

(1− 𝜏)𝑇 =
𝜂0
𝜂𝑇
≥ 𝜀

4𝑛 log(2𝑚𝑛)
(1− 𝜏).

We can use this inequality to show 𝜂𝑘 ≤ 1
4 , for all 𝑘 ∈ [𝑇 ], which is used in the proof of Lemma 2.4.

It is enough that 1 below is satisfied:

𝜂𝑘 ≤ 𝜂𝑇 ≤
4𝑛 log(2𝑚𝑛)𝜂0

𝜀

1

1− 𝜏
=

4𝑛 log(2𝑚𝑛)

3𝐿𝜀

3𝐿

3𝐿− 1

1
≤ 1

4
. (22)

If 𝐿 ≥ 16𝑛 log(2𝑚𝑛)
3𝜀 + 1

3 then 1 holds, and we chose 𝐿 to satisfy this inequality.

We note we could increase 𝑇 by a factor 𝐶 > 1 inside of its log in the numerator, so that the error
obtained in 2 is 𝜀/𝐶. However, the requirement on 𝐿 above would increase by a factor of 𝐶, so
we would end up with an extra factor of 𝐶 in the value of 𝑇 . Also, the reduction caused by the
smoothing already incurs in an 𝜀 additive error, cf. Proposition 2.1. Part 1 of Proposition 2.1 could
use 𝑥 = log(1 − 𝜀

𝑛𝐶 )1𝑛 + �̂�* so that inequality (10) ends up being bounded by 𝑂(𝜀/𝐶), but that
would require to have 𝛽 be 𝐶 times smaller for (9) to work. This would also require to make 𝐿 larger
by a factor of 𝐶 so we would also end up having the 𝐶 in the total number of iterations to obtain an
𝑂(𝜀)-optimizer.

In conclusion, we obtain an 𝜀 minimizer of 𝑓𝑟 in ̃︀𝑂(𝑛/𝜀) iterations and by Proposition 2.1, we get
that �̄� is a feasible point that is a 5𝜀 optimizer of Problem (1FP). Finally, we note that each iteration
of the algorithm can be implemented in 𝑂(𝑁) operations, that are distributed, where the bottleneck is
the computation of the gradient. From the definition of the gradient, it is clear that it can be computed
in our distributed model of computation and that each agent only needs their local variables for the
rest of the steps in the algorithm. �
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C Missing proofs from Section 3

Proof (Lemma 3.1). As 𝐴𝑝𝜆 ≤ (1 + 𝜀)1𝑚 we have 𝐴 𝑝𝜆

1+𝜀 ≤ 1𝑚 and hence 𝑝𝜆

1+𝜀 is primal feasible.
Therefore,

𝑔(𝜆)− 𝑔(𝜆*) ≤ 𝑔(𝜆)− 𝑓
(︂

𝑝𝜆

1 + 𝜀

)︂
= −

∑︁
𝑖∈[𝑛]

log(𝐴𝑇𝜆)𝑖 − 𝑛 log 𝑛−
∑︁
𝑖∈[𝑛]

log

(︂
1

𝑛(1 + 𝜀)(𝐴𝑇𝜆)𝑖

)︂
= 𝑛 log(1 + 𝜀) ≤ 𝑛𝜀.

(23)

�

Proof (Lemma 3.2). Let us look at one coordinate 𝑖 ∈ [𝑛]. By the weighted harmonic-arithmetic
inequality:

𝑐(𝜁1𝑐(𝑝
(1)) + · · ·+ 𝜁𝑘𝑐(𝑝

(𝑘)))𝑖 =

(︃
𝜁1

1

𝑝
(1)
𝑖

+ · · ·+ 𝜁𝑘
1

𝑝
(𝑘)
𝑖

)︃−1

≤ 𝜁1𝑝(1)𝑖 + · · ·+ 𝜁𝑘𝑝
(𝑘)
𝑖 =

(︁
𝜁1𝑝

(1) + · · ·+ 𝜁𝑘𝑝
(𝑘)
)︁
𝑖
.

(24)

Now we prove convexity of 𝑐(𝒟+). Let 𝑞(1), . . . , 𝑞(𝑘) ∈ 𝑐(𝒟+). Since every constraint in 𝒟+ is
coordinate-wise smaller than some constraint in 𝒟, it follows that every point 𝑞(𝑗) ∈ 𝑐(𝒟+) is
coordinate-wise larger than some point 𝑝(𝑗) ∈ 𝑐(𝒟), that is 𝑞(𝑗) ≥ 𝑝(𝑗) for 𝑗 ∈ [𝑘]. Thus we obtain

∑︁
𝑗∈[𝑘]

𝜁𝑗𝑞
(𝑗) ≥

∑︁
𝑗∈[𝑘]

𝜁𝑗𝑝
(𝑗)

1
≥ 𝑐

⎛⎝∑︁
𝑗∈[𝑘]

𝜁𝑗𝑐(𝑝
(𝑗))

⎞⎠ 2
∈ 𝑐(𝒟).

