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Abstract

The proportional fair resource allocation problem is a major problem studied in flow
control of networks, operations research, and economic theory, where it has found
numerous applications. This problem, defined as the constrained maximization of∑︀
𝑖 log 𝑥𝑖, is known as the packing proportional fairness problem when the feasible

set is defined by positive linear constraints and 𝑥 ∈ R𝑛≥0. In this work, we present
a distributed accelerated first-order method for this problem which improves upon
previous approaches. We also design an algorithm for the optimization of its dual
problem. Both algorithms are width-independent.

1 Introduction

The assignment of bounded resources to several agents under some notions of fairness is a topic
studied in networking, operations research, game theory, and economic theory. The allocation
obtained by the maximization of the function

∑︀𝑛
𝑖=1 log(𝑥𝑖) over a convex set 𝐶 ⊆ R𝑛≥0, known as a

proportional fair allocation, is an important solution that arises under a natural set of fairness axioms
[BFT11; Lan+10]. It corresponds to Nash bargaining solutions [Nas50] and it also has applications to
multi-resource allocation in compute clusters [BR15; JH18; Joe+12], rate control in networks [Kel97]
and game theory [JV10; JV07]. Other important allocations are linear objectives (no fairness), the
max-min allocations [MW00], or 𝛼-fair allocations [Atk70; MW00; McC+14], which generalize all
of the others. Proportional fairness corresponds to 𝛼 = 1. A natural restriction, that many of these
applications require, are positive linear constraints. This results in the packing proportional fairness
problem, also known as the 1-fair packing problem. The main focus of this paper is on solving this
problem and its dual via first-order methods. Given 𝐴 ∈ℳ𝑚×𝑛(R≥0), the 1-fair packing problem is

max
𝑥∈R𝑛

≥0

{︃
𝑓(𝑥)

def
=

𝑛∑︁
𝑖=1

log 𝑥𝑖 : 𝐴𝑥 ≤ 1𝑚

}︃
. (1FP)

We also study the optimization of its Lagrange dual, that can be formulated, cf. Lemma A.1, as

min
𝜆∈Δ𝑚

{︃
𝑔(𝜆)

def
= −

𝑛∑︁
𝑖=1

log(𝐴𝑇𝜆)𝑖 − 𝑛 log 𝑛

}︃
, (1FP-Dual)

* Equal contribution.
Most of the notations in this work have a link to their definitions. For example, if you click or tap on any

instance of 𝑒𝑖, you will jump to the place where it is defined as the 𝑖-th vector of the canonical base.
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where ∆𝑚 def
= {𝜆 ∈ R𝑚 :

∑︀
𝜆𝑖 = 1, 𝜆 ≥ 0} is the 𝑚-dimensional (probability) simplex. We focus

on width-independent algorithms that additively 𝜀-approximate the optimum of those problems. For
the 1-fair packing problem that means, respectively, that we can find �̄� in time that depends at most
polylogarithmically on the width 𝜌 of the matrix 𝐴, and that it satisfies 𝑓* − 𝑓(�̄�) ≤ 𝜀, where 𝑓* is
the optimal value. Note that (1FP) has a unique optimizer, by strong concavity. By the same reason,
for every two minimizers 𝜆1, 𝜆2 of (1FP-Dual), we have 𝐴𝑇𝜆1 = 𝐴𝑇𝜆2. The width 𝜌 of 𝐴 is defined
as max{𝐴𝑖𝑗}/min𝐴𝑖𝑗 ̸=0{𝐴𝑖𝑗}, the maximum ratio of the non-zero entries of 𝐴. Note that in general
width-dependent algorithms are not polynomial. Smoothness and Lipschitz constants of the objectives
do not scale polylogarithmically with 𝜌 and thus, direct application of classical first-order methods
leads to non-polynomial algorithms. As in packing and covering LP, an approximate solution for our
primal problem does not necessarily yield one for the dual problem, cf. [AK08], so we need to study
them separately. The current form of our techniques does not generalize to 𝛼-fair problems with
𝛼 ̸= 1, but generalizing them to these settings is an interesting future direction of research. We note
that previous works treat 𝛼 in [0, 1), {1}, or (1,∞) separately, due to the structure of the problems
being different. Most works dealing with 𝛼-fair functions assume, without loss of generality, that 𝐴
is given so that the minimum non-zero entry of 𝐴 is 1 and the maximum entry is 𝜌. However, in this
work, we assume without loss of generality that

max
𝑖∈[𝑚]
{𝐴𝑖𝑗} = 1, for all 𝑗 ∈ [𝑛]. (1)

We can do so because, for our problem, we can rescale each primal coordinate multiplicatively,
rescaling the columns of 𝐴 accordingly, which only changes the objectives by an additive constant.
Thus, the additive guarantees we will obtain are also satisfied in the non-scaled problem.

Our primal algorithm solves the problem in a distributed model of computation with 𝑛 agents. Each
agent 𝑗 ∈ [𝑛] controls variable 𝑥𝑗 and only has access to global parameters like 𝑚,𝑛, or the target
accuracy 𝜀, to the 𝑗-th column of 𝐴, and in each round it receives the slack (𝐴𝑥)𝑖 − 1 of all the
constraints 𝑖 in which 𝑗 participates. This is a standard distributed model of computation. We refer to
[KY14; AK08] for its motivation and applications.

Notations We let 𝑒𝑖 be the vector with 1 in coordinate 𝑖 and 0 elsewhere. We denote by 𝐴𝑖 a row
of 𝐴. For 𝑘 ∈ N, we use the notation [𝑘]

def
= {1, 2, . . . , 𝑘}. Throughout this work, log(·) represents

the natural logarithm. For 𝑣 ∈ R𝑛, the notation exp(𝑣) means entrywise exponential. We use ⊙
for the entrywise product. Given a 1-strongly convex map 𝜓, we denote its Bregman divergence by
𝐷𝜓(𝑥, 𝑦)

def
= ∇𝜓(𝑥)−∇𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑥− 𝑦⟩. We denote by 𝑁 the number of non-zero entries

of the matrix 𝐴. The notation ̃︀𝑂(·) hides logarithmic factors with respect to 𝑚, 𝑛, 1/𝜀 and 𝜌. But
note that the rates of our algorithms do not depend on 𝜌.

