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Abstract

Most PAC-Bayesian bounds hold in the batch learning setting where data is col-
lected at once, prior to inference or prediction. This somewhat departs from many
contemporary learning problems where data streams are collected and the algo-
rithms must dynamically adjust. We prove new PAC-Bayesian bounds in this online
learning framework, leveraging an updated definition of regret, and we revisit clas-
sical PAC-Bayesian results with a batch-to-online conversion, extending their remit
to the case of dependent data. Our results hold for bounded losses, potentially
non-convex, paving the way to promising developments in online learning.

1 Introduction

Batch learning is somewhat the dominant learning paradigm in which we aim to design the best
predictor by collecting a training dataset which is then used for inference or prediction. Classical
algorithms such as SVMs [see Cristianini et al., 2000, among many others] or feedforward neural
networks [Svozil et al., 1997] are popular examples of efficient batch learning. While the mathematics
of batch learning constitute a vivid and well understood research field, in practice this might not be
aligned with the way practitionners collect data, which can be sequential when too much information
is available at a given time (e.g. the number of micro-transactions made in finance on a daily basis).
Indeed batch learning is not designed to properly handle dynamic systems.

Online learning (OL) [Zinkevich, 2003, Shalev-Shwartz, 2012, Hazan, 2016] fills this gap by treating
data as a continuous stream with a potentially changing learning goal. OL has been studied with
convex optimisation tools and the celebrated notion of regret which measures the discrepancy between
the cumulative sum of losses for a specific algorithm at each datum and the optimal strategy. It led
to many fruitful results comparing the efficiency of prediction for optimisation algorithms such that
Online Gradient Descent (OGD), Online Newton Step through static regret [Zinkevich, 2003, Hazan
et al., 2007]. OL is flexible enough to incorporate external expert advice onto classical algorithms
with the optimistic point of view that such advices are useful for training [Rakhlin and Sridharan,
2013a,b] and then having optimistic regret bounds. Modern extensions also allow to compare to
moving strategies through dynamic regret [see e.g. Yang et al., 2016, Zhang et al., 2018, Zhao et al.,
2020]. However, this notion of regret has been challenged recently: for instance, Wintenberger [2021]
chose to control an expected cumulative loss through PAC inequalities in order to deal with the case
of stochastic loss functions.

Statements holding with arbitrarily large probability are widely used in learning and especially within
the PAC-Bayes theory. Since its emergence in the late 90s, the PAC-Bayes theory (see the seminal
works of Shawe-Taylor and Williamson, 1997, McAllester, 1998, 1999 and the recent surveys by
Guedj, 2019, Alquier, 2021) has been a powerful tool to obtain generalisation bounds and to derive
efficient learning algorithms. Classical PAC-Bayes generalisation bounds help to understand how
a learning algorithm may perform on future similar batches of data. More precisely, PAC-Bayes
learning exploits the Bayesian paradigm of explaining a learning problem through a meaningful
distribution over a space of candidate predictors [see e.g. Maurer, 2004, Catoni, 2007, Tolstikhin
and Seldin, 2013, Mhammedi et al., 2019]. An active line of research in PAC-Bayes learning is to
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overcome classical assumptions such that data-free prior, bounded loss, iid data [see Lever et al.,
2010, 2013, Alquier and Guedj, 2018, Holland, 2019, Rivasplata et al., 2020, Haddouche et al., 2021,
Guedj and Pujol, 2021] while remaining in a batch learning sprit. Finally, a pioneering line of work
led by [Seldin et al., 2012a,b] on PAC-Bayes learning for martingales and independently developed
by [Gerchinovitz, 2011, Foster et al., 2015, Li et al., 2018] boosted PAC-Bayes learning by providing
sparsity regret bound, adaptive regret bounds and online algorithms for clustering.

Our contributions. Our goal is to provide a general online framework for PAC-Bayesian learning.
Our main contribution (Thm. 2.3 in Sec. 2) is a general bound which is then used to derive several
online PAC-Bayesian results (as developed in Secs. 3 and 4). More specifically, we derive two types
of bounds, online PAC-Bayesian training and test bounds. Training bounds exhibit online procedures
while the test bound provide efficiency guarantees. We propose then several algorithms with their
associated training and test bounds as well as a short series of experiments to evaluate the consistency
of our online PAC-Bayesian approach. Our efficiency criterion is not the classical regret but an
expected cumulative loss close to the one of Wintenberger [2021]. More precisely, Sec. 3 propose a
stable yet time-consuming Gibbs-based algorithm, while Sec. 4 proposes time efficient yet volatile
algorithms. We emphasize that our PAC-Bayesian results only require a bounded loss to hold: no
assumption is made on the data distribution, priors can be data-dependent and we do not require any
convexity assumption on the loss, as commonly assumed in the OL framework.