Inequality 1 is the first part of the lemma above, and the membership 2 is due to the convexity
of 𝒟, which is a polytope. The constraints in 𝑐(𝒟+) are exactly the ones that are coordinate-wise
greater than some constraint in 𝑐(𝒟), so we have

∑︀
𝑗∈[𝑘] 𝜁𝑗𝑞𝑗 ∈ 𝑐(𝒟+). �

Lemma C.1 (Multiplicative Weights Lemma - Additive and Mult. Guarantee). Let ℓ(𝑘) ∈
[−𝜎, 𝜏 ]̃︀𝑚 be an sequence of ̃︀𝑚-dimensional arbitrary loss vectors, for 𝑘 ∈ [𝐾] and 𝜎, 𝜏 ∈ R>0.
Denote 𝑊+ = max{𝜎, 𝜏},𝑊− = min{𝜎, 𝜏}. For a target accuracy 𝛿 ∈ (0, 2𝑊−], learning rate
𝜂 = 𝛿

4𝑊− ≤ 1
2 , and initial weights Λ(1) = 1̃︀𝑚 ∈ ∆̃︀𝑚, inducing an initial uniform distribution, run

the following multiplicative weights update rule

Λ(𝑘+1) ← Λ(𝑘)⊙(1̃︀𝑚 − 𝜂

𝑊+
ℓ(𝑘)),

for 𝑘 = 1, . . . ,𝐾
def
= 8𝜎𝜏 log(̃︀𝑚)

𝛿2 , where ⊙ represents the coordinate-wise product. Then, for every
𝑢 ∈ ∆̃︀𝑚 we have

1

𝐾

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), Λ(𝑘)

‖Λ(𝑘)‖1
⟩ ≤ 𝛿 +

1 + sign(𝜎, 𝜏)𝜂

𝐾

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), 𝑢⟩,

where sign(𝜎, 𝜏) is 1 if 𝜏 ≥ 𝜎 and −1 otherwise.
Proof. We assume without loss of generality that for a fixed 𝑖 ∈ [̃︀𝑚] we have 𝑢 = 𝑒𝑖. It is enough to
prove the result in this case since the general case can be obtained as a convex combination of the
resulting inequalities.
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We use the potential function Φ(𝑘) def
= ‖Λ(𝑘)‖1. On the one hand we have

Φ(𝐾+1) 1
=

̃︀𝑚∑︁
𝑖=1

Λ
(𝐾)
𝑖

(︁
1− 𝜂

𝑊+
ℓ
(𝐾)
𝑖

)︁ 2
= Φ(𝐾) − 𝜂

𝑊+
Φ(𝐾)

̃︀𝑚∑︁
𝑖=1

ℓ
(𝐾)
𝑖

Λ
(𝐾)
𝑖

‖Λ(𝐾)‖1

= Φ(𝐾)

(︂
1− 𝜂

𝑊+
⟨ℓ(𝐾),

Λ(𝐾)

‖Λ(𝐾)‖1
⟩
)︂ 3
≤ Φ(𝐾) exp

(︂
− 𝜂

𝑊+
⟨ℓ(𝐾),

Λ(𝐾)

‖Λ(𝐾)‖1
⟩
)︂

4
≤ Φ(1) exp

(︃
− 𝜂

𝑊+

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), Λ(𝑘)

‖Λ(𝑘)‖1
⟩

)︃
= ̃︀𝑚 · exp

(︃
− 𝜂

𝑊+

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), Λ(𝑘)

‖Λ(𝑘)‖1
⟩

)︃
.

(25)

Here 1 is due to the MW update rule and 2 uses Φ(𝐾) = ‖Λ(𝐾)‖1. Now 3 uses 1 − 𝑥 ≤ 𝑒−𝑥,
for all 𝑥 ∈ R. We recursively applied all of the previous inequalities to obtain 4 .

On the other hand, we can lower bound

Φ(𝐾+1)
1
≥ Λ

(𝐾+1)
𝑖

2
= Λ

(1)
𝑖

𝐾∏︁
𝑘=1

(︁
1− 𝜂

𝑊+
ℓ
(𝑘)
𝑖

)︁
3
≥ (1− 𝜂)

1

𝑊+

∑︀
{𝑘:ℓ

(𝑘)
𝑖

≥0}
ℓ
(𝑘)
𝑖 · (1 + 𝜂)

1

𝑊+

∑︀
{𝑘:ℓ

(𝑘)
𝑖

<0}
ℓ
(𝑘)
𝑖
,

(26)

where 1 holds by the definition of Φ(𝐾+1) as ‖Λ(𝐾+1)‖1. Here, 2 uses the MW update rule
and 3 is due to Bernoulli’s inequality: 1 + 𝑟𝑥 ≥ (1 + 𝑥)𝑟, for −1 ≤ 𝑥, 0 ≤ 𝑟 ≤ 1, with
(𝑥, 𝑟) ∈ {(−𝜂, ℓ(𝑘)𝑖 /𝑊+), (𝜂,−ℓ(𝑘)𝑖 /𝑊+)}.

Combining (25) and (26), taking logarithms, and multiplying by 𝑊+

𝜂 we obtain the following
inequality 1 , which we further bound:

𝑊+ log(̃︀𝑚)

𝜂
−

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), Λ(𝑘)

‖Λ(𝑘)‖1
⟩

1
≥ 1

𝜂
log(1− 𝜂)

(︁ ∑︁
{𝑘:ℓ(𝑘)

𝑖 ≥0}

ℓ
(𝑘)
𝑖

)︁
− 1

𝜂
log(1 + 𝜂)

(︁ ∑︁
{𝑘:ℓ(𝑘)

𝑖 <0}

ℓ
(𝑘)
𝑖

)︁
2
≥ (−1− 𝜂)

(︁ ∑︁
{𝑘:ℓ(𝑘)

𝑖 ≥0}

ℓ
(𝑘)
𝑖

)︁
+ (−1 + 𝜂)

(︁ ∑︁
{𝑘:ℓ(𝑘)

𝑖 <0}

ℓ
(𝑘)
𝑖

)︁
3
≥ −2𝜂𝑊−𝐾 + (−1− sign(𝜎, 𝜏)𝜂)

𝐾∑︁
𝑘=1

ℓ
(𝑘)
𝑖 .