Related Work Despite the importance and widespread applicability of fairness objectives, width-
independent (and thus polynomial) algorithms for many 𝛼-fair packing problems were not developed
until recently. Width-independent algorithms were first designed for 0-fair packing, i.e., for packing
linear programming (LP), that have a longer history [LN93]. For this problem there are currently
nearly linear-time width-independent iterative algorithms [AO19] and distributed algorithms [AO15;
DO17]. [MSZ16] studied the width-independent optimization of 𝛼-fair packing problems for any
𝛼 ∈ [0,∞] with a stateless algorithm and [DFO20] gave better rates with a non-stateless algorithm.
Both works use the same distributed framework as ours. For the particular case of 1-fair packing, the
latter work obtains an unaccelerated algorithm that runs in ̃︀𝑂(𝑛2/𝜀2) distributed iterations. [Bec+14]
study the optimization of the dual problem by using Nesterov’s accelerated method, and then they
reconstruct a primal solution. However, both primal and dual solutions depend on the smoothness
constant of the dual problem, which in the worst case is proportional to 𝜌2, and therefore it is not a
polynomial algorithm. In contrast, our algorithms do not depend on 𝜌 at all. Obtaining a priori lower
bounds on each of the coordinates of the optimizer is of theoretical and practical interest, since it
provides certain amount of resource that can be assigned to each agent before solving the problem.
These were studied in [MSZ16] and were improved by [All+18]. In Lemma B.1, we show a lower
bound of this kind for our problem when it is normalized as in (1).

Contribution and Main Results Our contribution can be summarized as follows; See Table 1 for
a comparison with previous works.

Accelerated algorithm for 1-fair packing. We design a distributed accelerated algorithm for 1-fair
packing by generalizing and extending an accelerated technique, designed for packing LP, that
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Table 1: Comparison of algorithms for 1-fair packing and its dual. The work of one iteration is linear
in 𝑁 , the number of non-zero entries in 𝐴.

Paper Problem Iterations Width-dependence?

[Bec+14] Primal 𝑂(𝜌2𝑚𝑛/𝜀) Yes
[MSZ16] Primal ̃︀𝑂(𝑛5/𝜀5) nearly No (polylog)
[DFO20] Primal ̃︀𝑂(𝑛2/𝜀2) nearly No (polylog)
This paper (Theorem 2.5) Primal ̃︀𝑂(𝑛/𝜀) No

[Bec+14] Dual 𝑂(𝜌
√︀
𝑚𝑛/𝜀) Yes

This paper (Theorem 3.4) Dual ̃︀𝑂(𝑛2/𝜀) No

uses truncated gradients of a regularized objective [AO19]. In contrast with this technique, ours
yields an algorithm and guarantees that are deterministic. We exploit the structure of our problem to
obtain a distributed solution, while for packing LP obtaining a distributed or just parallel algorithm
that is accelerated and width-independent is an open question [DO17]. We make use of a different
regularization and an analysis that yields additive error guarantees as opposed to multiplicative ones.

The dual problem. We consider the dual of the 1-fair packing problem. We reduce the problem to
optimizing a proxy function by using the Plotkin-Shmoys-Tardos (PST) framework [PST95; AHK12]
with a novel geometric separation oracle. Critical to obtaining fast convergence is showing that
the oracle parameters decrease when we obtain better solutions. This fact allows to reduce the
dependence on 𝜀, and as a result, our width-independent algorithm enjoys a convergence rate of̃︀𝑂(𝑛2/𝜀) iterations for this problem.

2 A distributed accelerated algorithm for 1-Fair Packing

In this section, we present the main steps of our algorithm for the primal problem, which is a
deterministic accelerated descent method that optimizes an objective coming from the 1-fair packing
problem, and that encodes the constraints in the form of a barrier. Our algorithm approximates
the objective additively and allows to compute each iteration in a distributed manner. We note that
[DFO20] also made use of this objective for the 1-fair packing problem with different constants,
but as opposed to their solution, we allow to compute unfeasible solutions during the course of the
algorithm, and we proceed with different techniques that allow to achieve acceleration and thus an
algorithm with better convergence rates. We defer the proofs to Appendix B. We reparametrize
Problem (1FP) so that the objective function is linear at the expense of making the constraints more
complex. That is, we define the function 𝑓 : R𝑛 → R, 𝑥 ↦→ 𝑓(exp(𝑥)) = ⟨1𝑛, 𝑥⟩. The optimization
problem becomes

max
𝑥∈R𝑛

{︁
𝑓(𝑥)

def
= ⟨1𝑛, 𝑥⟩ : 𝐴 exp(𝑥) ≤ 1𝑚

}︁
. (2)

Then, we regularize the negative of the reparametrized objective by adding a fast-growing barrier:

𝑓𝑟(𝑥)
def
= −⟨1𝑛, 𝑥⟩+

𝛽

1 + 𝛽

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1+𝛽
𝛽

𝑖 ,∇𝑗𝑓𝑟(𝑥) = −1 +

𝑚∑︁
𝑖=1

(𝐴 exp(𝑥))
1
𝛽

𝑖 𝑎𝑖𝑗 exp(𝑥𝑗),

where 𝛽 def
= 𝜀

6𝑛 log(2𝑚𝑛2/𝜀) . In this way, we can work with an unconstrained minimization problem.
The resulting function is not globally smooth but when the absolute value of a coordinate of the
gradient is large, it is positive, and in that case we are able to take a small gradient descent step and
decrease the function considerably. The intuition is that if the gradient is large, then the function
value along the segment of the gradient step, as a function of the step, can decrease fast. But it cannot
increase fast since there are no large negative gradient coordinates. We depict 𝑓𝑟 in Figure 1 in
Appendix B. The barrier also allows to maintain almost feasibility, as we show in Proposition 2.1
below. It is chosen to grow fast enough so that a point satisfying (𝐴 exp(𝑥))𝑖 > 1 + 𝜀/𝑛, for some
𝑖 ∈ [𝑛], will have an optimality gap that is greater than the required accuracy. On the other hand, the
regularizer is very small in the feasible region that is not too close to the boundary.