Outline. Sec. 2 introduces the theoretical framework as well as our main result. Sec. 3 presents an
online PAC-Bayesian algorithm and draws links between PAC-Bayes and OL results. Sec. 4 details
online PAC-Bayesian disintegrated procedures with reduced computational time and Sec. 5 gathers
supporting experiments. We include reminders on OL and PAC-Bayes in Appendixes A.1 and C.
Appendix B provide disucssion about our main result. All proofs are deferred to Appendix D.

2 An online PAC-Bayesian bound

We establish a novel PAC-Bayesian theorem (which in turn will be particularised in Sec. 3) which
overcomes the classical limitation of data-independent prior and iid data. We call our main result
an online PAC-Bayesian bound as it allows to consider a sequence of priors which may depend on
the past and a sequence of posteriors that can dynamically evolve as well. Indeed, we follow the
online learning paradigm which considers a continous stream of data that the algorithm has to process
on the fly, adjusting its outputs at each time step w.r.t. the arrival of new data and the past. In the
PAC-Bayesian framework, this paradigm translates as follows: from an initial (still data independent)
prior Q1 = P and a data sample S = (z1, ..., zm), we design a sequence of posterior (Qi)1im

where Qi = f(Q1, ..., Qi�1, zi).

Framework. Consider a data space Z (which can be only inputs or pairs of inputs/outputs). We
fix an integer m > 0 and our data sample S 2 Z

m is drawn from an unknown distribution µ. We
do not make any assumption on µ. We set a sequence of priors, starting with P1 = P a data-free
distribution and (Pi)i�2 such that for each i, Pi is Fi�1 measurable where (Fi)i�0 is an adapted
filtration to S. For P,Q 2 M1 (H), the notation P ⌧ Q indicates that Q is absolutely continuous
wrt P (i.e. Q(A) = 0 if P (A) = 0 for measurable A ⇢ H). We also denote by Qi our sequence of
candidate posteriors. There is no restriction on what Qi could be. In what follows we fix a filtration
(Fi)i�0 and we denote by KL the Kullback-Leibler divergence between two distributions.

We consider a predictor space H and a loss funtion ` : H ⇥ Z ! R
+ bounded by a real constant

K > 0. This loss defines the (potentially moving) learning objective. We denote by M1(H) the set
of all probability distributions on H. We now introduce the notion of stochastic kernel [Rivasplata
et al., 2020] which formalise properly data-dependent measures within the PAC-Bayes framework.
First, for a fixed predictor space H, we set ⌃H to be the considered �-algebra on H.
Definition 2.1 (Stochastic kernels). A stochastic kernel from S = Z

m to H is defined as a mapping
Q : Zm ⇥ ⌃H ! [0; 1] where

• For any B 2 ⌃H, the function S = (z1, ..., zm) 7! Q(S,B) is measurable,

• For any S 2 Z
m, the function B 7! Q(S,B) is a probability measure over H.

We denote by Stoch(S,H) the set of all stochastic kernels from S to H and for a fixed S, we set
QS := Q(S, .) the data-dependent prior associated to the sample S through Q.
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From now, to refer to a distribution QS depending on a dataset S, we introduce a stochastic kernel
Q(., .) such that QS = Q(S, .). Note that this notation is perfectly suited to the case when QS is
obtained from an algorithmic procedure A. In this case the stochastic kernel Q of interest is the
learning algorithm A. We use this notion to characterise our sequence of priors.
Definition 2.2. We say that a sequence of stochastic kernels (Pi)i=1..m is an online predictive
sequence if (i) for all i � 1, S 2 Z

m
, Pi(S, .) is Fi�1 measurable and (ii) for all i � 2, Pi(S, .) �

Pi�1(S, .).

Note that (ii) implies that for all i, Pi(S, .) � P1(S, .) with P1(S, .) a data-free measure (yet a
classical prior in the PAC-Bayesian theory).

We can now state our main result.
Theorem 2.3. For any distribution µ over Zm, any � > 0 and any online predictive sequence (used as
priors) (Pi), for any sequence of stochastic kernels (Qi) we have with probability 1�� over the sample
S ⇠ µ, the following, holding for the data-dependent measures Qi,S := Qi(S, .), Pi,S := Pi(S, .) :

mX

i=1

Ehi⇠Qi,S [E[`(hi, zi) | Fi�1]] 
mX

i=1

Ehi⇠Qi,S [`(hi, zi)]+
KL(Qi,SkPi,S)

�
+
�mK

2

2
+
log(1/�)

�
.

Remark 2.4. For the sake of clarity, we assimilate in what follows the stochastic kernels Qi, Pi

to the data-dependent distributions Qi(S, .), Pi(S, .). Then, an online predictive sequence is also
assimilated to a sequence of data-dependent distributions. Concretely this leads to the switch of
notation Qi,S ! Qi in Thm. 2.3. The reason of this switch is that, even though stochastic kernel
is the right theoretical structure to state our main result, we consider in Secs. 3 and 4 practical
algorithmic extensions which focus only on data-dependent distributions, hence the need to alleviate
our notations.