In 2 , we used log(1 − 𝜂) ≥ −𝜂 − 𝜂2 and log(1 + 𝜂) ≥ 𝜂 − 𝜂2 for 𝜂 ≤ 1/2. For 3 , we have
two cases. If 𝜎 > 𝜏 we have sign(𝜎, 𝜏) = −1 and we use −2𝜂ℓ

(𝑘)
𝑖 ≥ −2𝜂𝜏 = −2𝜂𝑊− and

bound −
∑︀𝐾
𝑘=1 1{𝑘:ℓ(𝑘)

𝑖 ≥0} ≥ −𝐾. Otherwise, we use 2𝜂ℓ
(𝑘)
𝑖 ≥ −2𝜂𝜎 = −2𝜂𝑊− and bound

−
∑︀𝐾
𝑘=1 1{𝑘:ℓ(𝑘)

𝑖 <0} ≥ −𝐾. Reorganizing terms, dividing by 𝐾, and using 𝑢 = 𝑒𝑖 we obtain

1

𝐾

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), Λ(𝑘)

‖Λ(𝑘)‖1
⟩ ≤ 𝑊+ log(̃︀𝑚)

𝜂𝐾
+ 2𝜂𝑊− +

1 + sign(𝜎, 𝜏)𝜂

𝐾

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), 𝑢⟩,

and finally substituting the value of 𝜂 = 𝛿
4𝑊− and𝐾 = 8𝜎𝜏 log(̃︀𝑚)

𝛿2 = 8𝑊+𝑊− log(̃︀𝑚)
𝛿2 in the statement

we obtain the desired result:

1

𝐾

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), Λ(𝑘)

‖Λ(𝑘)‖1
⟩ ≤ 𝛿

2
+
𝛿

2
+

1 + sign(𝜎, 𝜏)𝜂

𝐾

𝐾∑︁
𝑘=1

⟨ℓ(𝑘), 𝑢⟩.

�
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Proof (Lemma 3.3). Since we assumed 𝜀 < 4 min{𝜏, 𝜎}, the assumption on 𝛿 required by Lemma C.1
is satisfied: 𝛿 = 𝜀/2 < 2 min{𝜏, 𝜎}. The dimension of the statement was ̃︀𝑚 = 𝑚, but we assume
nothing on ̃︀𝑚, so in the proof below it can be that ̃︀𝑚 = |𝐼𝑡|, i.e., the dimension we obtain when we
filter some constraints in Algorithm 2. We would need to substitute the instances of 𝐴 by 𝐴𝐼𝑡 . With
the parameters of the statement, we obtain the following inequality for any 𝑢 ∈ ∆𝑚:

0
1
≤ 1

𝐾

𝐾∑︁
𝑘=1

⟨1𝑚 −𝐴𝑝(𝑘),
Λ(𝑘)

‖Λ(𝑘)‖1
⟩

2
≤ 𝜀

2
+

1 + sign(𝜎, 𝜏)𝜂

𝐾

𝐾∑︁
𝑘=1

⟨1𝑚 −𝐴𝑝(𝑘), 𝑢⟩, (27)

where 1 is satisfied by the oracle assumption (6), after using the fact that ⟨1𝑚,Λ(𝑘)/‖Λ(𝑘)‖1⟩ = 1.
Inequality 2 is the guarantee of the MW algorithm, cf. Lemma C.1. We finally obtain the guarantee
we had to prove:

−𝜀
1
≤ − 𝜀

2(1 + sign(𝜎, 𝜏)𝜂)

2
≤ 1− ⟨𝐴𝑖, 𝑝⟩, for all 𝑖 ∈ [𝑚],

where 𝑝 def
= 1

𝐾

∑︀𝐾
𝑘=1 𝑝

(𝑘). Here 1 holds regardless of the value of sign(𝜎, 𝜏), due to the choice of
𝜂 ≤ 1/2. Furthermore, 2 is obtained by setting 𝑢 = 𝑒𝑖 for all 𝑖 ∈ [𝑚] and simplifying (27). �

Proof (Theorem 3.4). Our aim is to use the PST framework to obtain a ̂︀𝜆 ∈ ∆𝑚 such that 𝑝̂︀𝜆 is an
(𝜀/𝑛)-minimizer of 𝑔 so that we can use Lemma 3.1 to conclude ̂︀𝜆 is an 𝜀-minimizer of 𝑔. We will
run the MW algorithm several times, restarting the weights between executions. Let 𝜀𝑡

def
= 21−𝑡

for 𝑡 ≥ 0. At phase 𝑡, we aim to obtain a dual point �̄�(𝑡+1) such that 𝑝�̄�
(𝑡+1)

is an 𝜀𝑡-minimizer
of 𝑔. So we first aim for a 2-minimizer and then we halve the accuracy sequentially. The initial
point is �̄�(0) def

= concat(1𝑛/𝑛, 0𝑚−𝑛), where concat is defined as the concatenation of vectors,
so that �̄�(0) = ( 1

𝑛 , . . . ,
1
𝑛 , 0, . . . , 0) ∈ ∆𝑚, with 𝑛 entries with value 1

𝑛 . This point satisfies that
ℎ�̄�

(0)

= 1𝑛/𝑛 and 𝑝�̄�
(0)

= 1𝑛, since we assumed 𝑥𝑖 ≤ 1 are the first 𝑛 constraints of 𝐴, i.e., the first
𝑛 rows of 𝐴 are 𝑒𝑖 for 𝑖 ∈ [𝑛]. Because the maximum entry of 𝐴 is 1, we have 𝑔(𝑝�̄�

(0)

) ≤ 𝑛, i.e.,
𝑝�̄�

(0)

is an (𝑛− 1)-minimizer of 𝑔. Hence we denote 𝜀−1 = 𝑛− 1 for convenience.