3



Figure 1: Regularized objective 𝑓𝑟 (left) and its gradient (right), for a sample matrix 𝐴 ∈
ℳ3×2(R≥0). For visualization purposes we show log(𝑓𝑟(𝑥)) and log(‖∇𝑓𝑟(𝑥)‖), represented
by color, and we indicate the direction of the gradient with normalized arrows. Also, note that we
show the results in the original space (i.e., before reparametrizing, so the constraints appear to be
linear) but the gradient was computed as originally defined (i.e., after reparametrizing).

Let �̂�* be the maximizer of 𝑓 , let 𝑥* def
= exp(�̂�*) be the solution to Problem (1FP), and let 𝑥*𝑟 be the

minimizer of 𝑓𝑟. We have �̂�* ∈ [− log(𝑛), 0]𝑛 by Lemma B.1. Let 𝜔 def
= log(𝑚𝑛/(1 − 𝜀/𝑛)) and

define the box 𝐵 def
= [−𝜔, 0]𝑛. We restrict ourselves to this domain and formulate our final problem,

that we will minimize with an accelerated method:

min
𝑥∈𝐵

𝑓𝑟(𝑥). (1FP-primalReg)

Note 𝑓𝑟(𝑥) ≥ 0 if 𝑥 ∈ 𝐵. We add the redundant and simple box constraints 𝐵 in order to later
guarantee a bound on the regret of the mirror descent method that runs within the algorithm. We
show that it suffices to obtain an 𝜀-minimizer of Problem (1FP-primalReg) in order to obtain an
𝑂(𝜀)-minimizer for the original Problem (1FP).
Proposition 2.1. [↓] Let 𝜀 ∈ (0, 𝑛/2]. Let 𝑥*𝑟 be the minimizer of (1FP-primalReg) and let 𝑥𝜀𝑟 ∈ 𝐵 be
an 𝜀-minimizer of this problem. Then the point �̄� def

= exp(𝑥𝜀𝑟)/(1 + 𝜀/𝑛) satisfies 𝑓(𝑥*)− 𝑓(�̄�) ≤ 5𝜀
and 𝐴�̄� ≤ 1𝑚, where 𝑥* is the maximizer of 𝑓 .

The intuition about this proposition is that 𝑥𝜀𝑟 is also a point with low 𝑓 value. By the aforementioned
barrier guarantees, it is almost feasible, i.e., 𝐴 exp(𝑥𝜀𝑟) ≤ 1 + 𝜀/𝑛, and dividing the corresponding
exp(𝑥𝜀𝑟) by 1 + 𝜀/𝑛, and thus making it feasible, can only increase the objective 𝑓 by 𝜀.

In the sequel, we will present the different parts of Algorithm 1 and their analyses. In particular,
the notation and definitions used are compatible with the choices in the algorithm and most of the
parameter choices naturally occur throughout the arguments. Our optimization algorithm starts at the
points 𝑥(0) = 𝑦(0) = 𝑧(0) = − log(𝑚𝑛/(1− 𝜀/𝑛))1𝑛 and updates each of these variables 𝑥(𝑘), 𝑦(𝑘)

and 𝑧(𝑘) once in each iteration. They remain in 𝐵, cf. Lemma B.2. The role of the three variables is
the following: 𝑧(𝑘) will be a mirror point and 𝑦(𝑘) will be a gradient descent point, in the sense that
in order to compute them we apply mirror descent and gradient descent. Then, the point 𝑥(𝑘) will be
a convex combination of both, that will balance the regret of 𝑧(𝑘) with the primal progress of 𝑦(𝑘),
effectively coupling these two algorithms.

It is important to note that we do not use the gradient∇𝑓𝑟(𝑥) for our mirror descent loss. Instead, we
use a truncation of the gradient. More precisely, the loss we perform the mirror descent step on is the
truncated gradient∇𝑓𝑟(𝑥(𝑘)) ∈ R𝑛 defined as

∇𝑖𝑓𝑟(𝑥(𝑘))
def
= min{1,∇𝑖𝑓𝑟(𝑥(𝑘))} for all 𝑖 ∈ [𝑛]. (3)

Note that∇𝑓𝑟(𝑥(𝑘)) ∈ [−1, 1]𝑛 because∇𝑓𝑟(𝑥) ∈ [−1,∞]𝑛 for any 𝑥 ∈ R𝑛, as the regularizer has
positive gradient; see also definition of 𝑓𝑟(𝑥) and its gradient. The truncation allows mirror descent
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to control one part of the regret, which will not depend on the global Lipschitz constant. Gradient
descent will compensate for both such regret and the part that is not controlled by mirror descent.

Let Π𝒳 (·) be the ‖ · ‖2-projection map of a point onto a convex set 𝒳 . The mirror descent update
can be written in closed form as any of the two following equivalent ways

𝑧(𝑘) ← Π𝐵(𝑧(𝑘−1) − 𝜔𝜂𝑘∇𝑓𝑟(𝑥(𝑘))),

𝑧
(𝑘)
𝑖 ← Π[−𝜔,0](𝑧

(𝑘−1)
𝑖 − 𝜔𝜂𝑘∇𝑖𝑓𝑟(𝑥(𝑘))), for all 𝑖 ∈ [𝑛].

(4)

That is, projecting back to the box, in case of the ‖ · ‖2, consists of simply clipping each coordinate.
We bound the regret coming from this mirror descent step by modifying the classical analysis of
mirror descent, cf. Lemma B.3.
Lemma 2.2 (Mirror Descent Guarantee). [↓] Let 𝑢 ∈ 𝐵 and choose 𝐿 as in Algorithm 1. We have:

⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧(𝑘−1)− 𝑢⟩ ≤ 𝜂2𝑘𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘)− 𝑦(𝑘)⟩+
1

2𝜔
‖𝑧(𝑘−1)− 𝑢‖22−

1

2𝜔
‖𝑧(𝑘)− 𝑢‖22.