The proof is deferred to Appendix D.1. See Appendix B for context and discussions.

A batch to online conversion. First, we remark that our bound slightly exceeds the OL framework:
indeed, it would require our posterior sequence to be an online predictive sequence as well, which
is not the case here (for any i, the distribution Qi,S can depend on the whole dataset ). This is a
consequence of our proof method (see Appendix D.1), which is classically denoted as a "batch to
online" conversion (in opposition to the "online to batch" procedures as in Dekel and Singer, 2005). In
other words, we exploited PAC-Bayesian tools designed for a fixed batch of data to obtain a dynamic
result. This is why we refer to our bound as online as it allows to consider sequences of priors and
posteriors that can dynamically evolve.

Analysis of the different terms in the bound. Our PAC-Bayesian bound formally differs in many
points from the classical ones. On the left-hand side of the bound, the sum of the averaged expected
loss conditioned to the past appears. Having such a sum of expectations instead of a single one
is necessary to assess the quality of all our predictions. Indeed, because data may be dependent,
one can not consider a single expectation as in the iid case. We also stress that taking an online
predictive sequence as priors leads to control losses conditioned to the past, which differs from
classical PAC-Bayes results designed to bound the expected loss. This term, while original in the
PAC-Bayesian framework (to the best of our knowledge) recently appeared (in a modified form) in
Wintenberger [2021, Prop 3]. See Appendix B.2 for further disucssions.

On the right hand-side of the bound, online counterparts of classical PAC-Bayes terms appear. At
time i, the measure Qi (i.e. Qi,S according to Remark 2.4) has a tradeoff to achieve between an
overfitted prediction of zi (the case Qi = �zi where � is a Dirac measure) and a too weak impact of
the new data with regards to our prior knowledge (the case Qi = Pi). The quantity � > 0 can be
seen as a regulariser to adjust the relative impact of both terms.

Influence of �. The quantity � also plays a crucial role on the bound as it is involved in an explicit
tradeoff between the KL terms, the confidence term log(1/�) and the residual term mK

2
/2. This

idea of seeing � as a trading parameter is not new [Thiemann et al., 2017, Germain et al., 2016].
However, the results from Thiemann et al. [2017] stand w.p. 1� � for any � while ours and the ones
from Germain et al. [2016] hold for any � w.p. 1� � which is weaker and implies to discretise R

+

onto a grid to estimate the optimal �.

We now move on to the design of online PAC-Bayesian algorithms.

3



3 An online PAC-Bayesian procedure

OL algorithms (we refer to Hazan, 2016 an introduction to the field) are producing sequences of
predictors by progressively updating the considered predictor (see Appendix A.1 for an example).
Recall that, in the OL framework, an algorithm outputs at time i a predictor which is Fi�1-measurable.
Here, our goal is to design an online procedure derived from Thm. 2.3 which outputs an online
predictive sequence (which is assimilated, according to Remark 2.4, to a sequence of distributions).

Online PAC-Bayesian (OPB) training bound. We state a corollary of our main result which
paves the way to an online algorithm. This constructive procedure motivates the name Online
PAC-Bayesian training bound (OPBTRAIN in short).
Corollary 3.1 (OPBTRAIN). For any distribution µ over Zm, any � > 0 and any online predictive
sequences Q̂, P , the following holds with probability 1� � over the sample S ⇠ µ :

mX

i=1

Ehi⇠Q̂i+1
[E[`(hi, zi) | Fi�1]] 

mX

i=1

Ehi⇠Q̂i+1
[`(hi, zi)] +

KL(Q̂i+1kPi)

�
+

�mK
2

2
+

log(1/�)

�
.

Here, � is seen as a scale parameter as precised below. The proof consists in applying Thm. 2.3 with
for all i, Qi = Q̂i+1 and Pi. Note that in this case, our posterior sequence is an online predictive
sequence in order to fit with the OL framework.

Corollary 3.1 suggests to design Q̂ as follows, assuming we have drawn a dataset S = {z1, ..., zm},
fixed a scale parameter � > 0 and an online predictive sequence Pi:

Q̂1 = P1, 8i � 1 Q̂i+1 = argmin
Q2M1(H)

Ehi⇠Q [`(hi, zi)] +
KL(QkPi)

�
(1)

which leads to the explicit formulation

dQ̂i+1

dPi
(h) =

exp (��`(h, zi))

Eh⇠Pi [exp (��`(h, zi))]
. (2)

Thus, the formulation of Eq. (2), which has been highlighted by Catoni [2003, Sec. 5.1] shows
that our online procedure produces Gibbs posteriors. So, PAC-Bayesian theory provides sound
justification for the somewhat intuitive online procedure in Eq. (1): at time i, we adjust our new
measure Q̂i+1 by optimising a tradeoff between the impact of the newly arrived data zi and the one
of prior knowledge Q̂i.