So for 𝑡 = 0, the first phase, we seek to find a 2-minimizer of 𝑔. Thus, this is the only phase in
which we use the second case of the value of 𝜎𝛿 , cf. (7). We have 𝜏𝜀−1

= 1 and 𝜎𝜀−1
= 2𝑛− 2 and

4 min{𝜏𝜀−1
, 𝜎𝜀−1

} = 4. Note that if 𝜀/𝑛 ≥ 2, we can actually stop earlier so 𝑇 in the algorithm is
0, there is only one phase, and 𝜀0 is actually set to 𝜀/𝑛. At this phase our good previous solution
is the initial point �̄�(0). Assume first 𝜀0 = 2. The condition 2 = 𝜀0 ≤ 4 min{𝜏𝜀−1

, 𝜎𝜀−1
} = 4 is

satisfied. Thus, according to Lemma 3.3, we reach the 𝜀0-minimizer after 𝐾0 = ̃︀𝑂( 𝑛
𝜀20

) = ̃︀𝑂(𝑛)

iterations. If 𝜀0 is 𝜀/𝑛 > 2, we can artificially set 𝜏𝜀−1
to a larger value, say 𝜀/𝑛, so that the condition

𝜀0 ≤ 4 min{𝜏𝜀−1
, 𝜎𝜀−1

} = 4𝜏𝜀−1
trivially holds, and the complexity is ̃︀𝑂(

𝜀/𝑛·𝜎𝜀−1

(𝜀/𝑛)2 ) = ̃︀𝑂(𝑛
2

𝜀 )

iterations, which satisfies the theorem. In fact, for large 𝜀, i.e., for 𝜀/𝑛 > 2, just aiming for an̂︀𝜀 = exp(𝜀/𝑛) − 1 is significantly faster and enough. The latter is true according to Lemma 3.1
without bounding log(1 + ̂︀𝜀) ≤ ̂︀𝜀.
Now, if 𝑇 > 0, we run several phases of the MW algorithm. Iteration 𝑡 > 0 takes 𝐾𝑡

def
=

32𝜏𝜀
𝑡−1

𝜎𝜀
𝑡−1

log(|𝐼𝑡|)
𝜀2𝑡

= ̃︀𝑂(
𝜏𝜀

𝑡−1
𝜎𝜀

𝑡−1

𝜀2𝑡
) iterations by the PST guarantee, cf Lemma 3.3. If 𝜀𝑡−1 >

1
𝑛

we have 𝜏𝜀𝑡−1
·𝜎𝜀𝑡−1

= 𝑂(1 · 𝜀𝑡−1𝑛) and if 𝜀𝑡−1 ≤ 1
𝑛 we have 𝜏𝜀−1

·𝜎𝜀𝑡−1
= 𝑂(

√
𝜀𝑡−1𝑛 ·

√
𝜀𝑡−1𝑛).

In any case, it is 𝐾𝑡 = ̃︀𝑂( 𝑛𝜀𝑡
), as 𝜀𝑡−1/𝜀𝑡 = 2 = 𝑂(1). The assumption 𝜀𝑡 ≤ 4 min{𝜎𝜀𝑡−1

, 𝜏𝜀𝑡−1
} is

satisfied in these phases. Indeed, if 𝜀𝑡 ≥ 1/𝑛, we have 𝜀𝑡 < 𝜀0 = 2 and 𝜎𝜀𝑡−1
≥ 1, 𝜏𝜀𝑡−1

= 1 . In
the case 𝜀𝑡 < 1/𝑛, we have 4 min{𝜏𝜀𝑡−1

, 𝜎𝜀𝑡−1
} ≥ √𝜀𝑡𝑛 which is > 𝜀𝑡.

If 𝑇 = ⌈log2(2/(𝜀/𝑛))⌉ > 0, then 𝜀𝑇 ≤ 𝜀/𝑛 and the total number of iterations is

𝑇∑︁
𝑡=0

𝐾𝑡 = ̃︀𝑂(

𝑇∑︁
𝑡=0

𝑛

𝜀𝑡
) = ̃︀𝑂(

𝑇∑︁
𝑡=0

𝑛2𝑡−1) = ̃︀𝑂(𝑛2𝑇 ) = ̃︀𝑂(
𝑛2

𝜀
).
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The complexity of an iteration is ̃︀𝑂(𝑁), assuming 𝑁 ≥ 𝑚 (recall 𝑚 ≥ 𝑛 since we added the
constraints 𝑥𝑖 ≤ 1). Indeed, computing 𝐼𝑡, Algorithm 2, and computing the constraints of the query
Λ(𝑘)/‖Λ(𝑘)‖1 and current solution �̄�(𝑡), to be used by the oracle, requires multiplying a vector by 𝐴
or a subset of its rows, which is 𝑂(𝑁). The oracle query takes ̃︀𝑂(𝑛), and the rest of operations in
Algorithm 2 are simple and take 𝑂(𝑚) time. Note the amortized complexity of Algorithm 2 is 𝑂(𝑚)
per iteration. �

C.1 Missing proofs from Section 3.3

The first lemma shows that the oracle returns a point in the lens ℒ𝜔𝛿(𝑣) efficiently.

Lemma C.2. Let 𝑣 def
= 𝑐(𝑠)/(1 + 𝛿) ∈ 𝒫 . The feasibility oracle returns a point in the intersection

ℒ𝜔𝛿(𝑣) ∩ {𝑥 ∈ R𝑛≥0 : ⟨𝑞, 𝑥⟩ ≤ 1} in time 𝑂(𝑛 log( 𝑛
(𝜔−1)𝛿 + 𝑛

𝜔−1 )).