Next, we will analyze the role of the gradient descent step. We show in the following lemma a
lower bound on the progress of our descent step. Note that this progress could not be greater than
⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩, by convexity, so this is a strong descent condition.

Lemma 2.3 (Descent Lemma). [↓] Given 𝑥(𝑘) and 𝑦(𝑘) as defined in Algorithm 1, the following
holds:

𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑦(𝑘)) ≥

1

2
⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩ ≥ 0.

Algorithm 1 Accelerated descent method for 1-Fair Packing
Input: Matrix 𝐴 ∈ℳ𝑚×𝑛(R≥0) normalized as in (1). Accuracy 𝜀 ∈ (0, 𝑛/2].

1: 𝛽 ← 𝜀
6𝑛 log(2𝑚𝑛2/𝜀) ; 𝜔 ← log( 𝑚𝑛

1−𝜀/𝑛 ); 𝐿 = max
{︁

4𝜔(1+𝛽)
𝛽 , 16𝑛 log(2𝑚𝑛)

3𝜀 + 1
3

}︁
= ̃︀𝑂(𝑛/𝜀)

2: 𝜂0 ← 1
3𝐿 ; 𝐶𝑘 = 3𝜂𝑘𝐿; 𝜏 ← 𝜏𝑘 = 𝜂𝑘/𝐶𝑘 = 1

3𝐿 .
3: 𝑇 ← ⌈log( 4𝑛 log(2𝑚𝑛)

𝜀 )/ log( 1
1−𝜏 )⌉ ≤ ⌈3𝐿 log( 4𝑛 log(2𝑚𝑛)

𝜀 )⌉ = ̃︀𝑂(𝑛/𝜀)

4: 𝑥(0) ← 𝑦(0) ← 𝑧(0) ← −𝜔1𝑛
5: for 𝑘 = 1 to 𝑇 do
6: 𝜂𝑘 ← 𝐶𝑘 − 𝐶𝑘−1 = 1

1−𝜏 𝜂𝑘−1

7: 𝑥(𝑘) ← 𝜏𝑧(𝑘−1) + (1− 𝜏)𝑦(𝑘−1)

8: 𝑧(𝑘) ← arg min𝑧∈𝐵
{︀

1
2𝜔‖𝑧 − 𝑧

(𝑘−1)‖22 + ⟨𝜂𝑘∇𝑓𝑟(𝑥(𝑘)), 𝑧⟩
}︀

◇Mirror descent step
9: 𝑦(𝑘) ← 𝑥(𝑘) + 1

𝜂𝑘𝐿
(𝑧(𝑘) − 𝑧(𝑘−1)) ◇ Gradient descent step

10: end for
11: return �̄� def

= exp(𝑦(𝑇 ))/(1 + 𝜀/𝑛)

Output: 𝑓(�̄�)− 𝑓(𝑥*) ≤ 𝜀 and �̄� is feasible, i.e., 𝐴�̄� ≤ 1. The total number of iterations is ̃︀𝑂(𝑛/𝜀)
to obtain an 𝑂(𝜀)-approximate solution.

2.1 Coupling Mirror Descent and Gradient Descent

We first prove a lemma that shows we can compensate for the regret coming from mirror descent as
well as for the rest of the regret. Note the total weighted instantaneous regret ⟨𝜂𝑘∇𝑓(𝑥(𝑘)), 𝑧(𝑘−1)−𝑢⟩
is bounded by the left hand side of (5) up to a difference of potential functions, by Lemma 2.2. This is
a critical part of the analysis: using the truncated gradient for mirror descent makes its corresponding
regret not to depend on the smoothness constant, but there is a remaining regret that, crucially, can be
compensated by our strong descent condition.

Lemma 2.4. [↓] Let 𝐶𝑘
def
= 3𝜂𝑘𝐿, and let 𝜈(𝑘) def

= ∇𝑓𝑟(𝑥(𝑘))−∇𝑓𝑟(𝑥(𝑘)) ∈ [0,∞)𝑛. For all 𝑢 ∈ 𝐵,
we have

⟨𝜂𝑘𝜈(𝑘), 𝑧(𝑘−1) − 𝑢⟩+ 𝜂2𝑘𝐿⟨∇𝑓𝑟(𝑥(𝑘)), 𝑥(𝑘) − 𝑦(𝑘)⟩ ≤ 𝐶𝑘(𝑓𝑟(𝑥
(𝑘))− 𝑓𝑟(𝑦(𝑘))). (5)
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With these tools at hand, we can now use a linear coupling argument to establish an accelerated
convergence rate. Note that the algorithm takes the simple form of iterating a mirror descent step,
gradient descent step and a coupling, after a careful choice of parameters. All of which depend on
known quantities.
Theorem 2.5. [↓] Let 𝜀 ≤ 𝑛/2 and let 𝑥* be the solution to (1FP) and let 𝑥*𝑟 be the minimizer of
(1FP-primalReg). Algorithm 1 computes a point 𝑦(𝑇 ) ∈ 𝐵 such that 𝑓𝑟(𝑦(𝑇 )) − 𝑓𝑟(𝑥*𝑟) ≤ 𝜀 in a
number of iterations 𝑇 = ̃︀𝑂(𝑛/𝜀). Besides, �̄� def

= exp(𝑦(𝑇 ))/(1 + 𝜀/𝑛) is a feasible point of (1FP),
i.e., 𝐴�̄� ≤ 1𝑚, such that 𝑓(𝑥*)− 𝑓(�̄�) ≤ 5𝜀 = 𝑂(𝜀).

3 Optimizing the dual problem

In this section, we reduce the dual problem (1FP-Dual) to the feasibility problem of a packing LP,
which we call the proxy problem. Then, we show how we can use the PST framework [PST95] to
approximately solving the proxy. Our algorithm relies on a carefully built geometric oracle whose
width parameters can be guaranteed to decrease with the optimality gap. We perform a sequence of
restarts, and after each of them we can guarantee lower oracle width. This allows for reducing the
overall complexity.