Notice that Q̂ is an online predictive sequence: Q̂i is Fi�1-measurable for all i as it depends only on
Q̂i�1 and zi�1. Furthermore, one has Q̂i � Q̂i�1 for all i as Q̂i is defined as an argmin and the KL
term is finite if and only it is absolutely continuous w.r.t. Q̂i�1.
Remark 3.2. In Corollary 3.1, while the right hand-side is the reason we considered Eq. (1), the
left hand side still needs to be analysed. It expresses how the posterior Q̂i+1 (designed from Q̂i, zi)
generalises well on average to any new draw of zi. More precisely, this term measures how much the
training of Q̂i+1 is overfitting on zi. A low value of it ensures our online predictive sequence, which
is obtained from a single dataset, is robust to the randomness of S, hence the interest of optimising
the right hand side of the bound. This is a supplementary reason we refer to Corollary 3.1 as an
OPBTRAIN bound as it provide robustness guarantees for our training.

Online PAC-Bayesian (OPB) test bound. However, Corollary 3.1 does not say if Q̂i+1 will produce
good predictors to minimise `(., zi+1), which is the objective of Q̂i+1 in the OL framework (we only
have access to the past to predict the future). We then need to provide an Online PAC-Bayesian (OPB)
test bound (OPBTEST bound) to quantify our prediction’s accuracy. We now derive an OPBTEST
bound from Thm. 2.3.
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Corollary 3.3 (OPBTEST). . For any distribution µ over Zm, any � > 0, and any online predictive
sequence (Q̂i), the following holds with probability 1� � over the sample S ⇠ µ:

mX

i=1

Ehi⇠Q̂i
[E[`(hi, zi) | Fi�1]] 

mX

i=1

Ehi⇠Q̂i
[`(hi, zi)] +

�mK
2

2
+

log(1/�)

�
.

Optimising in � gives � =
p

2 log(1/�)/mK2 and ensure that:
mX

i=1

Ehi⇠Q̂i
[E[`(hi, zi) | Fi�1]] 

mX

i=1

Ehi⇠Q̂i
[`(hi, zi)] +O

⇣p
log(1/�)K2m

⌘
.

The proof consists in applying Thm. 2.3 with for all i, Qi = Q̂i = Pi.

Corollary 3.3 quantifies how efficient will our predictions be. Indeed, the left hand side of this bound
relates for all i, how good Q̂i is to predict zi (on average) which is what Q̂i is designed for. Note that
here, the involved � can differ from the scale parameter of Eq. (1), it is now a way to compensate for
the tradeoff between the two last terms of the bound. The strength of this bound is that since Q̂ is an
online predictive sequence, the Kullback-Leibler terms vanished, leaving terms depending only on
hyperparameters.

Links with previous approaches

We now present a specific case of Corollary 3.1 where we choose as priors the online predictive
sequence Q̂ (i.e. in Thm. 2.3, we choose Qi = Q̂i+1, Pi = Q̂i). The reason we focus on this specific
case is that it enables to build strong links between PAC-Bayes and OL.

We then adapt our OPBTRAIN bound (Corollary 3.1). The online procedure becomes:

Q̂1 = P, 8i � 1 Q̂i+1 = argminQ Ehi⇠Q [`(hi, zi)] +
KL(QkQ̂i)

�
, (3)

which leads to the explicit formulation

dQ̂i+1

dQ̂i

(h) =
exp (��`(h, zi))

Eh⇠Q̂i
[exp (��`(h, zi))]

.

Links with classical PAC-Bayesian bounds. We denote that the optimal predictor in this
case is such that at any time i, dQ̂i+1(h) / exp(��`(h, zi))dQ̂i(h) hence dQ̂m+1(h) /
exp (��

Pm
i=1 `(h, zi)) dQ̂1(h). One recognises, up to a multiplicative constant, the optimised

predictor of Catoni [2007, Th 1.2.6] which solves argminQ Eh⇠Q [ 1m
Pm

i=1 `(h, zi)] +
KL(QkQ̂1)

� ,
thus one sees that in this case, the output of our online procedure after m steps coincides with Catoni’s
output. This shows consistency of our general procedure which recovers classical result within an
online framework: when too many data are available, treating data sequentially until time m leads to
the same Gibbs posterior than if we were treating the whole dataset as a batch.