Proof. The output point 𝑜 has to satisfy 1 : ⟨𝑐−1(𝑜), 𝑣⟩ ≤ 1 and 2 : ⟨𝑐−1(𝑣), 𝑜⟩ ≤ 1 + 𝜔𝛿 to be in
the lens and 3 : ⟨𝑞, 𝑜⟩ ≤ 1 to be in the halfspace defined by 𝑞.

We note that the definition of 𝑐(·) implies 𝑐−1(𝑣) = (1 + 𝛿)𝑠. Condition 1 is always trivially
satisfied because 𝑐−1(𝑜) ∈ 𝒟 and 𝑣 ∈ 𝒫 by construction.

Now we have three cases. If ⟨𝑠, 𝑐(𝑞)⟩ ≤ 1+𝜔𝛿
1+𝛿 the oracle returns 𝑜 = 𝑐(𝑞) and 𝜆(𝑜) = 𝜆(𝑞). This

satisfies the other two conditions. Indeed, 3 comes from ⟨𝑞, 𝑐(𝑞)⟩ = 1 and 2 is satisfied because
⟨𝑠, 𝑐(𝑞)⟩ ≤ 1+𝜔𝛿

1+𝛿 implies ⟨𝑐−1(𝑣), 𝑐(𝑞)⟩ = ⟨(1 + 𝛿)𝑠, 𝑐(𝑞)⟩ ≤ 1 + 𝜔𝛿. If we have ⟨𝑞, 𝑐(𝑠)⟩ ≤ 1,
then the oracle returns 𝑜 = 𝑐(𝑠) and 𝜆(𝑜) = 𝜆(𝑠). In this case 3 is satisfied by construction, and 2
is satisfied because ⟨𝑐−1(𝑣), 𝑐(𝑠)⟩ = ⟨(1 + 𝛿)𝑠, 𝑐(𝑠)⟩ = 1 + 𝛿 ≤ 1 + 𝜔𝛿.

From now on we may focus on the third case, where ⟨𝑠, 𝑐(𝑞)⟩ > 1+𝜔𝛿
1+𝛿 and ⟨𝑞, 𝑐(𝑠)⟩ > 1. Let us

define the functions 𝜋𝑠 , 𝜋𝑞 : (0, 1)→ R≥0 as:

𝜋𝑠(𝜇) = ⟨𝑠, 𝑐((1− 𝜇)𝑠 + 𝜇𝑞)⟩,
𝜋𝑞(𝜇) = ⟨𝑞, 𝑐((1− 𝜇)𝑠 + 𝜇𝑞)⟩.

The key observation relating these two functions is (1− 𝜇)𝜋𝑠(𝜇) + 𝜇𝜋𝑞(𝜇) = 1 for any 𝜇 ∈ (0, 1)
because ⟨ℎ, 𝑐(ℎ)⟩ = 1 for any constraint ℎ ∈ R≥0. So, if we find a 𝜇* ∈ (0, 1) with 𝜋𝑠(𝜇*) ∈
(1, 1+𝜔𝛿1+𝛿 ) then 𝑜 = 𝑐((1−𝜇*)𝑠+𝜇*𝑞) will satisfy both 2 , because of 𝜋𝑠(𝜇*) < (1 +𝜔𝛿)/(1 + 𝛿),
and also 3 , because if 𝜋𝑠(𝜇*) > 1 then 𝜋𝑞(𝜇*) < 1 by the observation. And we recover 𝜆(𝑜) as
(1− 𝜇*)𝜆(𝑠) + 𝜇*𝜆(𝑞).

We intend to find such a 𝜇* with the bisection method. Despite 𝜋𝑠 having a potential singularity
near 𝜇 = 1, we will show it is regular enough to guarantee fast convergence. By the assumptions,
lim𝜇→1 𝜋𝑠(𝜇) > 1+𝜔𝛿

1+𝛿 and lim𝜇→0 𝜋𝑞(𝜇) > 1. Then, 𝜋𝑞(𝜇) > 1 for any 𝜇 small enough, which
means 𝜋𝑠(𝜇) < 1 for any 𝜇 small enough by the observation. Finally, 𝜋𝑠 is continuous, so we are
able to find 𝜇* with 𝜋𝑠(𝜇*) ∈ (1, 1+𝜔𝛿1+𝛿 ) via the bisection method. The only remaining question is
computing its running time, for which we lower bound the length of an interval in (0, 1) that satisfies
the conditions.

For that we will bound 𝜋′
𝑠(𝜇). Let us start with the definition of 𝜋′

𝑠(𝜇)/𝜋𝑠(𝜇). Let 𝜋𝑠(𝜇)𝑖
def
=

𝑠𝑖
𝑛((1−𝜇)𝑠𝑖+𝜇𝑞𝑖) be the 𝑖-th summand in the inner product of 𝜋𝑠(𝜇). We have

𝜋′
𝑠(𝜇)

𝜋𝑠(𝜇)
=

∑︀
𝑖∈[𝑛]

𝑠𝑖𝑛(𝑠𝑖−𝑞𝑖)
𝑛2((1−𝜇)𝑠𝑖+𝜇𝑞𝑖)2∑︀
𝑖∈[𝑛] 𝜋𝑠(𝜇)𝑖

=

∑︀
𝑖∈[𝑛] 𝜋𝑠(𝜇)𝑖

(𝑠𝑖−𝑞𝑖)
(1−𝜇)𝑠𝑖+𝜇𝑞𝑖∑︀

𝑖∈[𝑛] 𝜋𝑠(𝜇)𝑖
.