3.1 The dual 1-fair packing problem as a feasibility packing LP

Let 𝒫 def
= {𝑥 ∈ R𝑛≥0 : 𝐴𝑥 ≤ 1𝑚} be the feasible region of the primal problem (1FP). In this section,

we identify (non-negative) covering constraints of the form ⟨ℎ, 𝑥⟩ ≤ 1 with vector ℎ ∈ R𝑛≥0. Recall
we assume without loss of generality that 𝐴 satisfies (1), that is, the maximum entry of each column
is 1. This implies that 𝑒𝑖 ∈ 𝒫 for all 𝑖 ∈ [𝑛], and 𝒫 ⊆ [0, 1]𝑛. For this reason, we also assume in this
section and without loss of generality that 𝐴 contains the constraints {𝑒𝑖}𝑛𝑖=1, i.e., 𝑥𝑖 ≤ 1, for 𝑖 ∈ [𝑛].
For convenience, we assume they are the first 𝑛 rows of 𝐴.

Let 𝜆* ∈ ∆𝑚 be an optimal solution of Problem (1FP-Dual) and let ℎ𝜆
* def

= 𝐴𝑇𝜆* ∈ R𝑛≥0.
By strong duality of the Lagrange dual, we can reconstruct the optimal primal solution as
𝑥* = (1/(𝑛ℎ𝜆

*

1 ), . . . , 1/(𝑛ℎ𝜆
*

𝑛 )). This motivates the definition of the centroid map:

𝑐(ℎ)
def
=

(︂
1

𝑛ℎ1
, . . . ,

1

𝑛ℎ𝑛

)︂
; 𝑐−1(𝑥)

def
=

(︂
1

𝑛𝑥1
, . . . ,

1

𝑛𝑥𝑛

)︂
,

where ℎ, 𝑥 ∈ R𝑛≥0 are constraints and points, respectively. Despite the two maps above being the
same function we distinguish between 𝑐 and 𝑐−1 to unambiguously refer to constraints or points. The
name of the centroid map is motivated by the fact that, for any constraint ℎ ∈ R𝑛≥0, the point 𝑐(ℎ)

is the geometric centroid of the simplex {𝑥 ∈ R𝑛≥0 : ⟨ℎ, 𝑥⟩ = 1}. Given a 𝜆 ∈ ∆𝑚, we define its

associated constraint ℎ𝜆 def
= 𝐴𝑇𝜆. In addition, we define the centroid 𝑝𝜆 def

= 𝑐(𝐴𝑇𝜆) = 𝑐(ℎ𝜆). Note
that we can efficiently compute ℎ𝜆, 𝑝𝜆 from 𝜆, and ℎ𝜆 from 𝑝𝜆 and viceversa. However, we cannot
obtain the coefficients 𝜆 efficiently from ℎ𝜆 or 𝑝𝜆, as this amounts to solving a linear program.

An important property is that ℎ𝜆
*

is the unique constraint of the form ℎ𝜆 such that 𝑐(ℎ𝜆) ∈ 𝒫 ,
for some 𝜆 ∈ ∆𝑚. It is the optimizer because if ℎ𝜆

*
has 𝑐(ℎ𝜆

*
) ∈ 𝒫 , then (𝑝𝜆

*
, 𝜆*) satisfies the

optimality conditions. It is unique because of strong convexity of − log(·); any other dual optimizer
�̄�* will have 𝐴𝑇𝜆* = 𝐴𝑇 �̄�*. The following lemma shows an approximate version of this property.
Lemma 3.1. [↓] Let ℎ𝜆 for 𝜆 ∈ ∆𝑚, such that 𝐴𝑝𝜆 ≤ (1 + 𝜀)1𝑚. Let 𝜆* be the minimizer of
Problem (1FP-Dual), of objective function 𝑔. Then, 𝑔(𝜆)− 𝑔(𝜆*) ≤ 𝑛 log(1 + 𝜀) ≤ 𝑛𝜀.

This lemma motivates the minimization of max𝑖∈[𝑚]⟨𝐴𝑖, 𝑐(𝐴𝑇𝜆)⟩ for 𝜆 ∈ ∆𝑚 as a proxy for
solving Problem (1FP-Dual). Furthermore, if we optimize over the set {𝑝𝜆 = 𝑐(𝐴𝑇𝜆) : 𝜆 ∈ ∆𝑚},
we end up with a feasibility problem in a packing LP. However, this set is not convex in general,
which is a requirement of the PST framework we intend to use. Fortunately, we can optimize
over a larger and convex set while preserving the minimizer. Indeed, define the sets of constraints
𝒟 def

= {𝐴𝑇𝜆 : 𝜆 ∈ ∆𝑚} = conv({𝐴1, . . . , 𝐴𝑚}) and 𝒟+ def
= {𝐴𝑇𝜆 − 𝜇 ≥ 0 : 𝜆 ∈ ∆𝑚, 𝜇 ∈

R𝑛≥0} = {ℎ ∈ R𝑛≥0 : ℎ ≤ ℎ𝜆, for ℎ𝜆 ∈ 𝒟}. For a constraint ℎ ∈ R≥0, we have by polyhedral
duality that ℎ ∈ 𝒟+ if and only if ⟨ℎ, 𝑥⟩ ≤ 1 for all 𝑥 ∈ 𝒫 . In other words, 𝒟+ is exactly the set
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Figure 2: Left, the dual polytope 𝒟+ containing 𝒟. The centroid 𝑐(·) maps dual points (i.e.,
constraints) to primal points. Right, 𝒫 and the image of 𝒟 and 𝒟+ via 𝑐. Note 𝑐(𝒟+) ∩ 𝒫 is exactly
one point, which is also contained in 𝑐(𝒟). And note 𝑐(𝒟) can be non-convex, but 𝑐(𝒟+) is convex.