Analogy with Online Gradient Descent (OGD). We propose an analogy between the procedure
Eq. (3) and the celebrated OGD algorithm (see Appendix A.1 for a recap). First we remark that
our minimisation problem is equivalent to argminQ �Ehi⇠Q [`(hi, zi)] + KL(QkQ̂i). Then we
assume that for any i, Q̂i = N(m̂i, Id) with m̂i 2 R

d and we set Li(m̂i) = Ehi⇠Q̂i
[`(hi, zi)] . The

minimisation problem becomes: argminm̂ �Li(m̂) + 1
2km̂ � m̂ik2. And so using the first order

Taylor expansion, we use the approximation Li(m̂) ⇡ Li(m̂i) + hm̂� m̂i,rLi(m̂i)i which finally
transform our argmin into the following optimisation process: m̂i+1 = m̂i � �rLi(m̂i) which is
exactly OGD on the loss sequence Li. We draw an analogy between the scale parameter � and the
step size ⌘ in OGD. the KL term translates the influence of the previous point and the expected
loss gives the gradient. This analogy has been already exploited in Shalev-Shwartz [2012] where
they approximated Ehi⇠qµ [`(hi, zi)] := L̄i(µ) ⇡ µ

TrL̄i(µi) where µ is their considered online
predictive sequence.

Finally, we remark that the optimum rate in Corollary 3.3 is a O(
p
m) which is comparable to the

best rate of Shalev-Shwartz [2012, Eq (2.5)] (see proposition A.2).
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Comparison with previous work. We acknowledge that the procedure of Eq. (3) already appeared
in literature. Li et al. [2018, Alg. 1] propose a Gibbs procedure somewhat similar to ours, the main
difference being the addition of a surrogate of the true loss at each time step. Within the OL literature,
the idea of updating measures online has been recently studied for instance in Chérief-Abdellatif
et al. [2019]. More precisely, our procedure is similar to their Streaming Variational Bayes (SVB)
algorithm. A slight difference is that they approximated the expected loss similarly to Shalev-Shwartz
[2012]. The guarantees Chérief-Abdellatif et al. [2019] provided for SVB hold for Gaussian priors
and comes at the cost of additional constraints that do not allow to consider any aggregation strategies
contrary to what Corollary 3.1 propose. Their bounds are deterministic and are using tools and
assumptions from convex optimisation (such that convex expected losses) while ours are probabilistic
and are using measure theory tools which allow to relax these assumptions.

Strength of our result. We emphasize two points. First, to the best of our knowledge, Corollary 3.1
is the first bound which theoretically suggests Eq. (3) as a learning algorithm. Second, we stress
that Eq. (3) is a particular case of Corollary 3.1 and our result can lead to other fruitful routes. For
instance, we consider the idea of adding noise to our measures at each time step to avoid overfitting
(this idea has been used e.g. in Neelakantan et al., 2015 in the context of deep neural networks): if
our online predicitve sequence (Q̂i) can be defined through a sequence of parameter vectors µ̂, then
we can define Pi by adding a small noise on µ̂i and thus giving more freedom through stochasticity.

Thus, we see that our procedure led us to the use of the Gibbs posteriors of Catoni. However, in
practice, Gaussian distributions are preferred [e.g. Dziugaite and Roy, 2017, Rivasplata et al., 2019,
Perez-Ortiz et al., 2021b,a, Pérez-Ortiz et al., 2021]). That is why we focus next on new online
PAC-Bayesian algorithms involving Gaussian distributions.

4 Disintegrated online algorithms for Gaussian distributions.

We dig deeper in the field of disintegrated PAC-Bayesian bounds, originally explored by Catoni
[2007], Blanchard and Fleuret [2007], further studied by Alquier and Biau [2013], Guedj and Alquier
[2013] and recently developed by Rivasplata et al. [2020], Viallard et al. [2021] (see Appendix C for
a short presentation of the bound we adapted and used). The strength of the disintegrated approach is
that we have directly guarantees on the random draw of a single predictor, which avoids to consider
expectations over the predictor space. This fact is particularly significant in our work as the procedure
precised in Eq. (2), require the estimation of an exponential moment to be efficient, which may be
costful. We then show that disintegrated PAC-Bayesian bounds can be adapted to the OL framework,
and that they have the potential to generate proper online algorithms with weak computational cost
and sound efficiency guarantees.

Online PAC-Bayesian disintegrated (OPBD) training bounds. We present a general form for
online PAC-Bayes disintegrated (OPBD) training bounds. The terminology comes from the way we
craft those bounds: from PAC-Bayesian disintegrated bounds we use the same tools as in Thm. 2.3 to
create the first online PAC-Bayesian disintegrated bounds. OPBD training bounds have the following
form.