We have 𝜋𝑠(𝜇)𝑖 ≥ 0 so the expression above is a weighted arithmetic mean, and its value is at most
that of the maximum of the summands:

𝜋′
𝑠(𝜇)

𝜋𝑠(𝜇)
≤ max

𝑖∈[𝑛]

𝑠𝑖 − 𝑞𝑖
(1− 𝜇)𝑠𝑖 + 𝜇𝑞𝑖

1
≤ 𝑛max

𝑖∈[𝑛]
𝜋𝑠(𝜇)𝑖 ≤ 𝑛

∑︁
𝑖∈[𝑛]

𝜋𝑠(𝜇)𝑖 ≤ 𝑛𝜋𝑠(𝜇).
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We dropped −𝑞𝑖/((1− 𝜇)𝑠𝑖 + 𝜇𝑞𝑖) in 1 above. Hence, we have 𝜋′
𝑠(𝜇) ≤ 𝑛𝜋2

𝑠(𝜇). This means the
preimage of 𝐽 def

= (1, 1+𝜔𝛿1+𝛿 ) is an interval of length at least

1+𝜔𝛿
1+𝛿 − 1

max𝜇:𝜋𝑠 (𝜇)∈𝐽 𝜋
′
𝑠(𝜇)

≥
1+𝜔𝛿
1+𝛿 − 1

max𝜇:𝜋𝑠 (𝜇)∈𝐽 𝑛𝜋
2
𝑠(𝜇)

=
1+𝜔𝛿
1+𝛿 − 1

𝑛
(︁

1+𝜔𝛿
1+𝛿

)︁2 .
We are interested in upper bounding the inverse of the length:

𝑛
(︁

1+𝜔𝛿
1+𝛿

)︁2
1+𝜔𝛿
1+𝛿 − 1

=
𝑛(1 + 𝜔𝛿)2

(𝜔 − 1)𝛿(1 + 𝛿)
= 𝑛

(︂
1

(𝜔 − 1)𝛿
+

2𝜔 − 1

𝜔 − 1
+
𝛿(𝜔 − 1)

1 + 𝛿

)︂
≤ 𝑛

(𝜔 − 1)𝛿
+

4𝑛

𝜔 − 1
.

Since the bisection method starts with an interval of length 1 and progressively halves it every iteration,
it takes at most log2( 𝑛

(𝜔−1)𝛿 + 4𝑛
𝜔−1 ) iterations to find a point with 𝜋𝑠(𝜇*) ∈ (1, 1+𝜔𝛿1+𝛿 ), and each step

takes 𝑂(𝑛) in processing time. Thus, the oracle returns a point in time 𝑂(𝑛 log( 𝑛
(𝜔−1)𝛿 + 𝑛

𝜔−1 )). �

The following lemma bounds the lens by a box defined in terms of 𝜔𝛿.
Lemma C.3. If 𝑥 ∈ ℒ𝜔𝛿(𝑣), with 𝑣 ∈ R𝑛≥0, 𝜔𝛿 > 0, then,

𝑥𝑖 ≥ 𝐿𝑖
def
= max(0, 1−

√
𝜔𝛿𝑛)𝑣𝑖,

𝑥𝑖 ≤ 𝑈𝑖
def
= (1 +

√
𝜔𝛿𝑛+ 𝜔𝛿𝑛)𝑣𝑖.

We call the region
∏︀
𝑖[𝐿𝑖, 𝑈𝑖] the bounding box of the lens.

Proof (Lemma C.3). Recall that the lens is defined as the set of points 𝑥 ∈ R𝑛≥0 satisfying both
⟨𝑐−1(𝑣), 𝑥⟩ ≤ 1 + 𝜔𝛿 and ⟨𝑐−1(𝑥), 𝑣⟩ ≤ 1. Let us rewrite these conditions as sums:{︂

⟨𝑐−1(𝑣), 𝑥⟩ =
∑︀
𝑖∈[𝑛]

𝑥𝑖

𝑛𝑣𝑖
≤ 1 + 𝜔𝛿,

⟨𝑐−1(𝑥), 𝑣⟩ =
∑︀
𝑖∈[𝑛]

𝑣𝑖
𝑛𝑥𝑖

≤ 1.

These two constraints are invariant up to multiplications of 𝑥𝑖 and 𝑣𝑖 by the same constant. Let
𝑧𝑖 = 𝑥𝑖/𝑣𝑖, and multiply both by 𝑛 to get:{︂ ∑︀

𝑖∈[𝑛] 𝑧𝑖 ≤ (1 + 𝜔𝛿)𝑛,∑︀
𝑖∈[𝑛] 𝑧

−1
𝑖 ≤ 𝑛.

It is our purpose to find the maximum and minimum of 𝑧𝑖 in this region. Because the system is
symmetric under reordering of the 𝑧𝑖, we may focus on bounding 𝑧1. Since the region is convex and
symmetric under reordering of the variables, and because the function 𝑧 ↦→ 𝑧1 is symmetric under
reordering of the last (𝑛− 1) variables, we may also assume that the maximum and minimum of this
function are attained in points with 𝑧2 = · · · = 𝑧𝑛.

This brings us to: {︂
𝑧1 +(𝑛− 1)𝑧2 ≤ (1 + 𝜔𝛿)𝑛,
𝑧−1
1 +(𝑛− 1)𝑧−1

2 ≤ 𝑛.