of positive constraints ⟨ℎ, 𝑥⟩ ≤ 1 with ℎ ∈ R𝑛≥0 that are feasible for 𝒫 . We can think about the
optimization of Problem (1FP-Dual) as

min
ℎ𝜆∈𝒟

{−
𝑛∑︁
𝑖=1

log(ℎ𝜆𝑖 )− 𝑛 log(𝑛)}
1
= min

ℎ∈𝒟+
{−

𝑛∑︁
𝑖=1

log(ℎ𝑖)− 𝑛 log(𝑛)},

where 1 comes from the following observation: since ℎ ∈ 𝒟+ if and only if there is ℎ𝜆 ∈ 𝒟 with
ℎ ≤ ℎ𝜆, and the expression −

∑︀𝑛
𝑖=1 log(ℎ𝑖) − 𝑛 log(𝑛) is strictly decreasing in every ℎ𝑖 then no

ℎ ∈ 𝒟+ ∖ 𝒟 could ever minimize the right hand side. Consequently, the minimizer of both problems
is the same. This results in the following proxy, motivated by Lemma 3.1:

min
𝑝∈𝑐(𝒟+)

{︁
𝑔(𝑝)

def
= max

𝑖∈[𝑚]
⟨𝐴𝑖, 𝑝⟩

}︁
. (1FPD-Proxy)

By Lemma 3.1, the optimizer of this problem must be 𝑝𝜆
*
. Note 𝑔(𝑝𝜆

*
) = 1 so we want a 𝑝 such

that 𝑔(𝑝) ≤ 1 + 𝜀/𝑛. We solve this as an approximate feasibility problem in a packing LP by using
the PST framework over 𝑐(𝒟+), which is convex, according to the following lemma.

Lemma 3.2. [↓] Let 𝑝(1), . . . , 𝑝(𝑘) be points in 𝑐(𝒟), and let 𝜁 ∈ ∆𝑘 be coefficients. Then, we have
𝑐(𝜁1𝑐

−1(𝑝(1)) + · · ·+ 𝜁𝑘𝑐
−1(𝑝(𝑘))) ≤ 𝜁1𝑝(1) + · · ·+ 𝜁𝑘𝑝

(𝑘). Consequently, 𝑐(𝒟+) is convex.

3.2 The PST algorithm

Plotkin, Shmoys, and Tardos designed a framework (PST) for solving LP [PST95]. This result was
improved by [AHK12] for the case of packing and covering LP. We can use this framework to solve
Problem (1FPD-Proxy) if we can provide a good feasibility oracle, as explained in the sequel. The
PST framework focuses on checking the feasibility of 𝐴𝑝 ≤ 1𝑚, with 𝑝 in a convex set 𝒳 . Then,
it obtains either a certificate of infeasibility of the problem or computes a point 𝑝 ∈ 𝒳 such that
𝐴𝑝 ≤ (1 + 𝜀)1𝑚, for some given 𝜀 > 0. The PST framework works by calling an oracle which
solves the simpler feasibility problem of finding

𝑝 ∈ 𝒳 such that ⟨𝐴𝑇Λ, 𝑝⟩ ≤ 1, (6)
for some distribution Λ ∈ ∆𝑚. That is, given a single constraint ℎΛ, written as a convex combination
of the constraints defined by 𝐴, the query asks for a point 𝑝 ∈ 𝒳 that satisfies the constraint. In
our case, we apply the framework to 𝒳 = 𝑐(𝒟+) to find a point 𝑝 ∈ 𝑐(𝒟+) with 𝐴𝑝 ≤ (1 + 𝜀)1𝑚.
We can apply PST because 𝑐(𝒟+) is convex. Our oracle subproblems are always solvable because
𝑝𝜆

* ∈ 𝒫 satisfies them all. We use the following formulation of the PST and multiplicative weights
(MW) algorithms for packing LP, which is a slight variation of [AHK12]. The MW algorithm and its
guarantees are presented in Lemma C.1.
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Algorithm 2 Optimization of the dual of 1-fair packing with oracle O

Input: Matrix 𝐴 ∈ℳ𝑚×𝑛(R≥0) normalized as in (1). Accuracy 𝜀 ∈ (0, (𝑛− 1)𝑛].
1: �̄�(0) ← concat(1𝑛/𝑛, 0𝑚−𝑛) ∈ ∆𝑚; 𝜀−1 = 𝑛− 1 ◇ 𝑝�̄�(𝑡)

is an 𝜀𝑡−1-minimizer of 𝑔

2: for 𝑡 = 0 to 𝑇 def
= max{0, ⌈log2(2/(𝜀/𝑛))⌉} do

3: 𝐼𝑡 ← {𝑖 ∈ [𝑚] : ⟨𝐴𝑖, 𝑝�̄�
(𝑡)⟩ ≥ 1+𝜀𝑡−1

1+2𝜀𝑡−1𝑛+
√

2𝜀𝑡−1𝑛
} ◇ Remove redundant constraints

4: if 𝑡 is 0 then 𝜀𝑡 ← max{2, 𝜀/𝑛} else 𝜀𝑡 ← 𝜀𝑡−1/2 ◇ Next target accuracy
5: Λ(1) ← 1|𝐼𝑡| ◇ Restart MW
6: for 𝑘 = 1 to 𝐾𝑡

def
= 32𝜏𝜀𝑡−1

𝜎𝜀𝑡−1
log(|𝐼𝑡|)/𝜀2𝑡 = ̃︀𝑂(𝑛/𝜀𝑡) do

7: 𝜆(𝑘), 𝑝𝜆
(𝑘) ← O(query Λ(𝑘)/‖Λ(𝑘)‖1, current solution �̄�(𝑡), index set 𝐼𝑡) ∈ (∆𝑚, 𝑐(𝒟))

8: ℓ(𝑘) ← 1|𝐼𝑡| −𝐴𝐼𝑡𝑝
𝜆(𝑘)

9: Λ(𝑘+1) ← Λ(𝑘)⊙(1|𝐼𝑡| − (𝜀𝑡/(4𝜏𝜀𝑡−1
𝜎𝜀𝑡−1

)) · ℓ(𝑘)) ◇MW step
10: end for
11: �̄�(𝑡+1) ← 1

𝐾𝑡

∑︀𝐾𝑡

𝑘=1 𝜆
(𝑘)

12: end for
13: return �̄� def

= �̄�(𝑇+1)

Output: 𝐴𝑝�̄� ≤ (1 + 𝜀/𝑛)1𝑚, that is, 𝑔(𝑝�̄�) ≤ 1 + 𝜀/𝑛. Hence 𝑔(�̄�)− 𝑔(𝜆*) ≤ 𝜀.