For any online predictive sequences Q̂, P , any � > 0 w.p. 1 � � over S ⇠ µ and (h1, ..., hm) ⇠
Q̂2 ⌦ ...⌦ Q̂m+1:

mX

i=1

E[`(hi, zi) | Fi�1] 
mX

i=1

`(hi, zi) + (hi, Q̂i+1, Pi) + �(m), (4)

with  ,� being real-valued functions.  controls the global behaviour of Qi+1 w.r.t. the Fi�1-
measurable prior Pi. If one has no dependency on hi this behaviour is global, otherwise it is local.
Note that those functions may depend on �, �. However, since they are fixed parameters, we do not
make these dependencies explicit. Similarly to Corollary 3.1, this kind of bound allows to derive
a learning algorithm (cf Algorithm 1) which outputs an online predicitve sequence Q̂. Finally we
draw (h1, ..., hm) ⇠ Q̂2 ⌦ ...⌦ Q̂m+1 (and not Q̂1 ⌦ ...⌦ Q̂m) since an OPBD bound is designed
to justify theoretically an OPBD procedure in the same way Corollary 3.1 allowed to justify Eq. (1).

Why focus on Gaussian measures? The reason is that a Gaussian variable h ⇠ N(w,�2Id) can
be written as h = w + " with " ⇠ N(0,�2Id), and this expression totally defines h (Id being the
identity matrix).
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A general OPBD algorithm for Gaussian measure with fixed variance We use an idea presented
in Viallard et al. [2021] which restrict the measure set to Gaussian on R

d with known and fixed
covariance matrix �

2Id. Then we present in Algorithm 1 a general algorithm (derived from an
OPBD training bound) for Gaussian measures with fixed variance which outputs a sequence of
gaussian Q̂i = N(ŵi,�

2Id) from a prior sequence Pi = N(w0
i ,�

2Id) where for each i, w0
i is Fi�1-

measurable. Because the variance is fixed, the distribution is uniquely defined by its mean, thus we
identify Q̂i and ŵi, Pi and w

0
i .

Algorithm 1: A general OPBD algorithm for Gaussian measures with fixed variance.
Parameters :Time m, scale parameter �
Initialisation :Variance �

2, Initial mean ŵ1 2 R
d, epoch m

1 for each iteration i in 1..m do
2 Observe zi, w

0
i and draw "i ⇠ N(0,�2Id)

3 Update:
ŵi+1 := argminw2Rd `(w + "i, zi) + (w + "i, w, w

0
i )

4 end
5 Return (ŵi)i=1..m+1

At each time i, Algorithm 1 requires the draw of "i ⇠ N(0,�2Id). Doing so, we generated the
randomness for our hi (because our bound holds for a single draw of (h1, .., hm) ⇠ Q̂2⌦ ...⌦Q̂m+1),
we then write hi = w + "i and we optimise w.r.t.  to find ŵi+1.

Bounds of interest. We present two possible choices of pairs ( ,�) derived from the disintegrated
results presented in Appendix C. Doing so, we explicit two ready-to-use declinations of Algorithm 1.
Corollary 4.1. For any distribution µ over Zm, any online predictive sequences of Gaussian measures
with fixed variance Q̂i = N(ŵi,�

2Id) and Pi = N(w0
i ,�

2Id), any � > 0, w.p. 1 � � over S ⇠ µ

and (hi = ŵi+1 + "i)i=1..m ⇠ Q̂2 ⌦ ...⌦ Q̂m+1, the bound of Eq. (4) holds for the two following
pairs  ,�:

 1(hi, ŵi+1, w
0
i ) =

1

�

✓
||ŵi+1 + "i � w

0
i ||2 � ||"||2

2�2

◆
�1(m) =

�mK
2

2
+

log(1/�)

�
, (5)

 2(hi, ŵi+1, w
0
i )) =

1

�

||ŵi+1 � w
0
i ||2

2�2
 2(m) = �mK

2 +
3 log(1/�)

2�
. (6)

Where the notation 1, 2 denote whether the functions have been derived from adapted theorems of
Rivasplata et al., 2020, Viallard et al., 2021 recalled in Appendix C We then can use algorithm 1 with
Eq. (5), Eq. (6).

Proof is deferred to Appendix D.2. Note that in Corollary 4.1, we identified Q̂i to ŵi and for the last
formula,  has no dependency on hi.

Comparison with Eq. (1). The main difference with Eq. (1) provided by the disintegrated framework
is that the optimisation route does not include an expected term within the optimisation objective.
The main advantage is a weaker computational cost when we restrict to Gaussian distributions. The
main weakness is a lack of stability as our algorithm now depends at time i on `(h+ "i, zi) so on "i

directly. We denote that Eq. (5) is less stable than Eq. (6) as it involves another dependency on "i

through  . The reason is that Rivasplata et al. [2020] proposed a bound involving a disintegrated KL
divergence while Viallard et al. [2021] proposed a result involving a Rényi divergence avoiding a
dependency on "i. We refer to Appendix C for a detailed statement of those properties.