The two constraints independently will never have normals vectors proportional to 𝑒1. Furthermore
the feasible region of the second constraint in R𝑛≥0 is contained in the interior of R𝑛≥0. This means
that the solutions maximizing and minimizing 𝑧1 must satisfy both constraints with equality.

Solving the system of equations gives two roots. The two solutions for 𝑧1 are:

𝑧+1 =
1

2
(𝜔𝛿𝑛+ 2 +

√︀
𝜔2𝛿2𝑛2 + 4𝜔𝛿𝑛− 4𝜔𝛿),

𝑧−1 =
1

2
(𝜔𝛿𝑛+ 2−

√︀
𝜔2𝛿2𝑛2 + 4𝜔𝛿𝑛− 4𝜔𝛿).

Let us bound the smaller one first. We give two such lower bounds. The trivial one is that 𝑧−1 > 0.
This comes from the fact that the second constraint already guarantees 𝑧𝑖 > 0.
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The second lower bound comes from
√
𝑎+ 𝑏 ≤

√
𝑎+
√
𝑏 for 𝑎, 𝑏 > 0, a consequence of the triangle

inequality:

𝑧−1 = 1
2 (𝜔𝛿𝑛+ 2−

√
𝜔2𝛿2𝑛2 + 4𝜔𝛿𝑛− 4𝜔𝛿) ≥ 1

2 (𝜔𝛿𝑛+ 2−
√
𝜔2𝛿2𝑛2 + 4𝜔𝛿𝑛) ≥

≥ 1
2 (𝜔𝛿𝑛+ 2− 𝜔𝛿𝑛− 2

√
𝜔𝛿𝑛) ≥ 1−

√
𝜔𝛿𝑛.

Now let us study the larger root. As with the other root, we remove the −4𝜔𝛿 term in the square root,
then apply the triangle inequality:

𝑧+1 = 1
2 (𝜔𝛿𝑛+ 2 +

√
𝜔2𝛿2𝑛2 + 4𝜔𝛿𝑛− 4𝜔𝛿) ≤ 1

2 (𝜔𝛿𝑛+ 2−
√
𝜔2𝛿2𝑛2 + 4𝜔𝛿𝑛) ≤

≤ 1
2 (𝜔𝛿𝑛+ 2 + 𝜔𝛿𝑛+ 2

√
𝜔𝛿𝑛) ≥ 1 + 𝜔𝛿𝑛+

√
𝜔𝛿𝑛.

Undoing the change of variables 𝑧𝑖 = 𝑥𝑖/𝑣𝑖 we obtain the desired bounds. �

Observe that indeed the optimum 𝑝𝜆
*

satisfies the two conditions in the definition of ℒ𝜔𝛿(𝑣):
The first condition ⟨𝑐−1(𝑝𝜆

*
), 𝑣⟩ ≤ 1 comes from 𝑝𝜆

* ∈ 𝑐(𝒟), so 𝑐−1(𝑝𝜆
*
) ∈ 𝒟 covers 𝒫 , i.e.,

⟨𝑐−1(𝑝𝜆
*
), 𝑥⟩ ≤ 1 for all 𝑥 ∈ 𝒫 . In particular it covers 𝑣. The second condition ⟨𝑐−1(𝑣), 𝑝𝜆

*⟩ ≤
1 + 𝜔𝛿 is equivalent to ⟨ 1+𝛿

1+𝜔𝛿 𝑠, 𝑝
𝜆*⟩ ≤ 1. Since 𝜔 > 1, this is satisfied as 𝑝𝜆

* ∈ 𝒫 and 𝑠 ∈ 𝒟
and therefore 1+𝛿

1+𝜔𝛿 𝑠 ∈ 𝒟
+. The last two lemmas provide the intuition of why the oracle returns

points that are not too far from 𝑝𝜆
*
: for a fixed 𝜔 > 1 the bounding boxes of the respective lenses get

smaller as 𝛿 → 0.

Now we can finally prove the exact guarantees of the oracle. Let 𝑞 = 𝐴𝑇𝜆(𝑞) with 𝜆(𝑞) ∈ ∆𝑚 be the
query. Furthermore, let 𝑠 = 𝐴𝑇𝜆(𝑠) with 𝜆(𝑠) ∈ ∆𝑚 be our current good solution, so that the point
𝑐(𝑠) = 𝑐(𝐴𝑇𝜆(𝑠)) satisfies 𝑔(𝑐(𝑠)) ≤ 1 + 𝛿. The following proposition proves the guarantees on the
oracle.
Proposition C.4. Let 𝑈 def

= 𝑐(𝑠)(1 + 2𝛿𝑛+
√

2𝛿𝑛)/(1 + 𝛿) be the upper-most vertex of the bounding
box of the lens ℒ𝜔𝛿(𝑣), as defined in Lemma C.3. Let 𝐼 be the set of non-redundant constraints,
defined as 𝐼 def

= {𝑖 ∈ [𝑚] : ⟨𝐴𝑖, 𝑈⟩ ≥ 1}. Furthermore, let the following be the width parameters of
the oracle O implemented in Algorithm 3:

𝜎
def
= min(

√
𝜔𝛿𝑛+ 𝜔𝛿𝑛,

1 + 𝜔𝛿

1 + 𝛿
max
𝑖∈[𝑛]

1

𝑠𝑖
− 1) and 𝜏

def
= min(3

√
𝜔𝛿𝑛, 1). (28)

Then, the oracle O in Algorithm 3 returns a pair 𝜆(𝑜) ∈ ∆𝑚, 𝑜 ∈ 𝑐(𝒟) such that

1. 𝑜 satisfies 𝑞, i.e., ⟨𝑞, 𝑜⟩ ≤ 1.