Lemma 3.3 (PST guarantee). [↓] Let 𝜎, 𝜏 ∈ R>0. For a target accuracy 𝜀 ∈ (0, 4 min{𝜎, 𝜏}], run
the MW algorithm of Lemma C.1 with 𝛿 = 𝜀/2, losses ℓ(𝑘) def

= 1𝑚−𝐴𝑝(𝑘) assumed to be in [−𝜎, 𝜏 ]𝑚,
where 𝑝(𝑘) is the point the oracle outputs at iteration 𝑘 when the constraint that is queried is given
by 𝐴𝑇 (Λ(𝑘)/‖Λ(𝑘)‖1), and where Λ(𝑘) are the weights computed by the MW algorithm. Then, after
𝐾 = 32𝜎𝜏 log(𝑚)

𝜀2 iterations, we obtain a solution 𝑝 def
= 1

𝐾

∑︀𝐾
𝑘=1 𝑝

(𝑘) that satisfies 𝑔(𝑝) ≤ 1 + 𝜀.

In order to give a solution of Problem (1FP-Dual), we are also interested in recovering some 𝜆 ∈ ∆𝑚

such that 𝑔(𝑝𝜆) is small. Assume the oracle returns a point 𝑝(𝑘) = 𝑝𝜆
(𝑘)

for some 𝜆(𝑘) it can also
provide. Then, even if 𝑝 ∈ 𝒟+ ∖ 𝒟, we have by Lemma 3.2 that �̄� def

= 1
𝐾

∑︀𝐾
𝑘=1 𝜆

(𝑘) defines a point
𝑝�̄� ∈ 𝒟 such that 𝑝�̄� ≤ 𝑝. Hence 𝑔(𝑝�̄�) ≤ 𝑔(𝑝) ≤ 1 + 𝜀, so �̄� can be used as our dual solution.

Algorithm 3 Feasibility oracle O

Input: An approximate solution 𝑠 def
= 𝐴𝑇𝜆(𝑠), 𝜆(𝑠) ∈ ∆𝑚, 𝑔(𝑐(𝑠)) ≤ 1 + 𝛿. Query constraint

𝑞 = 𝐴𝑇𝜆(𝑞), 𝜆(𝑞) ∈ ∆𝑚. Precision parameter 1 < 𝜔 ≤ 2, default value 𝜔 = 2. Index set of
non-redundant constraints 𝐼 = {𝑖 ∈ [𝑚] : ⟨𝐴𝑖, 𝑐(𝑠)⟩ ≥ 1+𝛿

1+𝜔𝛿𝑛+
√
𝜔𝛿𝑛
}.

Output: 𝜆(𝑜) ∈ ∆𝑚 and point 𝑜 def
= 𝑐(𝐴𝑇𝜆(𝑜)) ∈ 𝑐(𝒟) such that

1. 𝑜 is covered by 𝑞, i.e., ⟨𝑞, 𝑜⟩ ≤ 1.
2. If 𝑖 ∈ 𝐼 then ⟨𝐴𝑖, 𝑜⟩ ∈ [1−𝜏 , 1+𝜎] where 𝜎 = min(

√
𝜔𝛿𝑛+𝜔𝛿𝑛, 1+𝜔𝛿1+𝛿 max𝑖∈[𝑛] 𝑠

−1
𝑖 −1),

𝜏 = min(3
√
𝜔𝛿𝑛, 1).

3. It satisfies all redundant constraints, i.e., ⟨𝐴𝑖, 𝑜⟩ ≤ 1, if 𝑖 ∈ [𝑚] ∖ 𝐼 .

1: if ⟨𝑠, 𝑐(𝑞)⟩ ≤ 1+𝜔𝛿
1+𝛿 then return 𝜆(𝑜) = 𝜆(𝑞), 𝑜 = 𝑐(𝑞)

2: else if ⟨𝑞, 𝑐(𝑠)⟩ ≤ 1 then return 𝜆(𝑜) = 𝜆(𝑠), 𝑜 = 𝑐(𝑠)
3: else Find 𝜇 ∈ (0, 1) s.t. ⟨𝑠, 𝑐((1− 𝜇)𝑠 + 𝜇𝑞)⟩ ∈ (1, 1+𝜔𝛿1+𝛿 ) via the bisection method
4: end if
5: return 𝜆(𝑜) = (1− 𝜇)𝜆(𝑠) + 𝜇𝜆(𝑞), 𝑜 = 𝑐((1− 𝜇)𝑠 + 𝜇𝑞)

Thus our task is to construct an oracle with good enough 𝜎 and 𝜏 , which are called the width
parameters of the oracle. We also need to make sure that 𝜀 ≤ 4 min{𝜎, 𝜏}, and that we can output
a point 𝑝𝜆 in 𝒟, and a corresponding 𝜆. Regardless, this algorithm runs in ̃︀𝑂(𝜎𝜏/𝜀2) iterations,
which is slower than what we aim for, for constant 𝜎 and 𝜏 . Our approach to obtain a fast algorithm
is to design an adaptive feasibility oracle. We provide our best solution �̄�(𝑡) to the oracle, which
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satisfies 𝑔(𝑝�̄�
(𝑡)