Comparison with van der Hoeven et al. [2018]. Theorem 3 of van der Hoeven et al. [2018] recovers
OGD from the exponential weights algorithm by taking a sequence of moving distributions being
Gaussians with fixed variance which is exactly what we consider here. From these, they retrieve the
classical OGD algorithm as well as its classical convergence rate. Let us compare our results with
theirs.

First, if we fix a single step ⌘ in their bound and assume two traditional assumptions for OGD (a
finite diameter D of the convex set and an uniform bound G on the loss gradients), we recover
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for the OGD (greedy GD in van der Hoeven et al., 2018) a rate of D2

2�2⌘ + ⌘�2TG2

2 . This is, up to
constants and notation changes, exactly our  i (i 2 {1, 2}). Also, we notice a difference in the
way to use Gaussian distributions: Theorem 3 of van der Hoeven et al. [2018] is based on their
Lemma 1 which provides guarantees for the expected regret. This is a clear incentive to consider as
predictors the mean of the sucessive Gaussians of interest. On the contrary, Corollary 4.1 involves a
supplementary level of randomness by considering predictors hi drawn from our Gaussians. This
additional randomness appears in our optimisation process (algorithm 1). Finally, notice that van der
Hoeven et al. [2018] based their whole work on the use of a KL divergence while Corollary 4.1 not
only exploit a disintegrated KL ( 1) but also a Rényi ↵-divergence ( 2). Note that we propose a
result only for ↵ = 2 for the sake of space constraints but any other value of ↵ leads to another
optimisation objective to explore.

OPBD test bounds. Similarly to what we did in Sec. 3, we also provide OPBD test bounds to provide
efficiency guarantees for online predicitve sequences (e.g. the output of algorithm 1). Our proposed
bounds have the following general form.

For any online predictive sequence Q̂, any � > 0 w.p. 1�� over S and (h1, ..., hm) ⇠ Q̂1⌦ ...⌦Q̂m:
mX

i=1

E[`(hi, zi) | Fi�1] 
mX

i=1

`(hi, zi) + �(m), (7)

with � being a real-valued function(possibly dependent on �, � though it is not explicited here).

Note that our predictors (h1, ..., hm) are now drawn from Q̂1 ⌦ ...⌦ Q̂m. Thus, the left-hand side of
the bound considers a hi drawn from an Fi�1-measurable distribution evaluated on `(., zi): this is
effectively a measure of the prediction performance.

We now state a corollary which gives disintegrated guarantees for any online predicitve sequence.
Corollary 4.2. For any distribution µ over Zm, any � > 0, and any online predictive sequence (Q̂i),
the following holds with probability 1� � over the sample S ⇠ µ and the predictors (h1, ..., hm) ⇠
Q̂1 ⌦ ...⌦ Q̂m, the bound of Eq. (7) holds with :

�1(m) =
�mK

2

2
+

log(1/�)

�
, �2(m) = 2�mK

2 +
log(1/�)

�
.

Where the notation 1, 2 denote whether the functions have been derived from adapted theorems of
Rivasplata et al., 2020, Viallard et al., 2021 recalled in Appendix C. The optimised � gives in both
cases a O(

p
m log(1/�).

Proof is deferred to Appendix D.2.

5 Experiments

We adapt the experimental framework introduced in Chérief-Abdellatif et al. [2019, Sec.5] to our
algorithms (anonymised code available here). We conduct experiments on several real-life datasets, in
classification and linear regression. Our objective is twofold: check the convergence of our learning
methods and compare their efficiencies with classical algorithms. We first introduce our experimental
setup.

Algorithms. We consider four online methods of interest: the OPB algorithm of Eq. (3) which update
through time a Gibbs posterior. We instantiate it with two different priors Q̂1: a Gaussian distribution
and a Laplace one. We also implement Algorithm 1 with the functions  1, 2 from Corollary 4.1.
To assess efficiency, we implement the classical OGD (as described in Alg. 1 of Zinkevich, 2003)
and the SVB method of Chérief-Abdellatif et al. [2019].

Binary Classification. At each round i the learner receives a data point xi 2 R
d and predicts its

label yi 2 {�1,+1} using hxi, hii, with hi = Eh⇠Q̂i
[h] for OPB methods or hi being drawn under

Q̂i for OPBD methods. The adversary reveals the true value yi, then the learner suffers the loss
`(hi, zi) =

�
1� yih

T
i xi

�
+

with zi = (xi, yi) and a+ = a if a > 0 and a+ = 0 otherwise. This loss
is unbounded but can be thresholded.
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Figure 1: Averaged cumulative losses for all four considered datasets. ’Gibbs Gauss’ denotes OPB
with Gaussian Prior, ’Gibbs Laplace’ denotes OPB with Laplace prior. ’OPBD Riva’ denotes OPBD
with  1, ’OPBD Via’ denotes OPBD with  2.