2. If 𝑖 ∈ 𝐼 , it yields ⟨𝐴𝑖, 𝑜⟩ ∈ [1− 𝜏 , 1 +𝜎]. That is, it is compatible with the width parameters
𝜎, 𝜏 as above, with the loss 1− ⟨𝐴𝑖, 𝑜⟩ in [−𝜎, 𝜏 ].

3. 𝑜 satisfies all redundant constraints, i.e., ⟨𝐴𝑖, 𝑜⟩ ≤ 1, if 𝑖 ∈ [𝑚] ∖ 𝐼 .

Besides, 𝑜 = 𝑐(𝐴𝑇𝜆(𝑜)), and Algorithm 3 runs in time 𝑂(𝑛 log( 𝑛
(𝜔−1)𝛿 + 𝑛

𝜔−1 )).

Proof. The first claim is proven in Lemma C.2.

Let us consider 𝐼 now. It is clear that the constraints in 𝐼 are exactly those that do not cover the
bounding box of Lemma C.3 around the lens ℒ𝜔𝛿(𝑣), with 𝑣 def

= 𝑐(𝑠)/(1 + 𝛿). This is because a
positive constraint covers a box if and only if it covers the upper-most vertex 𝑈 . Since the oracle
returns a point in the lens, and hence in the box, any constraint not in 𝐼 is automatically satisfied by
any point returned by the oracle. This is the third claim.

Note that the geometric meaning of the second claim is that 𝑜 is close to be lying on the hyperplanes
⟨𝐴𝑖, 𝑥⟩ = 1. If 𝑖 ∈ 𝐼 , then ⟨𝐴𝑖, 𝑈⟩ ≥ 1 by the definition of 𝐼 . Define 𝐿 as the lower-most vertex of
the bounding box of ℒ𝜔𝛿(𝑣). Now,

⟨𝐴𝑖, 𝑜⟩ ≥ min
𝑥∈ℒ𝜔𝛿(𝑣)

⟨𝐴𝑖, 𝑥⟩ ≥ min{⟨𝐴𝑖, 𝑥⟩ : 𝑥 ∈ R𝑛≥0, 𝑥𝑖 ∈ [𝐿𝑖, 𝑈𝑖]}.
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And the second minimum will be attained in the lower-most vertex as 𝐴𝑖𝑗 ≥ 0 for all 𝑗 ∈ [𝑛].
Therefore:

⟨𝐴𝑖, 𝑜⟩ ≥ min
𝑥∈L(𝑣,𝜔𝛿)

⟨𝐴𝑖, 𝑥⟩ ≥ ⟨𝐴𝑖, 𝐿⟩ = ⟨𝐴𝑖, 𝑈⟩
max(0, 1−

√
𝜔𝛿𝑛)

1 +
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛

≥ max(0, 1−
√
𝜔𝛿𝑛)

1 +
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛

= 1−min

(︃
1,

2
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛

1 +
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛

)︃
.

The second argument of the min is only less than 1 whenever 𝜔𝛿𝑛 < 1, so we may assume the latter
in order to obtain the following bound

⟨𝐴𝑖, 𝑜⟩ ≥ min
𝑥∈L(𝑣,𝜔𝛿)

⟨𝐴𝑖, 𝑥⟩ ≥ 1−min

(︃
1,

2
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛

1 +
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛

)︃
≥ 1−min(1, 3

√
𝜔𝛿𝑛) = 1− 𝜏 .

Finally, we focus on the bound with 𝜎. As before, the maximum of ⟨𝐴𝑖, 𝑥⟩ will be attained at a vertex
of the box, only this time it is 𝑈 . Now, as 𝑣 ∈ 𝒫 , we have ⟨𝐴𝑖, 𝑣⟩ ≤ 1. We use these two facts to
conclude:

⟨𝐴𝑖, 𝑜⟩ ≤ max
𝑥∈L(𝑣,𝜔𝛿)

⟨𝐴𝑖, 𝑥⟩ ≤ ⟨𝐴𝑖, 𝑈⟩ = ⟨𝐴𝑖, 𝑣⟩(1 +
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛) ≤ 1 +

√
𝜔𝛿𝑛+ 𝜔𝛿𝑛.

The second upper bound on ⟨𝐴𝑖, 𝑜⟩ does not come from the bounding box. We only look at the linear
component of the lens, and since 𝐴𝑖 is positive, it must attain a maximum in one of the vertices of the
simplex in the intersection of the hyperplane with the positive orthant. We also use that 𝐴𝑖𝑗 ≤ 1:

⟨𝐴𝑖, 𝑜⟩ ≤ max
𝑥∈ℒ𝜔𝛿(𝑣)

⟨𝐴𝑖, 𝑥⟩ ≤ max
𝑥∈R𝑛

≥0

⟨𝑠,𝑥⟩≤(1+𝜔𝛿)/(1+𝛿)

⟨𝐴𝑖, 𝑥⟩ = max
𝑗∈[𝑛]

𝐴𝑖𝑗
1 + 𝜔𝛿

1 + 𝛿

1

𝑠𝑗
≤ 1 + 𝜔𝛿

1 + 𝛿
max
𝑗∈[𝑛]

1

𝑠𝑗
.

Thus, ⟨𝐴𝑖, 𝑜⟩ ≤ 1 + min(
√
𝜔𝛿𝑛+ 𝜔𝛿𝑛, 1+𝜔𝛿1+𝛿 max𝑗∈[𝑛]

1
𝑠𝑗
− 1) = 1 + 𝜎.

The running time and the fact 𝑜 = 𝑐(𝐴𝑇𝜆(𝑜)) follow from Lemma C.2. �
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