) ≤ 1 + 𝛿, for some 𝛿 > 0. Given such a 𝛿-approximate solution we identify a set of
indices 𝐼𝑡 ⊆ [𝑛] such that the constraints {𝐴𝑖, 𝑖 ̸∈ 𝐼𝑡} are redundant, in the sense that the oracle is
guaranteed to return points satisfying them even if they are removed from the problem. We remove
these constraints since they would yield large values of 𝜏 . Hence, we can run our MW algorithm with
the remaining |𝐼𝑡| constraints. Denote 𝐴𝐼𝑡 the matrix that has {𝐴𝑖 : 𝑖 ∈ 𝐼𝑡} as rows, in increasing
order of 𝑖. In this case if Λ ∈ ∆|𝐼𝑡|, we denote ℎΛ = 𝐴𝑇𝐼𝑡Λ and 𝑝Λ = 𝑐(𝐴𝑇𝐼𝑡Λ) accordingly. Our

oracle, when given a query ℎΛ, uses both constraints ℎΛ and ℎ�̄�
(𝑡)

to return a point 𝑝 satisfying the
oracle condition (6) and such that the loss 1|𝐼𝑡| −𝐴𝐼𝑡𝑝 is in [−𝜎𝛿, 𝜏𝛿]|𝐼𝑡|, with

𝜎𝛿
def
=

{︃√
2𝛿𝑛+ 2𝛿𝑛 if 𝛿 ≤ 2

1+2𝛿
1+𝛿 max𝑖∈[𝑛]{1/ℎ�̄�

(𝑡)

𝑖 } − 1 if 𝛿 > 2
, 𝜏𝛿

def
= min{3

√
2𝛿𝑛, 1}. (7)

In fact, 𝜎𝛿 can be defined as the minimum of its two expressions above, regardless of the value of 𝛿.
But we shall use this definition for our algorithm. In the next section, we present the construction and
analysis of such an oracle and the set 𝐼𝑡. We observe that, because the parameters depend on 𝛿, we
can restart the MW algorithm, and run it in several stages, indexed by 𝑡 = 0, . . . , 𝑇 . This allows for
incrementally reducing the width parameters and obtaining a better overall complexity, as we prove
in the following theorem.
Theorem 3.4. [↓] Let 𝜀 ∈ (0, 𝑛(𝑛− 1)]. Suppose we have a feasibility oracle O satisfying (6) and
(7), when we filter constraints according to Algorithm 2. Then, Algorithm 2 computes, in ̃︀𝑂(𝑛2/𝜀)

iterations, a point �̄� which is an 𝜀-minimizer of 𝑔. Moreover, 𝑝�̄� is an (𝜀/𝑛)-minimizer of 𝑔.

Figure 3: The lens ℒ𝛿(𝑣) given by a feasible solution 𝑠, for 𝜔 = 1. In the actual algorithm, we have
𝜔 > 1, which defines a larger set in which the affine part is translated upwards.

3.3 The PST oracle and the redundant constraints

In order to give a fast solution for Problem (1FPD-Proxy), we want to design an adaptive oracle. That
is, it should satisfy (6), and it should output better points if it already knows a good approximate
solution. Generically, assume that the oracle has access to a feasible constraint 𝑠 def

= 𝐴𝑇𝜆(𝑠) ∈ 𝒟,
with 𝜆(𝑠) ∈ ∆𝑚 satisfying 𝑝𝜆

(𝑠)

= 𝑐(𝑠) is a point with 𝑔(𝑝𝜆
(𝑠)

) ≤ 1 + 𝛿. In other words, 𝑐(𝑠) is
a 𝛿-approximate solution to Problem (1FPD-Proxy). Let 𝑞 def

= 𝐴𝑇𝜆(𝑞) ∈ 𝒟, with 𝜆(𝑞) ∈ ∆𝑚 be a
query constraint. In Algorithm 2, 𝜆(𝑠) and 𝜆(𝑞) correspond to �̄�(𝑡) and Λ(𝑘)/‖Λ(𝑘)‖1 respectively,
where the latter is interpreted as having coefficients equal to zero for constraints 𝑖 ̸∈ 𝐼𝑡.
The main geometric idea is that by using the solution 𝑠, we can define a region whose size depends
on 𝛿 containing the optimum 𝑝𝜆

*
of Problem (1FPD-Proxy). We will guarantee the oracle returns

points in this region, which in turn means that the oracle returns points close to the optimum. We call
this geometric object the lens of a point:

ℒ𝜔𝛿(𝑣)
def
= {𝑥 ∈ R𝑛≥0 : ⟨𝑐−1(𝑥), 𝑣⟩ ≤ 1, ⟨𝑐−1(𝑣), 𝑥⟩ ≤ 1 + 𝜔𝛿},
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where 𝜔 ∈ (1, 2] is a parameter; we chose 𝜔 = 2 in the algorithm. We depict the lens in Figure 3
in Appendix C. We apply this definition to the point 𝑣 def

= 𝑐(𝑠)/(1 + 𝛿), which is in 𝒫 because
𝑔(𝑠) ≤ 1 + 𝛿 implies that 𝑐(𝑠)/(1 + 𝛿) ∈ 𝒫 .

We show in Lemma C.2 that, by using the bisection method, we can efficiently find a convex
combination (1− 𝜇)𝑠 + 𝜇𝑞 that will result in a constraint, whose centroid is the point 𝑜 we output. It
satisfies the first oracle condition, and is in the lens. Also, we can recover 𝜆(𝑜) as (1−𝜇)𝜆(𝑠) +𝜇𝜆(𝑞).

If the oracle can output a point 𝑜 in the lens, we will have low width parameters for the constraints
𝐴𝑖 that do not cover the lens, as we show in Proposition C.4. That is, for one such constraint 𝐴𝑖, the
corresponding loss is 1− ⟨𝐴𝑖, 𝑜⟩ ∈ [−𝜎, 𝜏 ]. The other constraints could be problematic in terms of
width parameters because ⟨𝐴𝑖, 𝑜⟩ could be much smaller than 1, forcing 𝜏 to be large. However, we
do not need to optimize over these constraints because 𝑔 ≥ 1, so these constraints do not contribute
to the max in its definition. This leads to the set of non-redundant constraints 𝐼 , which for efficiency
reasons, we relax to those indices of constraints 𝐴𝑖 that do not cover a box that contains the lens, cf.
Lemma C.3. We prove this is good enough in terms of the width parameters. The computation of 𝐼 ,
which is done before each restart phase, requires 𝑂(𝑁) operations and each query to the oracle takes
𝑂(𝑛 log( 𝑛

(𝜔−1)𝛿 + 𝑛
𝜔−1 )) operations, cf. Lemma C.2.
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