Linear Regression. At each round i, the learner receives a set of features xi 2 R
d and predicts

yi 2 R using hxi, hii with hi = Eh⇠Q̂i
[h] for SVB and OPB methods or hi being drawn under Q̂i

for OPBD methods. Then the adversary reveals the true value yt and the learner suffers the loss
`(hi, zi) =

�
yi � h

T
i xi

�2 with zi = (xi, yi). This loss is unbounded but can be thresholded.

Datasets. We consider four real world dataset: two for classification (Breast Cancer and Pima
Indians), and two for regression (Boston Housing and California Housing). All datasets except the
Pima Indians have been directly extracted from sklearn [Pedregosa et al., 2011]. Breast Cancer
dataset [Street et al., 1993] is available here and comes from the UCI ML repository as well as the
Boston Housing dataset [Belsley et al., 2005] which can be obtained here. California Housing dataset
[Pace and Barry, 1997] comes from the StatLib repository and is available here. Finally, Pima Indians
dataset [Smith et al., 1988] has been recovered from this Kaggle repository. Note that we randomly
permuted the observations to avoid to learn irrelevant human ordering of data (such that date or label).

Parameter settings. We ran our experiments on a 2021 MacBookPro with an M1 chip and 16
Gb RAM. For OGD, the initialisation point is 0Rd and the values of the learning rates are set to
⌘ = 1/

p
m. For SVB, mean is initialised to 0Rd and covariance matrix to Diag(1). Step at time i is

⌘i = 0.1/
p
i. For both of the OPB algorithms with Gibbs posterior, we chose � = 1/m. As priors,

we took respectively a centered Gaussian vector with the covariance matrix Diag(�2) (� = 1.5)
and an iid vector following the standard Laplace distribution. For the OPBD algorithm with  1,
we chose � = 10�4

/m, the initial mean is 0Rd and our fixed covariance matrix is Diag(�2) with
� = 3.10�3. For the OPBD algorithm with  1, we chose � = 2.10�3

/m, the initial mean is 0Rd

and our covariance matrix is Diag(�2) with � = 10�2. The reason of those higher scale parameters
and variance is that  from Rivasplata et al. [2020] is more stochastic (yet unstable) than the one
Viallard et al. [2021].

Experimental results. For each dataset, we plot the evolution of the average cumulative lossPt
i=1 ` (hi, zi) /t as a function of the step t = 1, . . . ,m, where m is the dataset size and hi is the

decision made by the learner hi at step i. The results are gathered in Fig. 1

Empirical findings. OPB with Gaussian prior (’Gibbs Gauss’) outperforms OGD on all datasets
except California Housing (on which this method is not implemented ) while OPB with Laplace prior
(’Gibbs Laplace’) always fail w.r.t. OGD. OPB methods fail to compete with SVB on the Boston
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Housing dataset. OPBD methods compete with SVB on regression problems and clearly outperforms
OGD on classification tasks. OPBD with  2 (labeled as ’OPBD Via’ in Fig. 1) performs better on
the California Housing dataset while OPBD with  1 (labeled as ’OPBD Riva’) is more efficient on
the Boston Housing dataset. Both methods performs roughly equivalently on classification tasks.
This brief experimental validation shows the consistency of all our online procedures as we observe a
visible decrease of the cumulative losses through time. It particularly shows that OPBD procedures
improve on OGD on these dataset. We refer to Appendix E for additional table gathering the error
bars of our OPBD methods.

Why do we perform better than OGD? As stated in Sec. 4, OGD can be recovered as a Gaussian
approximation of the exponential weights algorithm (EWA). Thus, a legitimate question is why
do we perform better than OGD as our OPBD methods are also based on a Gaussian surrogate
of EWA? van der Hoeven et al. [2018] only used Gaussians distributions with fixed variance as a
technical tool when the considered predictors are the Gaussian means. In our work, we exploited
a richer characteristic of our distributions in the sense our predictors are points sampled from our
Gaussians and not only the means. This also has consequences in our learning algorithm as at time
i of our algorithm 1, our optimisation step involves a noise "i ⇠ N(0,�2I). Thus, we believe that
OPBD methods should perform at least as well as OGD. We write ’at least’ as we think that the
higher flexibility due to this additional level of randomness might result in slightly better empirical
performances, as seen on the few datasets in Fig. 1.

6 Conclusion

We establish links between Online Learning and PAC-Bayes. We show that PAC-bayesian bounds are
useful to derive new OL algorithms. We also prove sound theoretical guarantees for such algorithms.
We emphasise that all of our results stand for any general bounded loss, especially no convexity
assumption is needed. Having no convexity assumption on the loss paves the way to exciting future
practical studies, starting with Spiking Neural Network which is investigated in an online fashion (see
Lobo et al., 2020 for a recent survey). A follow-up question on the theoretical part is whether we can
relax the bounded loss assumption: we leave this for future work.
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